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SPLINE SPACES ARE OPTIMAL FOR [? n-WIDTH

BY
AVRAHAM A. MELKMAN! AND CHARLES A. MICCHELLI

1. Introduction

Let X = (X, |-||) be a normed linear space, " a subset of X and X, an
n-dimensional linear subspace of X. The Kolmogorov n-width of 4" relative to
X is defined by

d(A; X)=d,(&)=inf sup inf ||x —y|.

Xn xeX yeXp

X, is called an optimal subspace for J#" provided that
d, (X&) = sup inf ||x —y|.

xeX yeXn
This concept of n-width was introduced by Kolmogorov in [8] and in his
paper he finds the exact value of the n-width for

W20, 1] = {f: f*~V abs. cont. on (0, 1), | /| < 1}
(I | = 2 norm on [0, 1]).

Roughly speaking Kolmogorov showed that the n-width corresponds to the
nth eigenvalue of a boundary value problem and an optimal subspace is
spanned by the first n eigenfunctions. Kolmogorov claimed that W?"[0, 1] has
a unique optimal subspace and as late as Tihomirov [13] this error was
overlooked. It was first observed to be false by Karlovitz in [4] while in Ioffe
and Tihomirov [2] it is conjectured that W?'[0, 1] has an optimal spline
subspace.

Subsequently, Karlovitz [5] explored the question of nonuniqueness of opti-
mal subspaces in a general setting. The related question for min max and
max min characterization of eigenvalues has been treated in Weinstein and
Stenger’s book [17].

A main goal of this paper is to prove that W?" admits, for all r, optimal
spline subspaces. There are in fact two; one of degree r — 1 and another of
degree 2r — 1.

Before stating exactly our result for W2 we wish to point out that an effort

Received August 18, 1976.
1 Part of the work was conducted while the first author was at IBM. T. J. Watson Research
Center, Yorktown Heights, New York.

© 1978 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

541



542 AVRAHAM A. MELKMAN AND CHARLES A. MICCHELLI

has been made to present this result in as general a setting as we are aware that
it applies. A large portion of the paper deals with this general point of view via
the notion of oscillation kernel. The importance of this concept to integral
equations and Sturm-Liouville differential equations is the subject of the book
[1]. Our results for W?" follow below.

The eigenvalue problem

(L1) (=1yy®(x)= py(x), y?0)=y?(1)=0,i=0,1,...,r -1,
has positive simple eigenvalues 0 < y; , < p,, <*** < fty 44, < - and a corre-
sponding set of complete orthonormal eigenfunctions, y; (x), y;.(x), ...,
Vn+1.+(X)s ... The function y,, ; ,(x) has exactly n simple zeros in (0, 1), given
by
0< él,r < €Z,r< < én,r <1

and its rth derivative y¥)  , has exactly N = n + r zeros in (0, 1),

0< "l,r < '12,r << nn+r,r <L
The n-width of W?"[0, 1] is given by

00, n<r

-1/2
”n—p{+ 1,r n> r,

d, (w10, 1]; 2[0, 1])

and the space of spline functions of degree r — 1 with knots at &, ,, ..., &, ,,

X:+r = [1, Xy ey xr—l’ (x - él,r)';—l ceey (x - én,r)'-ﬂ»_ 1]9

is an optimal subspace for the (n + r)-width of W?'[0, 1] (x"7' =x""1, x >0,
zero otherwise, and [f}, ..., f,,] = linear space spanned by f}, ..., f,,). Further-
more, interpolation of f € W?*[0, 1] at 5, ,, ..., fl,+, by an element in X}, is
an optimal method of approximating W20, 1].

In addition, the space of natural splines,

Xi=(Sellx o X7 (= )T Th s (6 A )Y
SP0)=SN1)=0,i=r,...,2r—1},

is an optimal subspace for the (n + r)-width of W2'[0, 1] and interpolation at
N1 -+-s Mn+r, is an optimal method of approximating W3[0, 1].

We also include in Section 4 a matrix formulation of our results on totally
positive integral operators, as well as in Section 3 the computation of n-widths
under restricted approximation.

This latter problem allows us to answer the following question of optimal
estimation.

Given f'in a certain set and sampled function values f (x,), ..., f(x,), where is
the best place to sample f at n additional places to obtain the most information
about it?

Some of the results presented here were announced in [10].
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2. Statement of problem

Let H denote the Hilbert space of real-valued, square-summable functions
on [0, 1]. We denote the norm and inner product on H by

1= Go=[ 1000

respectively.
Let K(x, y) be a continuous function on [0, 1] x [0, 1] and define

fol K(x, y)h(y) dy: ||h]| < 1}.

