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Introduction

Let H be a separable Hilbert space and let (H) be all operators (continuous
linear transformations) from H into H. Let zr be the quotient map from (H)
onto the Calkin algebra (H)/:;rf, where :g" denotes all compact operators in
(H). T (H) is essentially normal, essentially hyponormal, essentially
or essentially convexoid if zffT) is normal, hyponormal, G1, or convexoid in
(H)/g’, respectively. Denote each of the above sets in M(H) by e(V’), e(),
e((g), and e(), respectively, where X is the set of all normal operators on H,
’, is the set of all hyponormal operators on H, ( is the set of all operators on
H satisfying growth condition G, (i.e. II(T- z)-*ll-- lid(z, a(T)) for all
z a(T) where a(T) denotes the spectrum of T), and rg is the set of all convexoid
operators on H (i.e., the convex hull of the spectrum of T, co a(T), is equal to

the closure of the numerical range of T, W(T)). The spectral properties of
essentially G operators and essentially convexoid operators are discussed in
[9]. Along with ways of constructing nontrivial examples, section one contains
several elementary facts about elements in the Calkin algebra and some of the
basic properties of essentially G operators and essentially convexoid operators.
The main results of the second section are: (1) e(vff) is a closed nowhere dense
subset of e(), (2) e() is a closed nowhere dense subset of e((), (3) e(() is a
closed nowhere dense subset of e(rg), and (4) e(Cg) is a closed nowhere dense
subset of (H).

I. Basic properties and examples

For each T (H) let ae(T) denote the essential spectrum of T, i.e., ae(T
is the set of all complex numbers 2 such that zr(T) 2 is not invertible in the
Calkin algebra. The proof of the following remark is straightforward.

Remark 1. If T A ) B on H H, then tre(T tre(A) W tre(B ).

THEOREM 1. If A, B (H), then [[rc(A B)II Max {ll(a)ll, II(B)II}.
Theorem is an immediate consequence of Remark and the fact that the

norm of a self-adjoint element of a B*-algebra is equal to its spectral radius.
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Thus

IIn(A*A B*B)]I

Max {IAI" e fie(A’A) fie(B’B)}

Max

Max

COROLLARY. If A and B are essentially Gx, then A B is essentially G1.

Recall that the essential numerical range of T is equal to the set of all f(T)
such thatf (H)*, Ilfll f(1), and f(oCg) 0. If S is a subset of the
complex plane let co (S) denote the convex hull of S.

THEOREM 2. If T A @ B on H H, then We(T) co (We(A) u We(B)).

Proof From [4, corollary, p. 189], 2 e We(S) if and only if there exists an
orthonormal sequence {x,} such that 2 lim,_ (Sx,, x,). Since We(T) is
convex, it follows that co (We(A) We(B))

_
We(T).

Let f e B(H1 H2) with f(1)= Hill, f(cd)= 0. Then there are

9i B(Hi) (i 1, 2) such that gl(Xa) f(X @ 0) and g2(X2) f(0 @ X2)
where Xi B(Hi). Let fi gi/llgil] if gi 4: 0; otherwise put fi 0. Then
f(Xa @ X2) Ilgllfa(X1) + IIg211f2(X2). In particular,

f(T) Ilgllfx(a) + IIgllf(n) e co (We(A) We(B))

because Ilgll] -4- IIg211 gx(1) + g2(1) f(1) 1. and fx(K1) 0 f2(K2)
if Ki is a compact operator on Hi. Therefore We(T) - co (We(A) w We(B) and
the proof is complete.

COROLLARY.
convexoid.

If A and B are essentially convexoid, then A B is essentially

The next few theorems give ways of generating nontrivial examples that will
be used in the sequel.

THEOREM 3. If T A B on H H where B is essentially G with
ae(B) We(A), then T is essentially G.

Proof Let z fie(T) fie(A) W fie(B) fie(B),
ae(B). From [10, Lemma 1, p. 418],

since fie(A)
__

We(A

(re(A) z)-lll < <
d(z, We(A)) d(z, fie(T))
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Therefore,

II((T) z)- -II((A)- z)-’ (R) (n(B)- z)-l[
Max {ll(rt(A) z)-’ (rt(B) z)- ’11 }

Max I(r(A) z)-’ I,
d(z, r(B)

d(z, e(T))

Therefore T is essentially G and the proof is complete.
From [8] we know that T A B is a G operator if B is a G operator

with (B)
__

W(A). An easy way to construct an essentially G operator or G
operator with fie(B)

_____
We(A or if(B)

_
W(A) is to take B to be any normal

operator whose essential spectrum is W(A) or whose spectrum is W(A),
respectively.

