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I. Introduction

Basically, this paper addresses the following two problems, due to Bing [3]"

(1) STABLE HOMEOMORPHISM PROBLEM. If h: P--’P is a homeomorphism
ofthe pseudo arc P onto itself such that h is the identity on some open set, must
h be the identity?

(2) COMPOSANT PROBLEM. If h" P -P is a homeomorphism of the pseudo
arc P onto itself such that h carries each composant onto itself, must h be the
identity?

We obtain only partial results for the above problems--for homeomorphisms
extendable to S2--and we use prime ends heavily in our work. The necessary
preliminary ideas and theorems are developed in Sections 3-5. Along the way,
we obtain some interesting by-products. In another paper [8], we use many of
these ideas and theorems to study the extendable, periodic homeomorphisms of
the pseudo arc.

In Section 2, we describe prime end theory briefly, stating some of the impor-
tant theorems, and giving examples, so that the reader can understand the rest
of the paper.

In Section 3, we provide a complete proof of a theorem of Iliadis [13], which
is stated, but not proved, in the literature. This is a theorem about prime ends
and is important in our work. It states that ifM is an indecomposable contin-
uum in S2 and b: (S2 M) ,Int B is a C-map (conformal map) to the interior
of the unit disk, then qb induces a decomposition ofS Bd B into a collection
of at most countably many intervals, and the points of the complement. The
intervals are in 1-1 correspondence with those composants ofM which contain
more than one accessible point. An "interval," however, is either an open
interval or S minus a point.

In Section 4, we show that there are inequivalent imbeddings of the pseudo
arc in S2, by constructing imbeddings such that their accessible points are
contained in exactly one and exactly two composants, respectively. This result
shows (see the introduction to Section 4) that a certain statement made by
Mason in [15], without proof and unnecessary to his paper, is false. The state-
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ment said that if P is a pseudo arc in S2 and E is a prime end of S2 P, then the
impression of E is P.

In addition, we construct an imbedding of the pseudo arc which we conjec-
ture satisfies Mason’s statement. We also raise some interesting questions.

In Section 5, we define the notion of essentially extendable homeomorphism
of a continuum M

_
S2. We say that h: M M is essentially extendable to S2,

iff there is some imbedding b: m S2 such that bhtk-: b(M),b(m)is ex-
tendable to a homeomorphism of S2 onto itself. We give examples of homeo-
morphisms of the pseudo arc onto itself which are not extendable, but which
are conjugate to extendable homeomorphisms. We also give an example of a
ehainable continuum and homeomorphism of it which is not essentially ex-
tendable to S2. Other examples are given and some interesting questions are
raised. (We note that in another paper [7] we will show that every homeomor-
phism of a chainable continuum onto itself, is essentially extendable to Sa.)

In Section 6, we deal with the stable homeomorphism and eomposant prob-
lems, obtaining some partial results. One of the main theorems of Section 6 is
Theorem 6.5, and it answers the stable homeomorphism problem in the
affirmative, for homeomorphisms of P which are extendable. Thus we show
that if h is a homeomorphism of the standard (see Section 4) pseudo arc P onto
itself which is the identity on some open set, and h is extendable, then h is the
identity. The other important theorems of this section are Theorems 6.4, 6.9,
and 6.17.
The results of this section were motivated by the theorem of Iliadis

[13]proved in Section 3together with Mason’s statement [15], discussed in
Section 4. An easy argument (Corollary 6.4) is given to show that there are no
homeomorphisms other than the identity keeping each composant fixed, in
case h: QQ is extendable, where Q is a pseudo arc satisfying Mason’s
statement.

Finally, in Section 7, we list and discuss some important and interesting
questions raised by the results of this paper.
The author wishes to thank the referee for his helpful comments.
The important continua studied in this paper are indecomposable continua.

See [12] for definition and basic properties. We note, however, that the picture
3-22 of [12] of the pseudo arc, is incorrect, as is the pictm:e 3-21 of the "3-point
continuum."

DEFINITIONS AND NOTATION. Let X be a space, h: XX a homeomor-
phism and A X. We say that A is invariant (under h) iff h(A)

_
A, and that A

isfully invariant (under h)iff h(A) A. We use a double arrow (--,) to denote an
onto function. O(x) denotes the orbit of x under the iterates of h.

2. Prime ends

In this section we give some basic definitions and examples, and state some
well-known theorems about prime ends. We will use prime end theory through-
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out the paper, since it is essential for our main results about extendable stable
homeomorphisms. See [9], [10], [14], [20] for detailed discussions of prime ends.

2.1. DEFINITIONS. A domain is a connected open set. If U is a domain in S2

with nondegenerate boundary, then a crosscut of U is an open arc in U, whose
closure is an arc which intersects Bd U in its two endpoints exactly. An endcut
of U is a half open arc in U whose closure is an arc which intersects Bd U in
one point onlymits other endpoint.

Let U be a simply connected domain in S2 with a nondegenerate boundary.
A C-transformation or C-map from U onto the interior of the unit disk B is a
homeomorphism b: U -Int B such that (1) the image of any crosscut of U is a
crosscut of B and (2) the endpoints of images of crosscuts of U, are dense in
Bd B, the unit circle. C-transformations have the topological properties of
conformal maps, and by [20] this is all that is necessary for prime end theory.
Prime end theory is originally due to Caratheodory, and in most discussions,
conformal maps are used.
A sequence of crosscuts {Q}o= of the simply connected domain U, is a chain

iff

(1) the arcs Qx, 2, are pairwise disjoint,
(2) Q, separates Q,_ from Q,+ in u, and
(3) diam Q 0. We further require that lim Q be a point.

Corresponding to each Q,, there is a domain U. of U Q,, containing Q.+ a.
Then U1 - U2-"’.

If {Q}= and {R}= are chains of crosscuts and {U}% and {Hi}% are their
respective corresponding domains, then {Q} and {R} are equivalent chains iff
for each n, there is an m such that H,,

_
U, and Um H.. A prime end is an

equivalence class of chains of crosscuts of U.
The map b determines a 1-1 correspondence between the prime ends of U

and the points of the unit circle, Bd B.
If {Q.}.= is a chain of crosscuts defining the prime end E, and {U} is the

sequence of corresponding domains of the chain, then the impression ofE, I(E),
is the set I(E)= = t.7. It can be shown,that I(E) is independent of which
defining sequence of chains is used, and thus is well defined. Also I(E)

_
Bd U,

and is a continuum. Further, different prime ends may have the same impres-
sions, and the impression of one prime end may be a proper subset of the
impression of another. Examples will be given to illustrate this.

There are two equivalent ways to define the set of principal points of a prime
end, and we give them both below. Let U be a simply connected domain,
b" U ,Int B a C-map, E a prime end of U which corresponds to the point e in
Bd B determined by . A half open arc A in U defines the prime end E iff b(A) is
an endcut of B, whose closure has endpoint e. (Note that ff is not necessarily an
arc.) Among the half open arcs defining E, there is one A such, that/i- A is
minimal; that is/i- A _/i’- A’ for every halfopen arc A’ defining E. This
minimal set, which will be a subset of I(E), is the set of principal points of E.
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An alternate definition is the following: If E is a prime end of U, {Q} is a
chain defining E, and p lim Q, p Bd B, then p is a principal point of E. We
note that different equivalent chains of crosscuts may converge to different
points of I(E). An example will be given (2.2.4).

2.2. Examples.

(1) E is determined by {Qi}. {p} is the only principal point of E. I(E) limit
segment.

(2) {Qi} determines E. {R} determines F. E :/: F. But I(E)= I(F)= {p}.
Thus different prime ends may have the same impression.

(3)

(4) {R,} =-{Q,} determines prime end E. lim R,= r. lim Q,= q. Interval
[b, c] set of principal points of E. Interval [a, d] I(E).

Rzl

r q
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The continuum is a dendrite with p as the only branch point, and p has infinite
order. At each successive stage, put in arcs emanating from p, cutting each
previous angle, as well as length, in half. Then there are uncountably many
different prime ends E such that I(E)= (p). See page 53 of [14].

2.3. WELL-KNOWN RESULTS AND g DEFINITION.

2.3.1. THEOREM (See page 29 of [20].) Let U be any simply connected
domain in S2 with nondegenerate boundary. Then there exists a C-map d" U-
Int B, where B is the unit disk in S2.

2.3.2. THEOREM [14, Theorem 2.20]. The map c of Theorem 2.3.1 estab-
lishes a 1-1 correspondence between the prime ends of U and the points ofBd B,
which (correspondence) is continuous in both directions. That is, if E is a prime
end determined by a chain of crosscuts {Q i} with corresponding domains {Ui} and
e e Bd B is the point corresponding to E, then a sequence of points {x i} has the
property that xi Uifor each iff c(xi) e on Bd B.

2.3.3. THEOREM (Ursell and Young [20], 4.10, page 6, and A17, page
27). Let h" t - be a homeomorphism with h(U)= U, and let " U -Int B
be a C-transformation. Then chc-1. Int B *Int B is a homeomorphism which
can be extended to a homeomorphism chc-1. B B.