A is the image of the unit ball in H under the completely continuous operator

(KRYo) = [ K, 240) d.

A =

Whenever T is an integral operator on H we will use the notation T(x, y) for
the kernel of T. Thus the adjoint of K which we denote by K* has a kernel
given by K*(x, y) = K(y, x). We will be frequently concerned with the combin-
ations K*K and KK*. These operators have as kernels

(K*K)(x, y) = (K(*, x), K(-, y)) and (KK*)(x, y)= (K(x, "), K(y,")).

K*K is a completely continuous positive semi-definite symmetric operator
with eigenvalues 1, > A, > - > 4, > - > 0, and corresponding orthonormal
eigenfunctions,

(21) K*K¢n = )“nd’m (¢m ¢m) = 6n,ma m,n= 19 29 LR
In addition, we define , = K¢, and observe that
22) KK*y = A¥n, (Vs Ym) = AnOpm, n,m=1,2, ...

The following theorem is a familiar result for the Kolmogorov n-width of ";
see Shapiro [16, p. 188].

THEOREM 2.1. d,(A"; H) = A}? and X% =Yy, ..., ¥,], the linear subspace
spanned by V4, ..., W, is an optimal subspace for A .

To comment further on this interesting result we require the following idea.
A continuous kernel K is said to be totally positive provided that the Fredholm
determinant

K(xl,-“,xn): det |K(xi9 y})‘

Vis o5 Un i,j=1,..,n

is nonnegativeforall0 < x; < <x,<1,0<y; <" <y, <Ln=12,...
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The following theorem of Kellogg [6], [7] gives useful information about the
spectrum of a totally positive symmetric kernel (see Gantmacher and Krein [1]
for various important extensions and applications of Kellogg’s theorem).

THEOREM 2.2. Let K(x, y) be a totally positive symmetric kernel such that

X1y eees X
K( Lo ”)>0, 0<x; < <x <L
Xiyoees Xy

Then all the eigenvalues of K are positive and simple, A > A, >+ > 1,>
-+ >0, and the corresponding orthonormal eigenfunctions Ku,= A u,, n=1,
2, ..., form a Markov system on (0, 1), that is,

U( Lo )=det |u(x;)| >0, O0<x; < <x,<ln=12...
Xqy eees Xp

Consequently, the (n + 1)st eigenfunction u,. has exactly n simple zeros in
(, 1).
We will call a totally positive kernel nondegenerate if
dim [K(xy, *), ..., K(x,, - )] = dim [K(+, x,), ..., K(*, x,)] =n
forall0<x; < <x,<ln=12 ...

LeMMA 2.1. If K is a nondegenerate totally positive kernel then the functions
Gn+1 and Y, 1, defined above have exactly n simple zeros in (0, 1),

¢n+l(€j)= l//n+l(rlj)=09 ]= 1’ 2, ey Ny
O0<éi< "<, <], O<pyy<- <y, <.

Proof. This lemma is an immediate consequence of Theorem 2.2. We argue
as follows: The basic composition formula [3, p. 17] applied to K*K gives

1 1
(K*K)(xl’""x")= J' J' K(al,...,a,,)K(al,...,a,,)dal - do,.
Vis oo Vn V] 0 xl,...,x,, yls-..ayn
0<g1<-<gp<1

Thus K*K satisfies the hypothesis of Theorem 2.2 and consequently ¢, . ; has
exactly n simple zeros in (0, 1). Similarly, KK* satisfies the hypothesis of
Theorem 2.2 and thus y, ., also has n simple zeros. We may now prove:

THEOREM 2.3. Let K be a nondegenerate totally positive kernel. Then

X,?=[¢1,--~, ‘/’n]s X:=[K('sfl)s“"K('aén)]a
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and
Xa = [(KK*)(-, n1), ..., (KK*)(-, )]
are optimal subspaces for A

Proof. We begin by showing that X} is an optimal subspace for 2#". Let P
be the orthogonal projection of H onto X}. Then

(A5 X))=|K - PK||= sup |Kh— PKh|
kil <1

and hence &(A; X!)* is the largest eigenvalue of the operator
T = K*(I — P)K. An easy calculation shows that the kernel of T is given by

(K*K)(x’ él""’én)
T(x,y)= yaéél,%én .
* 1> 2205 5%n
(K K)(él,“"én)