In an analogous fashion, we can construct essentially convexoid and con-
vexoid operators.

THEOREM 4. If T A B on H O) H and if B is (essentially) convexoid
with (co re(B)

_
We(A)) co tr(B) W(A), then T is (essentially) convexoid.

Proof First observe that co a(B)
___

W(A)
_

co ae(A).

Therefore,
CO fie(T) CO (tTe(A) t..) O’e(O)) co re(O We(B).

Thus,
We(T Co (We(A) k..) We(B)) CO We(B We(B co O’e(T)

so that T is essentially convexoid. The proof when B is convexoid with
co tr(B)

_
W (A) is similar.

The next theorem gives an easy method of constructing many operators that
are not essentially convexoid or are not convexoid operators. For the proof we
need to introduce some notation and terminology that will be used several times
in the sequel. Recall that (H)/ is a C*-algebra and hence there exists a
Hilbert space Ho such that M(H)/ff is isometrically isomorphic to a closed,
self-adjoint subalgebra of (Ho). Let v" (H)/2r (Ho) be this isometric
isomorphism. T e N(H) is essentially invertible if and only if re(T) is invertible
in the Calkin algebra. By Atkinson’s theorem T is essentially invertible if and
only if T is Fredholm, i.e., T has closed range with finite nullity and finite co-
rank.

THEOREM 5. If

on H H where C is (essentially) invertible, then T is not (essentially) convexoid.
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Proof. Part I. Suppose C is invertible and show T is not convexoid" If
A z and B z are invertible, then T z is invertible and

T-= (A -A;CB;)B-I
where Sz S- z for all operators S. It follows from this that a(T)
a(A) w a(B). Let z a(B) w a(B). It follows from the matrix representation
of T- that

Z-11 > IIg- 111.
Since IIn;Xll _> lid(z, a(n)), II(Z-z)-Xll > lid(z, a(n)),

Observe that T* is unitarily equivalent to

via the unitary operator

Since z q a(A) a(B) implies a(A*)3 a(B*), we may apply the above
argument to

C*

which is unitarily equivalent to T*, to conclude that for all z a(A) t e(B),

ii(T_z)_ll >Max{, 1 }d (z, r(A))’ d (z, r(B))
Suppose T is convexoid, i.e., co a(T) W(T). Since

W (A)
_
W (T). Since

())= ((/C3), ())= (By, y),

W(B)
_

W(T). Therefore, since a(T) a(A) w a(B), we have

co (a(A)w a(B))
_

co (W(A)w W(B))
_

W(T) co a(T)__
co (a(A) w a()).

Consequently, co a(T) co (a(A) w a(B)). Now pick z co a(T) such that
d(z, co a(T)) d(z, a(A)) (if no such z exists, then there does exist z co a(T)
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such that d(z, co a(T)) d(z, a(B)) and this case is handled similarly). From
above,

I](T z)-ll > II(w z)-’ll,
d(z, a(A)) d(z, co a(T))

contradiction. Therefore T is not convexoid and Part I is shown.

Part II. Suppose C is essentially invertible and show that Tis not essentially
convexoid" The idea is to reduce this part of the proof to the previous one.

In a manner similar to above one shows that ae(T)
_

ae(A) w ae(B). Let P
be the orthogonal projection

onto/-/@ 0. Then rffP) is a nontrivial orthogonal projection in (Ho) (see
the comments before the statement of proof for the definition of v and Ho).
Let M range (v n(P)). Then relative to Ho M @ M+/-,

v on(T)= (A1 C1)D B
Since (1 P)TP 0, D 0. Since PTIo n C is essentially invertible, C
is invertible. Since tre(T) a(v re(T)) [2, Theorem 4.28], and since v is an
isometric (algebra) isomorphism, T is essentially convexoid if and only if
v n(T) is convexoid. By Part I, v rifT) is not convexoid. T’:erefore T is not
essentially convexoid and the proof is complete.

COROLLARY. IfA, B, C (H) and C is (essentially) invertible then

is not (essentially) .
It is easily seen that .4/" +

__
e(,f’) and f +

_
e(); both con-

tainments are actually proper. However, the above type of relationship is not
true for the essentially G operators nor for the essentially convexoid operators.

