HOMOTOPY TREES: ESSENTIAL HEIGHT AND ROOTS

BY
MICHEAL N. DYER

In this note we study some general properties of homotopy trees HT (r, m).
We show that for = a finite group, the trees are a single stalk from some point
on (Theorem 2) and if m > 3, that roots can occur only at the lowest two levels
of the tree (Corollary 1).

A (m, m)-complex X is a finite, connected m-dimensional CW-complex such
that n,(X) @ n and n(X) =0 for i = 2,...,m — 1. The homotopy tree
HT (r, m) is the directed tree whose vertices are homotopy classes of (z, m)-
complexes. If X and Y are (n, m)-complexes, then the vertex [ X] is connected
by an edge to the vertex [ Y ] iff Y has the homotopy type of the one-point union
X V S™ of X with the m-sphere S™. HT (n, m) is connected by Theorem 14 of
[23, page 49] and has no circuits. The tree HT (m, m) is measured by the
directed Euler characteristic ¥ = (—1)™y: vertices (HT) — Z. Let

?min = min {X[X] I XlS a (7T, m)-Complex}.

Thus y divides the tree into levels T 1(j) (j = Zmin)- We call T (i + Fomin) the
ith level of the tree. For each j > y.:., the successor function s;: X)) -
%1 + 1) is given by s{([X]) = [X V S™]. A vertex x € HT is a root if x
has no predecessor; a minimal root if x € §~'(3n;). The stalk {x) generated by
the vertex x is the subtree whose vertices consist of

{x, s(x), s*(%), ..., s"(x),...}.

For the purpose of classifying the homotopy type of (&, m)-complexes, we
will identify the fundamental group of each (r, m)-complex with =. This can
be done by simply choosing (and fixing) an isomorphism ay: © — 7,(X) for
each X and using ay to convert each n;(X)-module into a z-module. Then any
argument we make over 7 can be easily translated to n;(X). If m > 3, we may
use a lemma of C. T. C. Wall [22, Lemma 1.2, page 59] to find a (r, m)-complex
Y € [X] such that the two-skeleton Y® is the one-point union of a given
(m, 2)-complex and a finite bouquet of 2-spheres. In this case, we may trivially
identify the fundamental groups.

The homotopy type of a (r, m)-complex X is completely determined by (the
isomorphism class of) its algebraic m-type T(X). This consists of the triple
TX) = (m, (X)), k(X)) where =,,(X) is a n-module and k(X) € H™*'(n;n,, (X))
is the first k-invariant of X (see [17, page 41], [7, Section 2]).
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Let us briefly define the k-invariant. Let

0 — (X)) — Co(X) 2 € () 222 - -

0.1 S
©.1) X)) —-Z—0

be the cellular chain complex of the universal cover X of X. We will denote this
by 0 - 7,(X) » Cx(X) - Z — 0. This is an exact sequence of m-modules
forming a portion of length m of a free, finitely generated resolution (each C;(X)
is a free, finitely generated n-module, i = 0, 1, ..., m) of the trivial z-module Z.
Let

2.0->n,X)>P,>Z->0

denote an exact sequence of length m of n-modules, where each P; (i = 0, 1, .. .,
m) is finitely generated. Each such exact sequence determines an element k of
H™*Y(n; m,(X)) as follows. Cover the identity map Z = Z by a chain map
F: Co(X) - P, as follows:

0— 7, (X)— Ce(X) —Z—0

0.2) s 1 [ N
0— n(X)— P, ——Z—0.

This induces a homomorphism f: =,,(X) — =,,(X), which, in turn, determines
an element

k = {f} e H""!(n; m,(X)) = End,(r,(X))/B"

where B™ = {a € End, (1,(X)) | « extends to o': C,(X) = 7(X)} (see [16,
Theorem 3.6, page 74, and Section 6, page 84] as a general reference).
(0.3) Note. k(X) is the class of 1: 7,,(X) — 7,,(X).

DEFINITION. k € H™*(n; m,(X)) is said to be projective if one (and hence,
all [8, Corollary 6.4]) realizing partial resolution(s) for k may be chosen with
each P; projective (i = 0, 1,..., m).

Let [X] be a vertex of HT (n, m) and consider the n-module x,, = =,(X).
Such a n-module is called realizable. Let K,Zn denote the reduced projective
class group of the integral group ring Zn of n. The following theorem is proved
in [8, Theorem 1].

THEOREM 1. Let ©t be a group such that H™**(n, Zn) = 0. For each finitely
generated topologically realizable n-module T, the group H™*(n, m,,) supports
the structure of a ring with identity such that the units U of H™*(n, =,,) are the
projective k-invariants. Furthermore, there exists a homomorphism A : U —
RoZn such that ker & = SF(n, m) is the set of k-invariants arising from (m, m)-
complexes, provided m > 3.