2.3.4. THEOREM [Rutt, 19]. (1) IfM is an indecomposable continuum, then
S2 M has a prime end whose impression is M.

(2) IfM is a nondegenerate continuum not separating S2, and some prime end

ofS2 M has M as its impression, then M is indecomposable or the union oftwo
indecomposable continua.

(3) If S2 M has a prime end whose set of principal points is M, then M is

indecomposable.

2.3.5. DEFINITION. Let E be a prime end of the simply connected domain
U, and e Bd B, the point that corresponds to E under (a C-map). Then the
prime end E is fixed under h iffh- l(e) e, where h" * G is a homeomor-
phism. Since, by Theorems 2.3.2 and 2.3.3 above, we may identify the prime
ends of U with the points of Bd B, this definition makes sense.

2.4. THEOREM. Let U be a simply connected domain in S2 with nondegener-
ate boundary, and c" U -Int B a C-map. Let E be a prime end of U such that
I(E) {x}. Then if A is any half open arc defining E, then c ad U {x}, so
that A is an arc.

Proof. Since {x} is a principal point of I(E) there exists a chain of concentric
circular arcs with radii- 0, and common center x, such that this chain is
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crossed by every half open arc defining E. (See 4.9, page 5, of [20].) Earlier in
[20], following 4.6, the authors define crossing a chain of crosscuts to mean that
for all n sufficiently large, a beginning arc of the half-open path, is separated
from the remainder of the path by the nth crosscut of the chain. But if I(E)
{x}, we see that the diameters of the domains corresponding to the crosscuts,

0, so that/i is arc and/i Bd U {x}.

3. Accessibility and lliadis’ theorem

In this section we study the relationship between accessible points of an
indecomposable continuum, and its prime ends. The purpose of this section is
to provide a complete proof of a theorem of Iliadis, Theorem 4 of [13], which is
stated but not proved in that paper. In addition, we make his result a little more
precise. These results will be used later in the paper.

3.1. THEOREM. Let M be a nonseparatin9 indecomposable continuum in S2,
C a composant ofM, and a, b two points ofC which are accessiblefrom S2 M.
Let A be a crosscut in S2 M with endpoints a and b, and let U and V be the
complementary domains of A in S2- M. Then there exists a unique proper
subcontinuum K ofM, K

_
C, such that A w K is the boundary ofeither U or V.

Proof. Since M is a nonseparating indecomposable continuum in S2, no
subcontinuum of M separates. Thus, by Theorem 11.5 on page 117 of
Newman’s Elements of the topology of plane sets of points, Cambridge Univ.
Press, 1964, M is hereditarily unicoherent.

Now, since a and b lie in the same composant of M, there exists a proper
subcontinuum containing both a and b. By the above paragraph, the intersec-
tion of any two such continua is another such continuum. Let K be the inter-
section of a maximal tower of such subcontinua. Then K is a minimal proper
subcontinuum of M containing a and b. By the hereditary unicoherence of M,
K is unique.
We show that A w K is the boundary of either U or V. Note that A w K

separates S2 into two components U’ and V’. But since M is indecomposable,
A w K cannot separate M, or K would separate M. Thus A w K contains the
boundary of one of U’ and V’. Let A w K contain the boundary of U’. Then
U’= U or V, and without loss of generality, U’= U. Now suppose Bd U is
proper in A w K, say Bd U A w K1 where K is proper in K. Then A w K
fails to separate S2, since K was the minimal subcontinuum of M containing
both a and b. Thus Bd U A w K.

3.2. THEOREM. Let M
_
S2 be an indecomposable continuum, and let A 1, A2

be two endcuts of S2 M, each of whose endpoints on M is the same point x.
Then A and A 2 define the same prime end. Thus, each accessible point of an
indecomposable plane continuum corresponds uniquely to a prime end.

Proof. Suppose A and A2 define different prime ends E and E2. Then
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there exists a neighborhood U of x such that any endcut in U from a point of
Ax to a point of A2, must meet M. (See [14, pp. 52-54] for discussion.) Thus M
separates Ax from A2 in U. Let A3 be an arc in S2 M so that A w A2 w A 3

is a "crosscut" of S2 M, with both endpoints being x. Then A w A 2 w A 3 is
a simple closed curve whose intersection with M is x, and which separates M.
Thus x is a cut point of M, and therefore M is not indecomposable. This is a
contradiction, and the theorem follows.

3.3. THEOREM. Let M be a nonseparatin# indecomposable continuum in S2,
C a composant ofM, and a, b two points ofC which are accessiblefrom S2 M.
Let a’ and b’ be the points ofBd B which correspond to a and b respectively, by the
C-map, ok. Then one of the two open intervals I and J which are the components of
Bd B- (a’, b’}, say I, has the property that if e I, and E is the prime end
associated with e, then I(E)_ C.

Proof. Let A be a crosscut in S2 M from a to b, K be the continuum of
Theorem 3.1, and U the complementary domain bounded by A w K. Let
I Int (b(U) Bd B). Let E be a prime end of S2 M determined by a chain
of crosscuts {C}= each of which lies in U. Then {b(C)}__ is a chain of
crosscuts converging to a point e I. Further, for each e I, by Theorem 2.15
of [14], there exists a prime end of S2 M with image e. Thus if (b(C)} is a
chain of crosscuts of b(U) converging to e, then {Ci} is a chain of crosscuts of U
representing the prime end E corresponding to e. Clearly each C c__ U. Thus
I(E) c_ K c_ C.

3.4. THEOREM. For each composant C ofthe nonseparatin# indecomposable
continuum M

_
S2, where C has more than one accessible point, there exists a

maximal "open interval" I (which may be all ofad B (= S minus one point) such
that I(E)_ C for each e I, where E is the prime end correspondin# to e.

Proof We note first that there is at least one prime end E such that
I(E) M, by [19]. Thus the interval of the theorem must be a subset of (S less
one point). We also note that I may, in fact, be all of S minus one point, as in
the case if M is the ehainable "U-continuum" (see Section 4) with its endpoint
in an accessible composant.
Now let a and b be two points of C which are accessible from S2 M. By

Theorem 3.3, there exists an open interval I,,b on Bd B, such that I(E) C, ifE
is the prime end corresponding to e 1,b. Thus for each accessible point c 4: a
in C, there exists an open interval I,. Let I’= I,. If 1’ is connected and
1’= S a’, then by the above paragraph, I I’. If I’ is connected and has
proper closure in S, then I I’. If I’ is not connected, I’ (xa’) w (a’y) where
a’ is the point of S Bd B corresponding to a. (Note that x and y may be
equal.)
We show that if F is the prime end corresponding to a’, then I(F)

_
C. Let p’,

q’ be points of I’ on either "side" of a’, which correspond to accessible points p,
q of M in C. Let A be a crosscut of S2 M from p to q. Then by Theorem 3.1,
there exists a unique proper subeontinuum K of M, K

_
C, and eomplemen-
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tary domain U of (S2 M) A such that K w A Bd U. By Theorem 3.3, if
b(U) U’, then Int [(ad U’) c S1] ipq is such that I(E)_ C for any prime
end E corresponding to e 6 Ipq. But Ipq must contain a’ since I’ misses at least
one other point.* Thus if F is the prime end corresponding to a’, then I(F)

_
C.

Further, if Z is a prime end corresponding to a point z’ not in I’ {a’}, then
I(Z) C.** It follows that I I’ {a’} is the maximal interval of the theorem.

Proofof*. For if Ipq does not contain a’, then b(U) U’ is a domain whose
closure contains that complementary interval of {p’, q’} on Bd B which misses
a’. Thus/f z’ I’ and z’ 4: a’, then z’ Int (U’ c Bd B), and if the prime end Z
corresponds to z’, then I(Z)_ C.

Let w’ be a point of Bd B corresponding to both the accessible point w and
the prime end W, such that w’ lies between p’ and x’. Then w’ I’ and therefore
if Q’ is a crosscut of Int B from a’ to w’, d?-I(Q’)= Q is a crosscut of S2 M
from a to w, by Theorem 2.4. Now Q separates S2 M into two domains O:
and 02, one of which, say 01, is bounded by Q and a proper subcontinuum L of
C. Let (01)= O’x and suppose without loss of generality, that O’x is that
domain which contains p’ in its closure. There exists an arc T’ from a’ to q’ such
that T’

_
U’ + O and therefore b- I(T’) T is a crosscut (by 2.4) in U + 01

from a to q. We may also require that T’c A’ is a single point. Thus
T+ K + L contains the boundary of a complementary domain of
(S2- M)- T, and K / L is proper in C. It follows that z’ I’. This is a
contradiction. Thus if Ipq does not contain a’, then I’ is connected. This is again
a contradiction. So Ip contains a’.

Proof of **. Suppose I(Z) is proper in C. Let {Qi} be a chain of crosscuts
defining Z, with endpoints {(ai, hi)}. Then for n sufficiently large, a,, b, C.
Thus a’, b(a,) and b’, b(b,) are sequences converging to z’ on either "side"
in Bd B, and correspond to accessible points in C. Since a is accessible in C we
may argue that

(z’, a’) (a’, z’)
_

I’

and thus I(E) is proper in C, and therefore in K, for all prime ends E ofS2 M.
But by [19], there is at least one prime end whose impression is all of M. This is
a contradiction.