We begin the proof by demonstrating that 4, is an eigenvalue of T. To this
end, observe that for any h € H such that (K*h)({)=0,i=1,..., n, then
necessarily Ph = 0. Therefore, because K*(K@,.)(&:)= Ap+1Pn+1(£:)=0,
i=1...,n

T¢n+l = K*(K¢n+l - PK¢n+l) = K*K¢n+l = ;Ln+1¢n+1'

Now, to show that 4,,, is the largest eigenvalue of T we define Ty(x, y) =
l T(x’ y)| Then %(xa y) = 5gn ¢n+ l(x) sgn ¢n+l(y)T(x’ .V) is a symmetric
nonnegative kernel with a nonnegative eigenfunction |¢,.,(x)| and corre-
sponding eigenvalue A, ,,. Since T, has a nonnegative eigenfunction it is a
familiar result that the corresponding eigenvalue must be the largest eigenvalue
of Ty. Let us give the easy proof of this fact.

Suppose 4 is the largest eigenvalue for T, and f(x) the corresponding eigen-
function. Then 4| f(x)| < To(| f|)(x), x € [0, 1], and therefore

2’(|f|’ I¢n+1|)

< (To(| 1) |@ne1 | )= (111, Tollbnss | )= Aussl[ S|, | Snss]))

Since (| f |, |¢n+1|) > O we conclude that 4 < 4, . But we also have by the
definition of A that A,,;, <A Thus A=4,,;, We conclude that
|K — PK| = 4}3, and X} is an optimal subspace for ".

Let us now prove the optimality of X2. Suppose now, Q represents the
orthogonal projection of H onto the subspace [K(1, "), ..., K(#,, *)]. Thus
the operator KQ takes H onto X7Z and 6("; X?) < | K — KQ| = | K* — QK*|.
Now, using our previous arguments (replace K by K*) we conclude that
|K* — QK*| = A}/2,. Thus X? is also an optimal subspace for 2" and the proof
is complete.
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Below we give some examples of Theorem 2.3. The n-width in I°[0, 1] for
our first example was computed in [11].

Example 2.1. Given any nonnegative real numbers ¢4, ..., t,, we define a
polynomial of degree r = 2m by g,(x) = [ 7=, (x* — £3). Let D = d/dx and con-
sider the set

2, = {f: f*~V abs. cont. on (0, 1), f® e I?[0, 1], f*¥(0) = f?¥(1) = 0,
k=0,1,....,m—1, |q(D)f| <1}

Then 2, = where K(x, y) is the Green’s function for the differential
operator

m 2
f(fe-a)r-0  r™O=r™n=-0k=01..m-1

j=1
It may be verified that

e ]

5 sin kzx sin kry
=1 qr(ikn)
and (—1)"K(x, y) is a nondegenerate totally positive kernel [11].
The kernel K is symmetric with eigenvalues g, !(ikn), k = 1,2, ..., and corre-

sponding eigenfunctions sin knx, k =1, 2, .... Hence according to Theorem
2.3,

K(x,y)=2
k

n

X'? = {Z a; Sinjﬂx: (ala ceey an)e Rn:’

Jj=1

X! = 5 ; J : . "
b <j;a’K(x’n+l) (as .,a,,)eR}

and

TOR

_J
n+1

X2 = : a;G (x
J

where G(x, y) = (K(x, *), K(*, y)) = (K*)(x, y) are optimal subspaces for 2,.

Note that X is a subspace of (generalized) periodic spline functions of order r

while X2 is a subspace, of (generalized) spline functions of order 2r. In [11], it

was shown that X} is also an optimal subspace for

): (ay,...,a,) e R"

1

D=

jl K(x, y)h(y) dy: h € [0, 1], ess sup |h(x)| < 1:

<x<1

in [0, 1]. We conjecture that this fact persists for all I7[0, 1], 1 < p < co.

Example 2.2 (Nondegenerate cyclic Polya frequency functions). This
example is not quite covered by Theorem 2.3, however, the method of proof is
nevertheless applicable.
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Here we deal with the convolution operator
(Kyh)x) j $(x — V() dy

where ¢, h are in H and are both periodic with period one. We denote this class
of functions by H,.