Note that the hypothesis H™"'(n; Zn) = 0 implies that H™*!(n; n,(X)) =
H™*Y(n; ,(Y)) for any two (m, m)-complexes X, Y. This follows because the
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theorem of J. H. C. Whitehead mentioned in paragraph two implies that there
are integers s, ¢ such that

(1.1) XV sS"~YVtS™
where iS™ = S™ V --- V S™ (i times). Hence, there is a z-module isomorphism
(1.2) (X)) ® (Zn) = =, (Y) ® (Zn)

for any two (&, m)-complexes X, Y [4, Appendix, Theorem, page 198].

For example, if 7 is a finite group of order n, then Hi(n; Zn) = 0 for all
i > 0 [3, Proposition 8.2a, page 198]. It follows that H™*!(n; n,) = Z,, the
integers modulo #, (as a ring) for any realizable «,, [7, Section 2] and #": Z} —
K,Zn is given by sending p + nZ (p prime to n) to —[(p, N)], the negative of
the class represented by the projective ideal (p, N) generated by the integer p
and N = ¥, ., x [19, Section 6, page 278, and 7, Theorem 2.2]. This homo-
morphism has been extensively studied in [14] for n periodic and in [21] for
more general finite 7.

As another example, let = be a one-relator group with presentation

{x17 crtty xn; Qq}

where Q is not a proper power and ¢ > 1. It is known that for i > 3,
Hi(n; Zn) = 0 [15, Corollary 11.3, page 663]. Recently, S. Jajodia [13] has
shown that the ring H'*'(n; n;) = Z, for all i > 2 and realizable n;.

For a third example, let 4 be a finitely generated abelian group of rank
r > 0. It follows from [2, Proposition 3.1, page 112] that H(4; ZA) = 0 for
all i # r. Among the k-invariant rings H'*!(4; A,) there are noncyclic ex-
amples, for any realizable 4; and i > r.

The ring H"*!(n, n,) = R(r, m) is called the classifying ring of the tree
HT(n, m) and the homomorphism X : U(n, m) » KyZn, the classifying
homomorphism.

Briefly, let us define isomorphisms between algebraic m-types [17, page 41].
Let 7 be a group, 7,, a t-module, and k € H™*!(n, ). An algebraic m-type is
a triple T = (=, m,,, k). We say that T is isomorphic to T' = (=, =,,, k') iff
there exists an automorphism 0: 7 — 7, a 0-automorphism

B: wty = my (Blx-y) = 0(X)B(y), x €™, y €m,p)
such that k = B3} - 0*(k’) in the diagram
H™ (5 m) = H™ (w5 (m,)g) —— H™ (5 7).

Here (z,,), is the m-module with action a * y = 0(a)*y (x € m, y em,). It is
shown in [17, Theorem 1, page 42] that X ~ Y iff T(X) = T(Y).

DerINITION. Let HT(m, m)¥ = ¥ ([N + Zumin» ©)) denote the subtree
whose vertices are at level greater than or equal to N. We say that HT" is an
evergreen iff the successor function

seX M) - XN+ 1)
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is surjective for all i > N + ¥;.. HT has essential height < 1if HT"is a single
stalk.

THEOREM 2. Let 7 be a finite group of order n and m be an integer > 2. The
tree HT (w, m) always has finite essential height. For m > 3, the subtree
HT (n, m)! is an evergreen; for m even and > 4, the whole tree HT (1, m) is
evergreen.

Proof. If =, is a realizable n-module and a: n,, — =, is an automorphism,
then we say that oy : H™*!(n, 7)) - H™*!(n, n,) = Z, has degree k if a, (1) =
k. Let X be a minimal root and let v be the number of m cells in X. Then, for
each p e SF = SF(n, m) = Z}, there exists an automorphism

Q.1 a,: (X)) @ (Zn)° - n,(X) @ (Zm)®

of degree p, where S = max (v, 2). To see this we argue as follows.