3.5. MAIN THEOREM (Iliadis [13]). Let M be a nonseparatin9 indecompos-
able continuum in S2 and.let b: (S2 M),Int B be a C-map. Then c induces a
"decomposition" on S Bd B into a (possibly O) collection of pairwise disjoint
open intervals and the points of the complement of this collection. (Recallfrom
Theorem 3.4 that an "open interval" may be S minus one point.) These open
intervals are in 1-1 correspondence with those composants containin9 more than
one accessible point. If e is a point ofsuch an.interval and E is the correspondin9
prime end, then I(E) is proper in M, while if e is a point of the complement ofthe
union of these intervals, and E is a prime end correspondin9 to e, then I(E) M.
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Proof. Again, as observed in the first paragraph ofTheorem 3.4, the decom-
position may be a point and the complementary "open interval." By Theorem
3.4, each composant C containing more than one accessible point corresponds
to a maximal open interval Iab on S Bd B, such that the impression of each
prime end corresponding to a point of that interval is a subset of C. Further,
from that proof it follows that no two disjoint open intervals can correspond to
the same composant. Thus there is a 1-1 correspondence between nonempty
open intervals and composants containing more than one accessible point.
We know there exists at least one pointf 6 Bd B such that I(F) M, where

F is the prime end corresponding to f. We show that if e 6 f, e 6 Bd B, e is not
in any of these open intervals, and E is the prime end corresponding to e, then
I(E) M, also. Let {C}- be a chain of crosscuts of S2 M, defining E, with
endpoints {(a, b)}. Then {tk(C)} is a chain of crosscuts in Int B, with endpoints
{(a, b)} on Bd B, and a’ e and b’ --. e. Since e is not an element of our defined
set of open intervals, there exists N such that for n > N, not both a’ and b’n are
in same one of these open intervals. Thus for n > N, an and bn belong to
different composants of M, and the smallest subcontinuum ofM containing an
and bn is M. It follows that I(F)= M.

3.6. COROLLARY (Iliadis [13] and Mazurkiewicz [16].) There are at most
countably many composants of an indecomposable continuum M in S2 with more
than one accessible point.

Proof. Clear, since, in each complementary domain, there are at most
countably many with more than one accessible point.

3.7. Remark. If M is a nonseparating indecomposable continuum such
that all the accessible points ofM lie in exactly one composant of M, then the
"interval" corresponding to this composant is S minus one point. For exam-
ple, the "U-continuum" (see Section 4)with its standard construction has this
property.

4. Inequivalent imbeddings

In this section we ask whether every two pseudo arcs in S2 are equivalently
imbedded, and show that the answer is "no." We do this by constructing
imbeddings which are inequivalent, because their accessible points are con-
tained in different numbers of composants.

In Section 3 of [15], Mason states: "The reader unfamiliar with prime ends
might attempt to show as an exercise that if K is a pseudo arc and E is a prime
end of S2 K, then I(E)= K"; that is, the impression of each prime end of
S2 K is all of K. The statement fails to take into account different possible
imbeddings, and presumably meant only the "standard" one. It is an easy
consequence of this statement, if it were true, and the results of Section 3, that
each composant can contain at most one accessible point. See Section 6 for
proof and applications of this result.
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The results of this section show that Mason’s statement isfalse--evenfor the
standard pseudo arc. Mason’s otherwise excellent paper was the motivation for
our interest in prime ends and this statement, which we initially believed, was
the motivation for the portion of this paper dealing with stable
homeomorphisms.
Our special imbeddings will be imbeddings with the following properties:

(a) The standard pseudo arc P in S2. This continuum has exactly 2 compo-
sants with accessible points, and the two "endpoints" r and s lie in different
eomposants.

(b) The U-continuum pseudo arc Pu. This continuum has only one eompo-
sant with accessible points and all its accessible points lie in the same eompo-
sant as the "endpoint" of Pu.

(e) The special pseudo arc P. We conjecture that this continuum is im-
bedded in S2 in such a way that no composant contains more than one acces-
sible point. This continuum would then have the property that the impression
of each prime end of S2 P is all of the continuum. Thus it would show that,
in some cases, Mason’s statement does hold.

4.1. Example. The standard pseudo arc P. See [17]. The construction is
outlined--essentially the refinements are made by "descending chains"--that
is, if the big chain is straightened out, keeping r to the left and s to the fight, the
refinement is descending. The construction should be carried out in a symme-
tric manner, so that at each stage, cg, is carried onto itself in reverse order, by a
180 rotation of the plane. We will show below that P contains exactly 2
composants with accessible points, one containing r, and the other containing
s. Further, if E is the prime end corresponding to r (i.e., defined by a chain of
crosscuts going around r, as does A in diagram) then I(Ex) P. Similarly if E2
is crosscut corresponding to s, then I(E2)= P.

4.1.1. DEFINITION. We think of P as a subset of E2. Let L and M be two
vertical lines containing r and s respectively. Then P separates the strip between
L and M into an upper open set and a lower open set. The accessible points,
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other than r and s, which are accessible from the upper open set are called the
top accessible points, and the others are the bottom accessible points.

4.1.2. THEOREM.
as r.

All the top accessible points are in the same composant

Proof Let L and M be vertical lines through r and s respectively. Let K’ be
a crosscut joining two top accessible points, a and b. Then from the geometry,
K’ can be homotoped to a crosscut K which lies between L and M and above P,
in such a way that (1) the homotopy occurs outside a neighborhood of P, and
(2) for any initially given fixed integer n, K meets only those links of cg,
containing a and b.
Now K w P separates S2 into two connected open sets U and V, one of

which is bounded, say U. Let K w P’ be the boundary of U, and by Theorem
3.1, P’ is a (sub)continuum of P.
We show that P’ contains r but not s. Let n be so large that a and b are

separated by at least five links of cg,, as are b and s, and also let a, b be named so
that the links containing r, a, and b, are in the order r-a-b reading from left to
right. Let c,+ (1, m) be the smallest subchain of ,+ from the first link of
,+ to a link containing b. Then

c,+ x(1, m)= ,+ x(l, x)+ c,+ (x, y)+ ,+ x(Y, z)
where the xth link is in the link adjacent to that link of, containing b, and yth
link is in the 2nd link of ,.

Let h: S2 --,,Sz be a straightening homeomorphism for the chain ,. We
assume that K was chosen so that the "n" of property (2) was for the chain ..
Thus h(K) w h(P’) bounds h(U), and we see from the geometry (see diagram
below) that h(U) contains a point of the third link of h(,). Then U contains a
point of the third link of,. But as n oo, #(cg,) 0, so that r is a limit point of
U, and therefore r e/.7, and therefore r e P’.
We observe that s P’, since there exists a subcontinuum from r to b con-

tained in ,(1, l), where/th link is the first link of, containing b. This is true
because ,+ is decreasing in ,. It follows that there is a proper subcontin-
uum containing a and b, so that a, b e C,, the composant containing r.

r oi

oS



ON STABLE HOMEOMORPHISMS AND IMBEDDINGS 641

4.1.3. THEOREM. All the bottom accessible points are in the same composant
as s.

Proof The argument is symmetric to that of 4.1.2, since the construction is
symmetric.

4.1.4. COROLLARY. There are exactly two composants containing the acces-
sible points--one containin9 r and one containing s.

Proof. Clearly r and s are in different composants since P is irreducible
between r and s.

4.1.5. THEOREM. Let E and F be the unique prime ends of P which corre-
spond to r and s, respectively (Theorem 3.2). Let {Ki} be a chain of crosscuts
defining E (or F). Then I(E)= P(I(F)= P).

Proof From the proof of 4.1.2, it follows that each Ki must have one
endpoint in the composant of r and one in the composant of s. Therefore the
bounded domain cut off by Ki w P is bounded by all of K w P, since no
proper subcontinuum of P can contain both a and b. Thus I(E)= P.

4.2. Example. The standard "U-continuum" Kv. This continuum, with its
standard construction, is a chainable continuum in S2 with exactly one
endpoint, r, such that the composant of r, Cr, contains all the accessible points
of Kv. The construction is carried out, as indicated in the diagram, with 2-1
refinements at each stage, the end links at each stage always being in the first
link of the preceding stage, and the first link always lying above the last link.
The endpoint r is the intersection of the first links.

If E is the prime end corresponding to r, then I(E) Kv. Otherwise 1(E) is a
point. Note that if th: (S2- Kt),Int B is a C-map, then the "interval" of
Bd B that corresponds to Cr, by Section 3, is Bd B less one point.

r only endpoint

4.3. Example. The U-continuum pseudo arc P,, c_ S2. The idea is to alter-
nate straight chains { 9} and crooked chains {cg}, in the 2-1 manner indicated
for the U-continuum. We illustrate:
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Y Si

To construct 6e2, straighten cg to get

and refine with ,St2, where St2 is 2-1 in x. To construct 2, straighten 6e2

and put in a descending crooked chain cg
2 from y to last link of 902 Etc. Clearly

P, is chainable and hereditarily indecomposable, and thus it is a pseudo arc [4].
We will show that all the accessible points of P. lie in Cr, the composant
containing the "endpoint" y of P,. We will also show that if F is the prime end
corresponding to y, then I(F) P., while if E is any other prime end, then I(E)
is proper in P,.