We cannot expect that the even Fredholm minors of K 4(x, y) = ¢(x — y)are
always nonnegative since

K¢(x1,...,x2)=_K¢( ,x2n,1+x1)'
Vi o5 YVan V1> +oo5 Yan—15YVan
However, for the class of cyclic totally positive functions ¢, that is, those
functions for which the odd order Fredholm minors of K , are nonnegative, it is
possible to produce an analog of Theorem 2.3. For a discussion of cyclic totally
positive functions see [3, Chapter 9]. When speaking about the cyclic totally
positive function ¢(x) we also require, as before, that the kernel K 4(x, y) =
¢(x — y) satisfies the nondegeneracy hypothesis,

dim [Ky(xy, ), - Ko(n - )] = dim [Ky(-, x1), .o, Koo, Xn)] =1
forall0<x, <--<x,<1l,n=12,....

Returning to the proof of Theorem 2.3 we can readily see that to identify
optimal subspaces for the n-width we only need to know that the (n + 1)st
Fredholm minors of K are nonnegative and, of course, that the (n + 1)st eigen-
function of K*K has exactly n simple zeros. Keeping these facts in mind we
have the following results for the convolution operator K.

First, observe that all the elgenvalues of K¥K, have double multiplicity,
except for the largest. In fact, if ¢(n) = (3 o(r)e fviny dy then

=|$0)|2’ 12n=12n+1=|¢(n|,n=132a"',
and the corresponding eigenfunctions are

1 .
O1(x)=1,  {Pa(x), P2ns1(x)} = 7§sm 2nnx, :;icos 2anx;, n=1,...,

(we may choose ¢,,(x) to be either l/\/ 2 sin 2rnx or 1/\/ 2 cos 2mnx). Hence
forn>1,

d2n—1(‘%/¢; Hl) = dzn(K¢§ Hl) = |3>(n)|,
and

Thu-1 = [1, sin 27x, cos 27x, ..., sin 2n(n — 1)x, cos 2n(n — 1)x]
is an optimal subspace for the 2n — 1 width of 2 #» While
X%, = [1, sin 27x, cos 2nx, ..., sin 27(n — 1)x, cos 2x(n — 1)x, cos 2mnx]
or = [1, sin 2mx, cos 2nx, ..., sin 2n(n — 1)x, cos 2n(n — 1)x, sin 27nx]

are optimal 2n-dimensional subspaces.
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Since the 2n + 1-eigenfunction sin 2zn(x — ) has 2n simple zeros at
a+j2n, j=0,1,...,2n—1, for 0 <a < 1/2n we conclude by the methods
employed in Theorem 2.3 that

X}, = ’¢(' —a),~~,¢(‘ ‘“‘an; 1)]

2n -1
2 _ |F(- — C— g —
and Xz,,—[F( oc),...,F( o 2n )l,

Fe) = | #0606+ 0 dr

and optimal subspaces for all o, 0 < o < 1/2n.

Let us again return to the proof of Theorem 2.3 and observe that the method
of approximation for the subspace X? is interpolation of Kh at n4, ..., 5, by
elements of X2. This fact is a consequence of the orthogonality conditions
which determine Qh, the orthogonal projection of h onto [K(ny,*),.
Kt )]:

0= (h_ Qh’ K(nh ))= (Kh_KQh)(’h)a i= 13 "~,n,h6H~

ey

A similar, but perhaps less obvious, fact holds for the subspace X }. Before we
explain this further we need:

LemMA 2.2.  Let K be a nondegenerate totally positive kernel. Then for &, ...,
& and 1y, ..., N, defined in Lemma 2.1, we have

N5 +-o5 Nn
K > 0.
(éla ceey én)

Proof. If the above determinant is zero then there exist constants ay, ..., &,,
not all zero, such that the function f(x) = Y., o;K(x, £;) vanishes at n,, ...,
n.- Also, since dim [K(-, &;), ..., K(*, &,)] = n thereis anny # n,, ..., n,such
that f(no) # 0. We choose a constant d such that ¥, . (no) — df (no) = 0.

Now, since

K("O’ Ny oees '7..) 20
X0os X1y 0oy Xy

forall 0 < x, < -+ < x, <1 (and strictly positive for some choice of x,, ..., x,)
there exists a function g(x) = }"j-o B, K(n;, x) which weakly changes signs at
Cppooes & gOXN=1) 20, &;<x <&y, (6o=0, &uiy=1) In particular,
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g(ﬁl)=03 i= 1, ceey n, and
0= ,Zo Bi(n+1(n;) — df (n;))
i=

= [} a0 dx T wate)

1

J, 96)u (o) dx

= 2] 19ueit)]1060)] dx

This contradiction proves the lemma.
Since the above proof requires only that the (n + 1)st Fredholm minors of K
be nonnegative we have the following periodic version of Lemma 2.2.