Consider the boundary homomorphism d,,: C,(X) = C,,_,(X) in the cellular
chain complex of the universal cover X of X. Let x,,_, denote the image of d,,.
Form > 3, M,_; = Tu_y(X™ V);if m = 2, n, is a so-called relation module
of n. The sequence

0 — TW(X) —— Cp(X) — 7y — O

is an exact sequence of m-modules. Represent p € SF by a homomorphism
P (X)) - n,(X) (multiplication by any integer p’ € p will do) and consider
the diagram:

0 — mu(X) —— Cp(X) — 7y — 0

e FE
0— m,(X)— pC(X)— 7,,_, — O

where p’C,(X) is the push out of i and p’. p € SFimplies that p’C,(X) is stably
free [8, Corollary 6.4]. If v (= rank, C,(X)) > 2, then, by a theorem of H.
Bass [, Corollary 10.3, page 29], p'C,(X) = C,(X) = (Zn)"; if v < 2, then
p'C(X) ® Zn is free. The isomorphism «, then follows from Schanuel’s
lemma [19, Corollary 1.1, page 270].

We will show that HT (n, m) has essential height < S. Let Y be a (r, m)-
complex at level higher than S — 1; i.e.,

1Y) = x| = S + Tmin:

By (1.2), (X)) ® (Zn)* = =, (Y) @ (Zn)' for certain nonnegative integers
u and t. A simple Euler characteristic argument shows that

u—1t=730Y) = Ynin = S

Because S is greater than one, the cancellation theorem of H. Bass mentioned
in the last paragraph implies that =, (Y) & n,(X) ® (Zn)* (k > S). Thus
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T(Y) = (7, n,,(X) ® (Zn)k, p) for some p e SF. We may assume (0.3) that
T(X V kS™) = (n, n,(X) @ (Zn)*, 1). Then the isomorphism

(id, o) (m, (X)) @ (Zn), 1) = T(X V kS™) - (n, m,(X) @ (Zn)", p)

given by (2.1) shows that Y ~ X V kS™.

We say that a n-module M has the cancellation property if any isomorphism
M' @ (Zn)' =~ M @ (Zn) (j = i) implies that M' =~ M @ (Zn)’~". The
evergreen property for HT (n, m)! follows because, as in the preceding para-
graph, 7,(X) @ (Zn)® has the cancellation property; the evergreen property
for HT (mn, m) (m even) follows because 7,,(X) @ Z= has the cancellation pro-
perty [7, Proposition 5.1].

For example, let us prove the final statement. Let m > 3 beevenand Y be a
(m, m)-complex such that 3(Y) > ¥mia. Then 7,(Y) = 7,(X) ® (Zn)' and
T(Y) = (n, n,(X) @ (Zn),, p) for some peSF(n,m) < Zy. Let T, =
(n, m,(X), p). Because m > 3, T, = T(W) for some (n, m)-complex W [19,
Theorem 3.1, page 272]. Thus W V iS™ ~ Y, which implies that HT (%, m) is
an evergreen and that the only roots of the tree are minimal ones. []

In fact, the proof shows even more. Among the minimal roots for HT (%, m),
let X be the one with the smallest number of m-cells. Denote that number by
v(n, m). Then
v(m, m) if m is even

essential height of HT (n, m) < {max (o, m), 2} if mis odd,

For example, if = is the finite abelian group Z, x '+ x Z,, where 7; | 7;4,
@=1,...,S — 1), then the essential height of HT (n,2) is < S + C(S, 2).
See Theorem 3 for a better estimate.

As another example, let 7 be a finite group of minimal free period k (see [7,
Section 7] for a definition) and let g be the minimal number of generators of =.
Then the essential height of HT (w, ki + 1) (( = 1) is < g.

COROLLARY 1. If 7 is finite and m > 2, then roots of HT (n, m) may only
occur at level 0 for m even and level O or 1 for m odd.

It is shown in [9, Corollary 3.7] that HT (GQ(32), 3) has nonminimal roots,
where GQ(32) is the generalized quaternion group of order 32. Also, M. J.
Dunwoody has shown that roots exist at level 1 in HT (T, 2), where T is the
group of the trefoil knot [5].

Finally, we will improve theorem A of [11, page 115].

THEOREM 3. Let n = Z, X Z,, x **+ X Z, be a finite abelian group with
torsion coefficients {t,, t,, ..., Ts}, where t; divides t;, fori =1,...,5s — 1.
Then HT (n, 2) has essential height < C(S, 2).

COROLLARY 2. The essential height of HT (Z,, x Z,,, 2) is less than or equal
to one.

Proof. 1In order to simplify the notation, we will prove only the corollary.
Let 2: {x, y: x™, ¥y*, [x, y]} be the standard presentation of 1 = Z,, x Z_,, P

T2°
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be the realization of 2 as a (n, 2)-complex, and &, = m,(P). Let X, y denote the
images of x, y in the group n. Consider the 2-types

T, = (n,n, ® (Zn), p) forpeZ¥ andi > 0.