4.3.1. THEOREM. Let y be the intersection of the first links ofeach chain, as
illustrated in the diagram, and let Cr be the composant ofy. Then all the accessible
points of P, are in Cr.

Proof The argument is similar to that of Theorem 4.1.2. Here we choose a
crosscut A from y to the accessible point x, in such a way that h,(A) lies in the
upper half "plane" determined by h.(P,) for some n, where h. is a straightening
homeomorphism for cg,. Then show that y h,,(y) and h,(x) lie in a proper
subcontinuum of

4.3.2. THEOREM. Let E be any prime end not corresponding to the accessible
point y of Pu. Then I(E) is proper in P, and contains y.
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Proof Let {Qi}= be a chain of crosscuts defining E. Then Q w P. separ-
ates Sz and the bounded complementary domain contains Q for all > 2. Thus
there exists n such that if h, is the straightening homeomorphism for the nth
chain c,, then Q is homotopic to a crosscut Q which lies above h,() in such a
way that (1) the homotopy is the identity outside some neighborhood of h,(P,)
and (2) Q meets only those links of h,(P,) which contain the endpoints of Q.
Thus there exists an integer J such that for i> J, h,(Qi) is a subset of the
bounded complementary domain of h,(P,) w Q. Let a and b be the endpoints
of Q.
Now choose a towered sequence of subchains of (r,}, beginning with the first

link of cg, for each n, in such a way that the last links are towered, and so that a
and b are always in an interior link. This sequence defines a proper subcontin-
uum K of P,, with the two endpoints y and z, say. Then, as in the proof of
Theorem 4.3.1, z is not in the composant of y in K, but a and b are. And each
crosscut of the chain {h,(Qi)}= s determines a proper subcontinuum ofK con-
taining a, b, and y. Thus h2 I(K) is proper in P,, and contains both y and I(E). It
follows that I(E)contains y.

4.3.3. THEOREM.
I(F) Pu.

Let F be the prime end corresponding to y. Then

Proof Since Pu is indecomposable, there is at least one prime end E such
that I(E) P, [19]. But if E is any prime end, E 4: F, then I(E) is proper by
4.3.2. Thus I(F)=

4.4. Example. The special pseudo arc Ps. We obtain Ps as the intersection
of a tower of chains from fixed endpoint r to fixed endpoint s, with the crooked
refinements alternatin9 with respect to "ascending" and "descending" patterns.
Here, "ascending" and "descending" means with respect to a straightening out
process, as indicated in Example 4.3.
We conjecture that if E is a prime end of P, then I(E)= P. It would then

follow from Theorem 3.1, that no composant of P contains more than one
accessible point.

4.5. Remark. From the above, we have at least two inequivalently im-
bedded pseudo arcs in S2. Probably one can get countably many, by following
a pattern for chainable continua in S2 with exactly n endpoints in S2. (We are
thinking of generalizing the example of the "3-point continuum" constructed as
a chainable continuum, irreducible between each two of three given points. See
pp. 141-142 of [12] for (incorrect) picture and (correct) precise description of
construction.) That is, construct a pseudo arc, using these chainable continua
as a guide, in a manner similar to our example

QUESTION 1.
ares in $27

Are there uncountably many inequivalently imbedded pseudo
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QUESTION 2. Does the special pseudo arc P have the property that no
composant contains more than one accessible point?

5. Essentially extendable homeomorphisms

We call a homeomorphism h of a planar continuum M onto itself, essentially
extendable iff there exists an imbedding b: M - E2 such that

bhb- 1: b(M),b(M)

can be extended to a homeomorphism bhb- 1: E2 -.7E2. (S2 may replace E2 in
the definition.)

In this section we construct several examples to show the following:

(1) The standard pseudo arc P admits homeomorphisms which are not
extendable, but are conjugate to extendable homeomorphisms. That is, these
homeomorphisms are essentially extendable by an imbedding " P ,P

_
E2.

(2) The U-continuum pseudo are P. admits homeomorphisms which are
essentially extendable, but are not conjugate to extendable homeomorphisms.
That is, M and (M) are inequivalently imbedded.

(3) There exists a chainable continuum M
_
E2 and a homeomorphism

h: M -,,M such that h is not essentially extendable.

We obtain the above results using prime end theory and, in the process,
prove some theorems which we will use in a forthcoming paper [8] on periodic
homeomorphisms. The idea of essential extendability will be very important if
the results of Section 6 can be improved so that (1) the Stable Homeomorphism
Problem has an affirmative solution for all essentially extendable homeomor-
phisms, and (2) every homeomorphism of the pseudo arc onto itself, is essen-
tially extendable. In another forthcoming paper [7], we show that every
homeomorphism of the pseudo arc onto itself, is essentially extendable to E3,
by an imbedding b: P - E2

_
E3. Does this imbedding, or a modification of it,

work for E2?
The results of this section raise many interesting questions, and we list these

in Section 8 of this paper. We also mention the most basic ones at the end of
this section.

5.1. THEOREM. Let M be a nonseparating indecomposable continuum in S2,
h: S2 -S2 a homeomorphism such that (l)h(M)= M and (2)for some accessible
point e M, h(e) e. Let E be the prime end corresponding to e. Then E is afixed
prime end.

Proof. Let t: (S2- M)-,,Bd B be a C-map, and let e’ be that point of
Bd B which corresponds to e. Then bhb- 1. B -B is a homeomorphism, and
we show that bhb-1(#)= e’.

Let A be an endcut in Int B with endpoint e’. From Theorem 2.4, it follows
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that t-l(Z)is an endcut in S2 M with endpoint e. Thus h(b-I(A))is also an
endcut in S2- M with endpoint e. By Theorem 3.2, the accessible point e
corresponds to exactly one prime end, so h(b- I(A)) must also correspond to E.
That is, A and bhtk-I(A) are endcuts in Int B each with endpoint e’. Thus
bhb-l(e’) e’.

5.2. THEOREM. Let Q be a pseudo arc in S2 and h" S2 --S2 a homeomor-
phism such that (1)h(Q)-- Q and (2)hlQ is of period 2. Let

4)" (S:- Q)--" Int B

be a C-map. Then dphdp-l Bd B is also of period 2.

Proof If x is any nonfixed accessible point of Q, then O(x) {x, h(x)}, and
the two points x and h(x) correspond to distinct points (Theorem 3.2) x’ and
h(x)’ on Bd B, under bhb-1.

Since bhq-1 is a homeomorphism, it interchanges x’ and h(x)’. But the
images of accessible points of Q are dense in Bd B. Thus h- Bd B is of
period < 2 on a dense subset of Bd B and therefore must be of period < 2. But
at least one point has order 2. Thus tkhb-11Bd B is of period 2.

Remark.
paper [8].

A more general version of this theorem will be proved in another

5.3. THEOREM. Let P, be the U-continuum pseudo arc in S2 with endpoint y.
Let A and A 2 be two crosscuts from y to a and a2 respectively. Let A w K
bound a complementary domain W1 ofS2 (P, A 1), and let A 2 k_) K 2 bound a
complementary domain W2 of S2 (P w A2), where K and K2 are proper
subcontinua ofP. Let b: (S2 P) Int B be a C-map, and let A’ dp(A 1)and
A b(A2). Let D1 be the arc ofad B such that A’ w D1 bounds dp(W1)and let
D2 be the arc ofBd B such that A’2 D2 bounds b(l/V2). Then ilK1

_
K2 then

D1 -D2.

Proof Let y’ Bd B be the point corresponding to y. This represents the
only prime end E for which I(E)= P,. Since each accessible point lies in the
composant of y, the circle can be thought of as a "half open interval" [y’, y’) -[0, 1) (see Section 3), where the accessible points each correspond to exactly
one prime end, and their images are dense in Bd B.
Now by the geometry and arguments of Section 4, we may see that A and

A2 are homotopic to crosscuts X_.___x and___X 2 with the same endpoints as A and
A2 respectively, and such that 0 O2, where O is the domain bounded by
Xi w K, fori= 1, 2. If D’ =.b(O,) Bd B, we see that D’ D, for i= 1, 2.
But O1 02 implies that b(O1) tk(O2) which implies that D

_
D. Thus

Dx -D2.

5.4. THEOREM. Let P be the standard pseudo arc in S2, chainedfrom r to s,
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and let h: S2 "))S2 be a homeomorphism such that h(P) P. Then the endpoints r
and s are either fixed or interchanged.

Proof. In Section 4, we showed that if Ex is the prime end corresponding to
r, and E2 is the prime end corresponding to s, then I(Ex) I(E2) P. Further,
if E is any other prime end of S2 P, then I(E) is proper in P. Thus these prime
ends must be carried to themselves under h and it follows that either h(r)= r
and h(s)= s, or h(r)= s and h(s)= r.

5.5. COROLLARY. If h" P-)>P is conjugate to an extendable homeomor-
phism, then either h has at least 2fixed points in different composants, or there are
a pair of points of different composants which are interchanged by h.

5.6. THEOREM. Let P be the standard pseudo arc in S2, chainedfrom r to s.
Then there is a homeomorphism h: P --)P such that h is ofperiod 2, and r is the
only fixed point.