THEOREM 6. aj is not a subset ofe(f), and e((#) is not a subset of
Proof Write H Ma @ M2 M3 where each M has infinite dimension.

Let

A= ( 10)’(M @ M2).

By [7, Theorem 7] there exists a compact normal operator N ’(Ma) such that
T A @ N (. However, since A is not essentially G1 and N is compact,
T is not essentially G1.

Let

T= (0, 1, 0 onH=M0)M
\v
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where the dimension of M is two. Then n(T) 0 so T is essentially G1. Since
a(T) (0) and W(T) is {z: [z[ < 1/2}, T is not convexoid and hence not G1.

THEOREM 7. is not a subset of e(ff), and e() is not a subset of

Proof. To see that e() is not a subset of take a compact T cg, then
n(T) 0 so T is in e(). For example, take

(0 ’0) 0
where M has dimension 2.
To see that is not a subset of e() let H M ) M2 0) M3 where M

and M2 have infinite dimension and M3 has dimension equal to 3. Let

T= (00 10)q)N on(M1 0)M2)tM3

where

N= b
0

and a, b, and c are complex numbers chosen so that

co {a, b, c} - w (O0 10).
By Theorem 4, T is convexoid. Since N has finite rank,

It is easily seen that

is not essentially convexoid (its essential spectrum is {0}. and its essential
numerical range is a disc of radius 1/2 about the origin). Hence, Tis not essentially
convexoid and this completes the proof.

If T is essentially normal, then it is not necessarily true that there exists a
compact operator K such that T / K is normal (let 7" be a unilateral shift of
finite multiplicity). By taking the adjoint of a unilateral shift of finite multi-
plicity, we have an example of an essentially hyponormal operator, T, such that
there does not exist a compact operator K such that T / K is hyponormal
(compute the Fredholm index of T + K) [4, Remark 2, p. 186]. It is not known
what happens in the essentially G and essentially convexoid cases"
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Conjecture 1. If T is essentially Gx, then there exists a compact operator K
such that T + K is G.

Conjecture 2. If T is essentially convexoid, then there exists a compact
operator K such that T -t- K is convexoid.

II. Topological properties of the sets e(r), e(), e(), and e()

THEOREM 8. e(.A/’) is a closed, nowhere dense subset of the closed set e().

Proof Let g’c and c denote the normal and hyponormal elements in the
Calkin algebra (H)/. It is easily seen that both of these sets are closed in
(H)fir. Since the quotient map, 7, is continuous and since e(JV’) -(V’)
and e() 7r-(Jcg), e(./t/’) and e() are (norm) closed subsets of 9(H).
Therefore, to show that e(X) is a nowhere dense subset of e() it suffices to
show that e(tr) has empty interior in e(), i.e., for each T e(r), there
exists T, --, T such that T, e(,) e(4r).

Let T be essentially normal. Then ]-4] there exists an infinite rank projection
P and a complex number 2" such that P(T- 2) and (T- 2)P are compact.
Hence if M is the range of P then T- ) (0 0) T4) + K relative to H
M @ M- where K is compact. Let U be an essentially hyponormal operator
in (M) that is not essentially normal (for example take U to be a unilateral
shift of infinite multiplicity). Let T, 2 + K + ((1/n)U) T,. Then each
T, is clearly essentially hyponormal and not essentially normal because (l/n)U
is not essentially normal. Furthermore, T T,,I] (l/n) U --, 0. Therefore
the proof is complete.

THEOREM 9. e(() is a closed nowhere dense subset of the closed set e(f).

Proof We already know (Theorem 8) that e() is closed. First recall that
v is the isometric (algebra) embedding of (H)/ into (Ho), where Ho is a
Hilbert space. Also recall that ae(T)= a(v n(T)) for all T e (H). Let
T, T where each T, is essentially G1. We need to show that T is also in e(().
First observe that S e(aE) if and only if v n(S) is G in .(Ho). Therefore,
v n(T,) v n(T) and each v n(T,) is G1. Since [8, Theorem 2.2] the Gx
operators in (H0) is a closed set, , n(T) is G. Hence T is essentially G and
e(aE) is (norm) closed. Therefore, to complete the proof, we need to show that
for each T e(Ct) there exists T, --, T such that T, e e(f#) e(ogf).