T2

As a point of reference, we may assume (0.3) that T(P V kS?) = T¥ (k > 0).
We will show that for p € SF(n, 2), each T}, = T|. Assuming this, let Y be any
(m, 2) complex such that X(Y) > Zmin = 2. By (1.2) and because 7, @ Zn has
the cancellation property [7, Proposition 5.17, n,(Y) = n, ® (Z(n))* (k = 1).
Hence T(Y) = Tj for some pe Z} . But Theorem I shows that because

T2’

Tk = T(Y) is 2-realizable, p € SF(x, 2). Thus
T(Y) = T = T¢ = T(P V kS?).

12

To show that T}, = T for each p € SF(m, 2), we use a theorem of S. MacLane
and J. H. C. Whitehead [17, Theorem 2, page 42] to realize T as the 2-type of
a finite, connected 3-dimensional CW complex X. Consider the following
alteration of the cellular chain complex C4(X):

€:0 — ny — (C,/By) 2, C, 2, Zn =~ Z —0

where C; = C(X), B, = im {3: C; » C,}. As in the proof of Theorem 4.1
of [6, page 236], we may assume that C; = (Zn)> and 0, = (X — 1,5 — 1)
with respect to a natural basis for C,(X) defined by the lifts of the (two) 1-cells
of X. % realizes TS. p € SF(x, 2) implies that C,/B, is a stably free projective
module [7, Theorem 2.5]. = is finite abelian implies that stably free projectives
are free [20, page 178]; hence C,/B, is a free n-module.

Now the argument of theorem A of [11, pages 119-123] applied to € yields
the result that T, = T}. Briefly, here is a sketch of the argument: choose
c € C,/B, such that d,c = a = (1 — y, X — 1) € (Zn)®>. Here « is the total
Fox derivative of the commutator [x, y] [11, Section 2]. Define a new chain
complex

@0 ——— 7, ® Zn ——— C,/B, ® Zn —22 ., (Zn)?
(x—1,y-1) 7
— LT

VA 0

€

(n,,0) @ Zn(c, —1)

obtained by adding a copy of Zn to C,/B, and defining the boundary operator
to be multiplication by a on that factor. %’ realizes T} as a free complex. We
prove this by comparing ¥ ® (Z=, 2) to ¢’ as in (0.2):

% ® (Zn, 2):
0”‘—"’”2@275
el s - les s

€. 0——n, ® Zn

C,/B, ® Zn 29, (Zn) —— Zn——Z ——0

]

C,/B, ® Zn 29, (Zn)? Zn




312 MICHEAL N. DYER

The induced map f, shows that both ¥’ and ¥ ® (Z=n, 2) have the same k-
invariant. The argument of [11, page 120, last paragraph, to page 123, first
paragraph] shows that under these conditions we may choose a basis for
C,/B, ® Zn so that €’ then realizes T! and, in fact, ' = C4(P V S?), with
that basis (see also [10, pages 38-39]). Thus T}, = T} with an isomorphism
inducing the identity on = [ 10, Proposition 4, page 36]. []

The following corollary is an easy consequence of the last sentence of the
proof of Corollary 2.

COROLLARY 3. With n, = n,(P) as in the proof of corollary 2, there is an
automorphism a,: 1, @ Zn — n, @ Zn of degree p for each p € SF(m, 2) (see
[7, Section 3] for a related discussion).

Note. E.Vogt has brought to my attention recent work of Wolfgang Metzler.
He has shown that for certain finite abelian groups

Ty, ...y Ts) = 2y X Zyy X 200 X Z g With S > 3,

there exist distinct minimal roots K,, K, of HT (n, 2) for which K; V §* ~
K, V S?[18, Satz 2]. Thus, for certain finite abelian groups =, the homotopy
tree HT (=, 2) is not a single stalk.

Let n(ty, ..., Ts) have presentation

P o= {xy,. ., xs:xP, L xS {[x ] 11 < i< j< S}

and let P denote the cellular model of 2. It can be shown that the Z-rank of
7,(P)" is precisely the number C(S, 2). We ask two questions:

(1) Isthe essential height of HT (n(zy, . . ., Ts), 2) equal to C(S, 2)?
(2) If & is an arbitrary finite group, and X a minimal root of HT (%, m), is
the essential height of HT (%, m) < Z-rank of 7,(X)"?

One method of proof for (2) might go as follows. Let X be a minimal root
and 7,, = =,(X). By Schanuel’s lemma and [7, Theorem 2.2] it follows that
there exists an automorphism

Ut T @ (ZOM > 7, ® (Zm)M

of degree p for each p € SF(n, m). Here M < v(n, m). The problem is then to
cancel (in the style of Bass-Jacobinski [20, Chapter 9], [1], [12]) while preserving
the degree.
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