Proof. In [6] we showed that there exists a period 2 homeomorphism
g" P >P such that g is a restriction of a period 2 rotation ofE2, g interchanges
the endpoints r and s, and g has exactly one fixed point x.
By the homogeneity of P [2, 18], there is a homeomorphism f: P --)>P such

thatf(x) r. Then h =fof- is of period 2, and has as its only fixed point, the
endpoint r.

5.7. THEOREM. Let P be the standard pseudo arc in S2 chained from r to s,
and let h: P --)P be the period 2 homeomorphism given in the proof of Theorem
5.6. Then h is not extendable to a homeomorphism of S2 onto itself, but h is
conjugate to one which is extendable.

Proof Suppose h is extendable. Then by Theorem 5.4, h(r + s) r + s. By
construction, h(r) r. Thus h(s) s. But h has exactly one fixed point. This is a
contradiction. Thus h is not extendable.
We show that h is conjugate to an extendable homeomorphism. Letfand g

be as in the proof of Theorem 5.6. Then f hf f- (fof )f g. But g is a
restriction of a rotation, so 9 is extendable. Thusf- ahf= O is a conjugate of h,
and is extendable.

5.8. THEOREM. Let Pu be the U-continuum pseudo arc in S2. Then there
exists a homeomorphism : Pu--)>P# such that is essentially extendable, but is
not conjugate to any extendable homeomorphism of P, onto itself.

Proof Let P be the standard pseudo arc in S2 chained from r to s. Let
g: P >P be a period 2 homeomorphism, obtained from a rotation of S2 onto
itself, and let x be the fixed point of P under 9. Let h: P --)> P, be a homeomor-
phism such that h(x) y, the endpoint of P,. Then hgh- is a homeomorphism
of Pu onto itself, of period 2, with y as its only fixed point.
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We show that hoh- is not conjugate to any extendable homeomorphism of
P. onto itself; that is, there does not ,exist a homeomorphism q" P. P. such
that

is extendable. Suppose such a exists. Letf (hgh-X) . We assume that
and f are defined on all of S2. Let : (S2 Pu)Int B be a C-map, and let
y’ 6 Bd B be the point of Bd B corresponding to the prime end whose impres-
sion is Pu. In Section 4, we showed that there is exactly one such prime end E,
and it corresponds to the accessible point y of P,. Thus f(y)= y and
f0-: B*B takes y’ to y’, by Theorem 5.1.
Nowf: P, *P is of period 2, and its only fixed point is y. Thus by Theorem

5.2, qfth- [Bd B is of period 2, and, since y’ is fixed, it must be (conjugate to) a
reflection on Bd B. Let A be a crosscut in S2 Pjoining the endpoint y of P.
to another accessible point z in P, and let A’ O(A). A w Pu separates S2 and
one of the two components of S2 (A w P.), say W, is bounded by a proper
subcontinuum K of P., together with A. Then O(W) is bounded by A’ u D,
where D is an arc in Bd B, joining y’ to z’, the point of Bd B corresponding to z.
Thus thft-(th(I’)) meets BO B in an arc thfth-(D)from y’ to some (other)
point of Bd B, in such a way that D neither contains nor is contained in
dfd-X(D) since f- is of period 2 on ad B.
However, since P, has only one composant containing accessible points, and

both K and h(K) are proper subcontinua containing the endpoint y of P,, and
the pseudo arc is hereditarily indecomposable [2 and 17], it follows that
K
_

h(K) or h(K)_ K. Suppose, without loss of generality, that K
_

h(K),
Then it follows from Theorem 5.3 that D

_
fO-X(D). (Similarly, if h(K)_ K,

then fb- X(D)
_

D.) This is a contradiction to the fact that 4f4- l Bd B is a
conjugate of a reflection.

It follows thatf q(hgh- x)- could not be extendable, and so hoh- is not
conjugate to an extendable homeomorphism of P, onto itself. Thus hob- is the

of our theorem.

5.9. THEOREM. There exists a chainable continuum M
_
S2 and a homeo-

morphism h: M -M such that h is not essentially extendable.

Proof Let P be the standard pseudo arc in S2 with fight endpoint s on the
y-axis. That is, P lies to the left of the y-axis. Let f: S2 -S2 be a reflection
through the y-axis, and let M P w f(P). Let 9: P -P be a period 2 homeo-
morphism, keeping the right endpoint s fixed, as in Theorem 5.6. Let h" M M
be defined by

h(x)={gx(x) if x e P,
if x e f(P).

We will show that h is not essentially extendable. We note that there are
exactly two prime ends E and F corresponding to s.*
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We first show that if g: M-,M is any extendable homeomorphism, then
(E) E and ,(F) F. Let {A}_ be a chain of crosscuts defining E. Then for
sufficiently large i, A lies either "above" or "below" M. We assume that A lies
above M for > N. Then each of the complementary domains of A w M is
bounded by all of A w M. (The arguments are similar to those in Section 4.)
Now if {B}__ is a chain of crosscuts representing F, then for _> L, B lies
"below" M. However, again by arguments like those of Section 4, we see that
for each > L, one of the complementary domains ofA w M is bounded by all
of A w M, and the other is bounded by A w K, where K is a continuum in
M such that K P is proper in P and K c f(P) is proper in f(P). Thus no
homeomorphism of S2 onto itself carrying M onto M, can take a chain of
crosscuts like {A} to a chain of crosscuts like {B}. It follows that (E) E and

F.
We next show that h is not extendable. Suppose h is extendable to the

homeomorphism H" SgS2. Let qb" (Sz- M)-Int B be a C-map. Let
t=f(r) 6f(P), and let t’ be the corresponding point on Bd B. Then
H-(t’) t’, by the arguments of Theorems 3.2 and 5.1. From the last
paragraph, the cut point s of M corresponds to two points s’ and s" on Bd B,
and Hb-(s’)= s’ and H-(s")= s". Thus the induced homeomorphism
on Bd B has at least three fixed points. But by Theorem 5.2, H- Bd B
must be of period 2. However, this is impossible, and we have a contradiction.
It follows that h is not extendable.

Finally we show that h is not essentially extendable. Suppose " M Sz is
an imbedding such that

hff-L @(M),(M)
is extendable to a homeomorphism

fl" S2 S2.

en o flffl ad B is the identity on the open interval ((s)’, (s)") which
contains if(t)’, where o" $2 if(M)) Int B, and if(s)’, (s)", and if(t)’ corre-
spond to if(s), if(s), and if(t), respectively. hat is, there will again be two prime
ends corresponding to if(s). Also ofl lBd B is of period 2 on the com-
plementary open interval. But this is impossible, and we see that h is not
essentially extendable.

Proof of *. Suppose there are at least three prime ends of S2 M corre-
sponding to s. Then there exist endcuts A and A 2 of S2 M, each of whose
endpoints on M is the point s, and such that A and A2 are endcuts from (say)
the "top" of M, with A and A2 representing different prime ends. en, as in
the proof of Theorem 3.2, there exists a neighborhood U of s such that M
separates A from A2 in U.
Now suppose there exist arbitrarily small neighborhoods containing s, such

that in each of these neighborhoods, P separates A from A 2. en s would not
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correspond uniquely to a prime end of S2 P. But this contradicts Theorem
3.2. A similar statement holds if P is replaced by f(P).

It follows that there is exactly one prime end of S2 M corresponding to s
from above, and similarly, exactly one prime end of S2 M corresponding to s
from below.

5.10. QUESTIONS. The basic question raised by the results of this section is
the following: Is every homeomorphism of the pseudo arc onto itself essentially
extendable to E2? In another paper [7], we show that every such homeomor-
phism is essentially extendable to Ea.

Another related question is" Is every homeomorphism of P onto itself conju-
gate to an extendable homeomorphism of P onto itself?

6. Stable homeomorphisms

The Stable Homeomorphism Problem for the pseudo arc P, is the following: If
h" P -,, P is a homeomorphism which is the identity on some open set, must h
be the identity ? The Composant Problem asks: If h: P --, P is a homeomorphism
carrying each composant onto itself, must h be the identity ? Clearly, a positive
answer to the Composant Problem implies a positive answer to the Stable
Homeomorphism Problem.

In this section we first give an easy argument to show that if Q is a pseudo arc
in S2 such that each prime end of S2- Q has Q as its impression, and if
h: Q ,Q is a homeomorphism extendable to S2 and carrying each composant
to itself, then h must be the identity. (Recall that in Section 4, we showed that
the prime end hypothesis of this statement need not hold.) As a corollary (6.4)
we have our First Main Theorem of this section: If every homeomorphism of Q
onto itself is essentially extendable by means of an imbedding tk such that b(Q)
satisfies the above prime end hypothesis, then both the composant and the
stable homeomorphism problems have positive solutions.
We next obtain the Second Main Theorem (6.5) of this section: If h: P -,,P is

an extendable (to S2) homeomorphism which is the identity on an open set,
then h is the identity. Question: Does this result hold if h is only essentially
extendable? The remainder of this section is devoted to investigating this
question. We show that, under certain hypotheses, the answer is "yes," but we
have not been able to resolve the question in general. Thus we obtain our
Fourth Main Theorem (6.17) of this section (whose proof includes the Third
Main Theorem (6.9) as a corollary): Let Q be a pseudo arc in S2, h: Q-,Q a
homeomorphism such that h is the identity on some open subset U of Q and h is
extendable to a homeomorphism of S2 onto S2. Suppose also that for each
e > 0, there are no more than a finite number of inequivalent accessible points
which span subcontinua of diameter > e. (See Definitions 6.10 and 6.11.) Then
h is the identity.