Let T e(). Since n(T) is normaloid [4, p. 187] there exists 2 e ae(T) such
that 12[ n(T)il. Now proceed exactly as in the proof of Theorem 8 only now
let U be an essentially G operator that is not essentially hyponormal. For
example, take

U
0

0) N on H (M 0) M2)() M3



396 GLENN R. LUECKE

where each M has infinite dimension and N is a normal operator on M3 with

Thus we obtain the desired sequence Tn -o T such that Tn e(fq) e(.J’). This
completes the proof.

THEOREM 10. e((#) is a closed, nowhere dense subset of the closed set e(qf).

Proof. From Theorem 9, e(() is closed. To see that e(Cg) is closed, let
T, - T where each T, is essentially convexoid. Thus v zr(T) is convexoid in
9(Ho) and v n(T,) - v n(T). Since the set of convexoid operators in 9(Ho)
is closed [8, Theorem 2.7], v n(T) is convexoid. Thus rifT) is convexoid so
that T is essentially convexoid.

Since e(f#) is closed, in order to show e(fg) is a nowhere dense subset of e(Cg)
it suffices to show e(f) has empty interior in e(). Let T e(C6’). After a transla-
tion and rotation, if necessary, we may assume that 0 ae(T) c dWe(T) and
Re We(T) O. Since 0 tre(T) 63We(T), we may apply a theorem of Joel
Anderson [1] to obtain an orthonormal sequence {x} such that

Txn / T*x. --’ 0.

By J. G. Stampfli’s corollary to Theorem 2 [-1 1], T is unitarily equivalent (under,
say U) to (T @ 0) + K on H H1, where H1 is a separable Hilbert space and
K is a compact operator on H @ H1. Let

S,, =(T()A)+K onH@H,,

where

A= ((0) ))@N onH =(M1 @M2)()Ma,

each Ms has infinite dimension, and N is a normal operator on M3 with

It is easily seen that

is the same as the numerical range of
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on a two dimensional Hilbert space. Furthermore, by Donoghue [2], the
numerical range of

is a disc about the origin of radius 1/2. Thus a(N) ae(N) is a circle of radius 1/2
about the origin. By Theorem 4, .4 is essentially convexoid so by the Corollary
to Theorem 3, S, is essentially convexoid. Observe that

liT USU-II IIU-TU Sll II(T 0) + K- Sll

Therefore to complete the proof it suffices to show that S, is not essentially G1.
To carry this out, we first observe that for all z 0.

>_ sup
Ilyll =1

sup
Ilyll

--1/(nzZ))--1/z

0

1

(nz2)y

--l(nz 2

+

Therefore

Since 0 c ae(T),
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Recall that Re re(T) >_ 0 so that we may choose (for each fixed n _> 1) z so
that -1/On) < z < 0 and z 6 re(S,). Then

]](x(S,,)--z)-a[’ [l(x(T)@
,x,T,- z)

Max {[[((T)-z)-ll,
Max ]](n(T)- z)- 1], n z

0

,:)- z)

(-,/zo 11[

--]]((00 l) Z)-II[

The second to last equality holds since the matrix is Toeplitz (i.e., if A is Toeplitz,
then I[A 4- K[[ >_ [IA[[ for all compact operators K [3, p. 180]). Therefore for
all z < 0 close enough to 0,

Hence S. is not essentially G1 and the theorem is proved.

THEOREM 1. e(Cg) is a closed, nowhere dense subset of(H).

Proof e(Cg) is closed from Theorem 10. Therefore to complete the proof it
suffices to show that e(Cg) has empty interior. Let T be essentially convexoid.
After a translation and rotation, if necessary, we may assume 0 re(T) c cWe(T)
and Re We(T) >_ O. By a result of Joel Anderson [-1], there exists an ortho-
normal sequence {x.} such that []Tx,[[ + T*x, --. 0. Proceeding as in the
proof of Theorem 10, we apply the Corollary to Theorem 2 of Stampfli [11] to
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conclude that T is unitarily equivalent (under, say, U) to (T @ 0) / K on
H @ H1, where H1 is a separable Hilbert space and K is a compact operator
onH0) Hl. Lete > 0anddefine

By Theorem 5,

+ K on H H.

is not essentially convexoid; hence S is not essentially convexoid so that USU-
is not essentially convexoid. Furthermore

T USU-’ U- TU all II(Z @ 0) + K all

Therefore the set of essentially convexoid operators has empty interior in ’(H).
Thus e(rg) is nowhere dense and the theorem is proved.
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