Finally, we summarize the important related questions.
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6.1. THEOREM. Let M be a nonseparating indecomposable continuum in S2

such that, for each prime end E of S2 -M, I(E)= M. Then no composant con-
tains more than one accessible point.

Proof. Let C be a composant of M, and suppose that C contains two
accessible points, a and b. Then by Lemma 3.1, if A is a crosscut from a to b, one
of the complementary domains, say U, of A in S2 M is bounded by A w K,

A Do is any chain ofwhere K is a proper subcontinuum of M. Thus, if i}i=
crosscuts in U, representing some prime end E, then I(E)

_
K M. This is a

contradiction. Thus no composant contains more than one accessible point.

6.2. THEOREM. Let M be a nonseparating indecomposable continuum in S2

such that no composant contains more than one accessible point. Let h: M -M
be a homeomorphism carrying each composant ofM onto itself, such that h is
extendable to S2. Then h is the identity.

Proof Let H: S2 -S2 be an extension of h. Then H must take accessible
points to accessible points. Since no composant contains more than one acces-
sible point, and each composant maps to itself, each accessible point goes to
itself. But the accessible points are dense in M. It follows that h is the identity.

6.3. THEOREM. Let Q be a pseudo arc in S2 such that I(E)= Q for every
prime end E of S2 Q. Let h: Q-Q be a homeomorphism such that h carries
each composant onto itself and h is extendable to S2. Then h is the identity.

Proof This is just a corollary of Theorems 6.1 and 6.2 above.

6.4. COROLLARY (FIRST MAIN THEOREM). If every homeomorphism of the
pseudo arc P onto itself, is essentially extendable by means of an imbeddin9
dp: P - E2, where p(P) has the property thatfor each prime end E ofS2 dp(P),
I(E) p(P), then if h is any homeomorphism of P onto itselfsuch that h carries
each composant of P onto itself, then h is the identity. In particular, if h is the
identity on some open set, then h is the identity.

Proof Clear.

6.5. SECOND MAIN THEOREM. Let h: P-P be an extendable (to S2)
homeomorphism which is the identity on some open set U P. Then h is the
identity.

Proof We note that, since h is the identity on an open set, each composant
maps to itself, so that h(r)= r and h(s)= s.

We first assume that U contains a neighborhood of s. Now some accessible
point x of C must move off itself, since these points are dense in P. Let
h(x) y, and let K be the smallest proper subcontinuum of P which contains
both x and y. From Section 4, we see that K must contain s, and also ifK is the
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component of P U containing x, and K2 is the component of P U contain-
ing y, then K1 and K2 are disjoint continua, each meeting U. Thus h(x) =p y.
This is a contradiction. It follows that h is the identity.

Clearly the above argument also works, in case U contains a neighborhood
of r. Thus we must show that there is no loss of generality by assuming U
contains a neighborhood of s. Let H be an extension of h to S2, and suppose U
does not contain a neighborhood of either r or s. Since U is open, U c P # ,
and h] U c P is the identity, it follows that there exist points a, b U c P such
that a C,, b 6 Cs, a and b are accessible from S2 P, and a and b are so close
together that if B is the straight line segment joining a and b, then
[e H(B) w H-t(B)]

_
V. Note that e meets P in many points. Let A be an

arc from a to b such that

A [B H(B) H-I(B)] {a, b},

and A {a, b} lies in S2 P. Then H(A) c (B H(B))= {h(a) h(b)} {a, b},
and A B is a simple closed curve separating r from s.
We will modify H on a "neighborhood" of Int (A B), to obtain a homeo-

morphism 9: S2 -’$2 such that

(1)
(2)

0lint (A w B) isthe identity, and
O(x) h(x) for P c C(U Int (A B)).

The following diagram illustrates the modification described below.

disk

r

orc H’*(B)

,drc A orc H (A)

rc H(B)

/
/

disk D

We show there exists a disk D such that [A w H(A)- {a, b}]
_

Int D, a,
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b Bd D, D c P {a, b}, and D c (B H(B))= {a, b}. Also there exists a
disk F such that [B w H(B) {a, b}] __. Int F, a, b Bd F, and F c D {a, b}.

Case (i). If A H(A) fails to separate $2, then A H(A) is an arc lying in
(S2 P + {a, b}), and there exists a disk "neighborhood" D of A H(A) such
that (AH(A)-{a,b}) lies in IntD, a, bBdD, DP=(a,b}, and
O (B H(B))= {a, b}.
Case (ii). If A H(A) separates S, then exactly one complementary

domain of A H(A) in S contains

(P {a, b}) (B H(B)- {a, b}).
Thus there exists a disk E such that E is a "neighborhood" ofP in the sense that
P {a, b} Int E, a, b Bd E, and E (A w H(A))= {a, b}. We also require
that

(B H(B)- {a, b}) Int E.

Then D C(E) is a disk "neighborhood" of A w H(A)with the desired
properties.

Now, let be a homeomorphism supported on D such that takes H(x) to
x for each x A. Then H is a homeomorphism of S2 onto S2 such that
H[A is the identity. Let F be a disk neighborhood of B w H(B) such that

(B H(B)- {a, b}) Int F, a, b, Bd F,

and F D {a, b}. Clearly F exists. Let 2 be a homeomorphism supported
on F such that 2 takes H(x) to x for each x B. Then 2 H is a homeomor-
phism of S2 onto S2 which is the identity on A w B. Let 9" $2 $2 be defined
by

2H(x) for x C[Int F w Int D],9(x) x for x e Int (A w B).
Then 9 is the desired homeomorphism.

6.6. THEOREM. t M be an indecomposable chainable continuum in S2 such
that each composant C with more than one accessible point has the property that
all of its accessible points are contained in a single proper subcontinuum Ki ofM.
Suppose also that lim diam K 0. Then there is a monotone mapf: S2 S2

such that the nondegenerate inverses are precisely the collection of (pairwise
disjoint) subcontinua {Ki}.

Proof Recall that by Corollary 3.6, there are only countably many compo-
sants with more than one accessible point. We will construct a sequence of
homeomorphisms {f}, f: S2 ,S2 such that each f shrinks the {K} a little in
such a way that 9, f, where 9, =f, fx and where f is a continuous,
monotone map from S2 onto S2, and the nondegenerate inverses of f are
precisely the collection {K}.
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Let c. C, C, C,, be a finite open chain cover of M, of mesh < 1/2,
with each element of cg bing a cell in Sz, and cg, being a cell. Let cg ,c4 and
letf" Sz --,Sz be a homeomorphism such that (1)f is supported on O c,
and (2) diamfa(K)< 1/2.

Let jz be so large that (1)f(K ) andf(K) are separated by at least three
links infa(cg), and (2) diam f]- (each link offa(cg)) < 1/2. This latter condi-
tion can be obtained sincef is a uniformly continuous homeomorphism.
(Also since/(cg)-, 0.) Now letf2: Sz ’S2 be a homeomorphism such that

(1) diamf2(fx(K,))< 1/4,
(2) diamf2(fx(K2))< 1/4,
(3) f2 is supported on D2, w D2,2 where D2, is the union of the elements of

f(cg)which meetf(K,) for i= 1, 2.

Let J3 be so large that (1)f2 fx(K)andf2f(K2) andf2fx(K3)are pairwise
separated by at least three finks off2 f(cg), and (2)diam (f2 f)-a (each link
of f2 f(c,)) < 1/4. This latter condition can be obtained since (f2 f)- is a
uniformly continuous homeomorphism. Now let f3" $2--’ $2 be a homeomor-
phism such that

(1) diamf3(f2 fa(Kx)) < 1/8,
(2) diamf3(f2 fx(K2)) < 1/8,
(3) diamfa(f2 f(K3)) < 1/8,
(4) f3 is supported on D3,x w D3,2 w D3,3 where D3, is the union of the

links off2 f(cd) meeting f2 f(K,) for i= 1, 2, 3.

We continue inductively. Let 9, =f, f2 f and letf= limn-.oo g.. We
show thatf is continuous and monotone, shrinks each K to a point, and the
collection {K} is precisely the collection of nondegenerate inverses off.
We see that

diam f(K,) diam lim f. f2 fl (Ki),

but

diamf, o...of2 of(K,) < 1/2" for 1,..., n.

Thus the limit has diameter 0. Therefore f(Ki) is a point y.
Now suppose f-X(yi) contains some point x K. Let e d(x, K). Then

there exists n such that 1/2" < e, and

diam (f, f2 f)-x (each link off. of(cg.))< 1/2 < e,.

Thus (f. f)(x) D.+ ,, so that f(x) D,+ x,, for i= 1, 2, n + 1. It
follows that f(x) 4: Y,. Thus f-f(K,)= K.
By Corollary 3.11 on page 174 of [21], it follows that f is monotone and

continu__ous, sineef is the uniform limit of a sequence ofmonotone maps on the
disk cg],.

It only remains to show that iff- X(y) is a nondegenerate continuum K, then
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K K for some i. So suppose not. Then there are points x 4: x 2, and y such
that f(x) f(x2) y, and y 4: f(K,) for any i. We note that

Y (’] (fno"" ofl)-lOn+l,i,
n+where D,/ :, is that element of {D.+ ,=, which contains

f. f(x:) and f. f(xz).
But these intersections are precisely the f(K)’s. This is a contradiction.

6.7. THEOREM. Let M S2 be a hereditarily indecomposable continuum,
h: S2 -,S2 a homeomorphism such that h(M) M and each composant maps to
itself, and let C be a composant ofM such that all the accessible points ofM which
lie in C, are contained in a proper subcontinuum ofM (and therefore of C). Then
there exists a fully invariant, proper subcontinuum K ofM, such that K contains
the set A of all accessible points ofM which lie in C.

Proof. Let
cog {KI K, is a proper subcontinuum of M and K, contains A}.

By hypothesis, c{" 4: . Since M is hereditarily indecomposable, o{ is a tower of
sets. Let the continuum K be the intersection of this tower of continua.
We show that K is fully invariant; that is, h(K)= K. Suppose not. Then

either (1) h(K) K or (2) K h(K). Now h(A)= A. Thus case (1) cannot
occur, since then K would not be the minimalsubcontinuum of M containing
A. In case (2), h- X(K) K, and A

_
h- (K). So again K is not minimal. Thus,

in either case we get a contradiction. It follows that h(K)= K.

6.8. THEOREM. Let Q be a pseudo arc in S2, h: S2 "-, S2 such that h(Q) Q
and each composant maps to itself. We also assume that ifC is a composant ofQ
with more than one accessible point, then the set ofaccessible points ofM which
belong to Ci, is contained in a minimal proper subcontinuum Ki ofM. Wefurther
assume that lim_.oo diam K O. Let f: S2 -S2 be a monotone map such that
each K is an inverse set and these are the only nondegenerate inverse sets. Then h
induces a homeomorphism g: S2 -S2 such that g(f(Q))=f(Q).

Proof. By Corollary 3.6, there are at most countably many K’s, and by
Theorem 6.7, h(K) K. Thus if K K, then K is a point and h(K)= K.
We define g: S2 S2 as follows:

9(x fhf (x ).
Iff-(x) is nondegenerate, then h(f-X(x)) =f-(x), so thatfhf-(x) x. If
x ef(Q), 9(x) ef(Q) and also 9-(x) =fh- f-X(x) ef(Q). Thus 9(f(Q))
f(Q). It is easy to see that 9 is a homeomorphism of S2 onto S2. The theorem
follows.
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6.9. THIRD MAIN THEOREM. Let Q be a pseudo arc in S2 such that each
composant Ci with more than one accessible point, has the property that all of its
accessible points are contained in a minimal proper subcontinuum Ki of Q, and
lim diam Ki O. Let h: S2 S2 be a homeomorphism such that h(Q) Q and h
carries each composant of Q onto itself. Then h is the identity on Q.

Proof By Corollary 3.6, the collection {Ki} is at most countable. By
Theorem 6.7, each Ki is fully invariant under h. By Theorem 6.6, there is a
monotone mapf: S2 S such that the nondegenerate inverses are the Kg’s. By
Theorem 6.8, h induces a homeomorphism g: Sz --,,Sz such that g(f(Q))=
f(Q), where g(x) fhf l(x).
We note that f(Q) is the monotone image of the pseudo arc, and therefore

als0 a pseudo arc [4].
We now show that if g f(Q)is the identity, then h l2 is the identity. Since

there are at most countably many points off(Q) with nondegenerate inverse
sets, and f(Q) is a pseudo arc, there exists a com-posant C off(Q)such that
flf-(C) is 1-1. Now g(x)=fhf-:(x)= x for all x ef(Q), and for x e C,
f- (x) is a point. Thus hf- (x) =f- (x), for x s C; that is, h is the identity on
f-1(C). Butf-(C) is dense in Q. It follows that h is the identity on Q.

Next, we observe that each composant off(Q)can contain at most one
accessible point. For if T is an arc lying in S2 Q except for one endpoint t,
which is in Q, thenf(T) has the same properties. Conversely, if T is an arc lying
in S2 -f(Q) except for one endpoint which lies in f(Q)- J f(K), then
f- (t) is accessible iff t is accessible. Thus each composant off(Q) can contain
at most one accessible point.
Now, since 9:$2 ’$2 takes f(Q) onto itself, accessible points off(Q)must

map to accessible points. But each composant maps to itself. Thus 9(a) a for
each accessible point off(Q). Since the accessible points off(Q) are dense in
f(Q), it follows that f(t2)is the identity.
From the paragraph before the last one, we see that h is the identity on Q.

6.10. DEFINmON. Let M be a continuum and let h: M ,M be a homeo-
morphism. Let a M be a point such that no proper subcontinuum of M
contains {h"(a)}__ Then we say that the point a spans the continuum M.

6.11. DEFINITION. Let M be a nonseparating indecomposable continuum
in S2, and let h: S2 --,,S2 be an orientation preserving homeomorphism such
that h(M)= M. Let

(]): (S2 M)--,,Int B
be a C-map, and let g: Bd B--,, Bd B be the homeomorphism induced on the
boundary of the unit disk, as given in prime end theory. Then g is orientation
preserving on Bd B.* Thus if g has at least one fixed point and is not the
identity, then there are at most countably many pairwise disjoint intervals A in
Bd B such that g(Ai) A, and glint A is a conjugate of a translation on the
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fine. Also, if there is a fixed point, there is at least one such interval, where the
"interval" might be all of Bd B, and its interior all of Bd B minus the fixed
point.

Let Ai be such an interval, and let a’ Int A be a point of Int A correspond-
ing to the accessible point a of M. Then the point a spans a (not necessarily
proper) subcontinuum of M. We will call two points a and b ofM equivalent iff
(1) a and b are both accessible points ofm and (2) a and b correspond to points
a’ and b’ which lie in the interior of the same A.

Proof of *. We show that g is orientation preserving. Suppose not. Let
G bhq-1, so that 9 G IBd B. Then RG, where R is a reflection on B, is a
homeomorphism on B which is orientation preserving on Bd B. Thus there is
an isotopy {F,}o_<,_< of B such that Fo Bd B RGIBd B and F Bd B is the
identity. Then there is an isotopy (the Alexander isotopy [1]) {H,}o_<,_<: of B
such that Ho F1 and H1 is the identity. Thus {F,} followed by {H,} is an
isotopy taking RG to the identity on B. Thus R(RG) = G must be orientation
reversing on B, and therefore on Int B. But h is orientation preserving on
Sz M, so bh4- Glint B must be orientation preserving on Int B. This is
a contradiction, and it follows that 9 is orientation preserving.

6.12. THEOREM. IfM is a hereditarily indecomposable continuum,

h: M -M
a homeomorphism, and a M, then there is exactly one (sub)continuum K ofM
such that a spans K.

Proof Suppose K1 and K2 are subcontinua of M, both of which are
spanned by a. Then a K1 c K2, so K K2 =/= 0" Since M is hereditarily
indecomposable, K1 - K2 or K2

_
K1. But a spanning continuum is minimal.

Thus K1 K2.
6.13. THEOREM. Let M be a hereditarily indecomposable, nonseparating

continuum in S2, and let h: S2 -S2 be a homeomorphism such that h(M) M,
and such that h is the identity on an open set ofM. Let a and b be equivalent points
of M and let Ka and Kb be their respective (unique) spanning continua. Then
Ka Kb.

Proof Let b: (S2 M)-Int B be a C-map to the interior of the unit disk,
and let g bhq-1: BB be the induced homeomorphism on B, given by
prime end theory. Since h is the identity on an open set, g fixes many points of
Bd B. Thus g (fixed interval) is order preserving on that interval. Let A be the
minimal invariant interval of Bd B containing the points a’ and b’ correspond-
ing to a and b respectively. Let a, g"(a’) and b’, g"(b’). Then a’, and b’,
correspond to the accessible points h"(a) and h"(b), respectively, in M. The
sequences {a’,} and {b’,} each span the interval A in Bd B.

Let X be a crosscut in S M from a to h(a). Then X w M separates Sz into
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the connected open sets U and V. Let K be that subcontinuum of M such that
X w K bounds one of U and V, say X w K bounds U. Now b(X) is a crosscut
in B from a to a’x, and separates Int B into the two open sets b(U) and b(V).
Note that each of b(U) and 4(V) has some b’ as an accessible point. Let b’, be
accessible from b(U). Then there is an endcut T in b(U) leading to b’, such that
4)-(T) is an endcut leading to h"(b). Thus h"(b) and therefore h"(b) K
and therefore h"(b) e Ka. By a similar argument, there exists an integer m such
that hm(a) Kb. It follows that Kb K,, 4:0 so that Kb -- K,, or K,,

_
Kb,

since M is hereditarily indecomposable.
Without loss of generality, we assume that Kb -- K,,. Suppose K, properly

contains Kb. Then there is an integer j such that hi(a) Ka- Kb. Also from
above, h"(b) and h"(a) are both in Kb. Then hJ-m(a) takes hm(a) to hJ(a). Thus
h-(Kb) contains Kb properly, so that h-J(Kb)= (hJ-’) (Kb) is proper in
Kb, and contains h(b). But Kb was a minimal continuum with this property.
This is a contradiction. It follows that Ka Kb.

6.14. THEOREM. Let M be a hereditarily indecomposable, nonseparatin9
continuum in S2, and let h" S2 -S2 be a homeomorphism such that h(M)= M
and h is the identity on some open set. Let a be an accessible point in M, with
infinite orbit, and let K be its spannin9 continuum. Then h(K)= K.

Proof K h(K) , since h(a) K h(K). Thus K
_
h(K)or h(K) K.

Without loss of generality, we assume K
___

h(K); for otherwise replace h by h-
in the argument below.
Now, suppose K is proper in h(K). Then h- I(K) is proper in K. But h- X(K)

contains h(, h’(a)) , h’(a). Thus h-(K)is a smaller continuum (than K)
containing all the iterates of a. This contradicts the fact that K was a spanning
continuum for a. It follows that h(K)= K.

6.15. Example. Let M be the U-continuum and let h: S2 --,,S2 be the
homeomorphism described in the diagram. Note that h(M)= M. Let
(’- (S2 M) --, Int B be a C-map, and let O: B B be the induced homeomor-
phism, bhb-x. Then 9[Bd B is described in the diagram below.

P fK g(P’)=P’

(" (SZ-M) Int B

>>



658 BEVERLY BRECHNER

Terminology. If A is an arc [a, b] then a translation on A means a homeo-
morphism conjugate to x//x on [0, 1].

(1) U is the open strip indicated in the diagram.
(2) h is identity on S2 U.
(3) h is (translation x identity) on U; as indicated.
(4) The A’s are a countable sequence of intervals beginning on right side of

p’ and converging to p’ on the other side of p’. 9[(Bd B A) is the identity.
9(Ai) Ai and o[A is a translation in the direction indicated. Note that the
directions alternate.

We see that the intervals Ai in Bd B determine unique spanning continua
in M, even though M is not hereditarily indecomposable.

6.16. THEOREM. Let Q be a pseudo arc in S2, h: S2 "-S2 a homeomorphism
such that (1) h(Q Q and (2) h is the identity on some open set U ofQ. Then h Q
is "determined" by an at-most-countable collection of proper spannin9 subcon-

O0tinua { /}i= of Q that is, hi(Q j Ki is the identity.

Proof Let t: (S2 Q) Int B be a C-map and let 9: BBbe the induced
homeomorphism given by prime end theory. Since h is the identity on an open
set of Q, 9 will fix many points of Bd B. Thus o[Bd B is order preserving and
will carry each of an at-most-countable collection of pairwise disjoint open
intervals {A} onto itself. Further h[A will be equivalent to the "translation" x2

or x//x on [0, 1]. (Note that several of these intervals may correspond to one
composant.) Let a’i 6 A correspond to some accessible point ai 6 Q. Let Ki be
the spanning subcontinuum for a. By Theorem 6.14, each K is fully invariant.
We first show that each K is proper in Q. Suppose, for some n, K, is not

proper in Q. Let Lj be the smallest proper subcontinuum of Q containing hi(a)
for -j < < j. Then L1 L2 - ""- L, ..., and is dense in Q. Let U’
be open in U so that U’ misses La. Then there is an integer m such that
Lm c U’= 0, but /,,+a c U’4: 0. This contradicts the fact that h[U’ is the
identity. Thus each K is proper in Q. (Note that we do not claim that the Kg’s
are necessarily pairwise disjoint.)
Now, let x Q Ki, and suppose h(x) 4: x. Then some neighborhood V

of x moves off itself. Thus there is an accessible point b in V which moves off
itself. But b corresponds to a point of Bd B which remains fixed. This is a
contradiction. The theorem follows.

6.17. FOURTH MAIN THEOREM. Let Q be a pseudo arc in S2, h: S2 -S2 a
homeomorphism such that (1) h(Q)= Q and (2) h is the identity on some open
subset U of Q. Suppose also that for each e > 0, there are no more than a finite
number ofinequivalent accessible points which span subcontinua ofdiameter > e.
Then h is the identity.
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Proof Let {K}= be the collection of spanning subcontinua of Q which
determine h, as given by Theorem 6.16. Then h l(M K) is the identity. By
Theorem 6.14, each of the K[s is fully invariant. By an argument similar to that
of Theorem 6.6, there exists a monotone map f: S2 --,,S2 such that the only
nondegenerate inverses are the K’s. Then, as in the proofs of Theorems 6.8 and
6.9, h induces a homeomorphism g: S2 ""’ S2, g(f(Q)) f(Q), and glf(Q)is the
identity. It follows, as in the proof of Theorem 6.9, that h is the identity on Q.

6.18. QUESTIONS. Let Q be a pseudo arc in S2 and let h: S2 "-,S2 be a
homeomorphism such that h(Q)= Q.

1. STABLE HOMEOMORPHISM PROBLEM FOR ESSENTIALLY EXTENDABLE
HOMEOMORPHISMS. If h is the identity on an open subset of Q and h is extend-
able to S2, must h be the identity on Q?

2. COMPOSANT PROBLEM FOR ESSENTIALLY EXTENDABLE HOMEOMORPH-
ISMS. If h carries each composant of Q onto itself and h is extendable to S2,
is h the identity?

3. Can h and Q be chosen so that h is the identity on an open set of Q, h is
extendable, and for some e > 0, there are infinitely many inequivalent accessible
points of Q, whose spanning continua K all have diameter greater than e ? (A
negative answer to this would answer # 1 above, in the affirmative.)

4. Same as # 3, except that h carries each composant onto itself (not neces-
sarily the identity on an open set).

5. Does Theorem 6.17 hold if we only require invariant composants, rather
than a pointwise fixed open set ?

7. Questions and some possible ramifications

We recall some problems mentioned in previous sections, add some new
ones, and explain the importance of the problems.

7.1. IMBEDDINGS.

7.1.1. PROBLEM.
P in $2?

Are there uncountably many inequivalent imbeddings of

7.2. ESSENTIALLY EXTENDABLE HOMEOMORPHISMS.

7.2.1. PRO8LEM. IS every homeomorphism of the pseudo arc P onto itself
essentially extendable to E2?

In another paper [7] we will show that such homeomorphisms are essentially
extendable to E3, by constructing an imbedding tk: P E2 - E3 such that

bh- : b(P)’ b(P)
is extendable to E3. This imbedding carries P,to a plane and it may be that this
imbedding works for E2, though we do not yet know the answer.
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In still another paper [8], we will show that extendable homeomorphisms of
the standard pseudo arc, P, cannot be of period n > 2. If this result could be
improved so that it holds for essentially extendable homeomorphisms, then a
positive answer to this question (7.2.1) would tell us that there were no period
n > 2 homeomorphisms of the pseudo arc onto itself.

7.2.2. PROBLEM. Is every homeomorphism of the standard pseudo arc P in
E2 conjugate to an extendable homeomorphism?

If so, then each such homeomorphism has either 2 fixed points in different
composants, or a pair of points of different composants which interchange.

If so, then it would follow from our Second Main Theorem of Section 6 (6.5)
that there are no nonidentity stable homeomorphisms of the pseudo arc onto
itself.

7.2.3. PROBLEM. Characterize the continua X in E2 for which each
homeomorphism h: X--,,X is essentially extendable to E2. Perhaps any non-
separating continuum without cut points is a characterization?

Note that in Section 5 we gave an example of a chainable continuum and a
homeomorphism on it, which is not essentially extendable to E2. This contin-
uum contains a cut point, which is where the trouble occurs.

7.2.4. PROBLEM. Does there exist a continuum M in Ez such that not every
homeomorphism ofM is extendable, but every homeomorphism is conjugate to
an extendable homeomorphism?

7.2.5. PROBLEI. Does there exist a continuum M in Ez such that not every
homeomorphism is extendable or conjugate to an extendable homeomor-
phism, but every homeomorphism is essentially extendable?

7.3. STABLE HOMEOMORPHISMS.

7.3.1. PROBLEM. Let h: P --,, P be a homeomorphism. If h is the identity on
an open set and essentially extendable, is h the identity? If h carries each
composant onto itself and is essentially extendable, is h the identity?

A positive answer to these questions, together with a positive answer to 7.2.1,
would answer the stable homeomorphism and composant problems for the
pseudo arc. That is, it would show that if h is a homeomorphism which is the
identity on an open set (carries each composant to itself), then h is the identity.

Remark. The referee has informed the author that Lewis, a student of Bing
at’ Texas, has answered both the Stable Homeomorphism and Composant
Problems in the negative. This work was done quite recently, in fact, since the
present paper was submitted for publication.

Added in proof. Questions 1 and 2 of Section 4 (and therefore also the con-
jecture of Section 4(c) and Problem 7.1.1) have recently been answered in the



ON STABLE HOMEOMORPHISMS AND IMBEDDINGS 661

affirmative by Wayne Lewis, in a paper (preprint) entitled Embeddings of the
pseudo arc in E. His solution of the Stable Homeomorphism and Composant
Problems are contained in Stable homeomorphisms of the pseudo arc, to appear
in the Canadian Journal of Mathematics.
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