LEMMA 23. Let ¢ be a nondegenerate cyclic totally positive function. Let
Ky(x, y) = ¢(x = y). Then

1 a+2n-—1
2n’ 7 2n

1 2n—1
ﬂ,ﬁ+§;,...,ﬂ+—2n—

1
K, #0 forOSa,B<§;
where ¢(n)e*™"@~P is real.

Proof. The proof follows the idea used in Lemma 2.2 and uses the equation
1
I K (x, y) sin 2nn(y — B) dy = |@(n)| sin 2an(x — a).
V]

According to Lemma 2.2 there exists an interpolation operator
L: C[0, 1] - X} defined by
(Lh)Ym)=h(m), i=1,...,n heC[0,1]
THEOREM 2.4. Let K be a nondegenerate totally positive kernel. Then

”K - LK" = Mt

This theorem say that for the class &#", approximating f € /" by Lfis as good
as approximating f by Pf where P is the orthogonal projection onto

Xi=[K(, &), ..., K(+, &)
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Proof. The proof is quite similar to the proof of Theorem 2.3. First, we
compute the kernel of the operator R = K — LK,

K X, "la LEREY "n
(ya 519 vees én)
R(x, y)= (K — LK)(x, y) = ,
K("l’ L] "n)
519 ceey én
and then demonstrate, as in the proof of Theorem 2.3, that

R*R¢n+l = )'n+l ¢n+l' Finally,
(R*R)(x$ y) Sgn ¢n+l(x) Sgn ¢n+ 1(}’) = 0, X, y € [0’ 1]’

because

. K(Ja Ny oves ﬂn)K(G, N vves "n)
(R*R)(x, y)=j X, fla"'aén .V, élza’én do_
(K(r’l’ ey "n))
éla ey én
and we conclude that the largest eigenvalue of R*R is given by
Amax(R*R) = 4,4 1. Thus the proof is complete.
Lemma 2.3 leads also to a result similar to Theorem 2.4 for convolution

operators. Thus, in Example 2.2, interpolation at , ..., a + (2n — 1)/2n by the
subspace

2n—1
Xén=’¢(—.ﬁ),a¢(—ﬂ_ n )]
is an optimal procedure for the class .

3. n-widths under restricted approximation

In this section we study n-widths under restricted approximation. We begin
by describing our initial motivation for this problem.

Suppose we sample a function f(x) at s points X = (X4, ..., X,), 0 < x; <
-+ < xg < 1. Given only that f € & and the data f = (f(x,), ..., (x,)) we wish
to find an optimal method of estimating f'(x). To describe what we mean by this
we let T be any mapping (not necessarily linear) from R* — C[0, 1]. This map-
ping determines the estimator Sf = Tf for fand the error, given only that fe ¢,
is

E(x; §)= sup |f - Sf].

Sfex

We will say that S, is an optimal estimator for #", provided that

E(x; So) = inf E(x; S)
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where the infimum is taken over all mappings from R® into C[0, 1]; see [12] for
a related problem.
Let P, be the orthogonal projection of H onto the subspace

X,=[K(xy,*), ..., K(xs, *)]:

For f= Khe X we define S,f= KPh. Since Ph =0 for any h such that
(Kh)(x;)=0,i=1,...,n, S, is a well-defined estimator which uses only the
information

f= (f(xl)’ . 'af(xs))‘
We define

Cx)=sup {|fl:f(x)=0,i=1,...,s fe A}
THEOREM 3.1. S, is an optimal linear estimator for A" and E(x) = C(x).

Proof. Let fe A, f(x;)=0, i=1,..., n. Then for any mapping
T: R C[0, 1],

1A < 301/ = TO)| + [ £+ TO)] < sup. I/ =51

where Sf = Tf. Hence C(x) < E(x).
The reverse inequality follows from the following reasoning. First observe
that

If = S.fI| = |Kh — KP,h|| = |K(h — P.h)|.

Now, g = K(h — P,h) € A because |h — P,h| < ||h| <1 and also, g(x;) = 0,
i=1,..., s by the definition of P,. Hence

E(x; 8,)= sup | f—S.f|| < C(x),
fex
and the theorem is proved.

According to Theorem 2.3, when K is a totally positive nondegenerate
kernel,

E(n; S,)=||K — KP,|| = d(x"; H) < E(x, S,)

where = (1, ..., ), ¥s+1(m) =0, i=1,..., s. Thus, in this case, the best
place to sample fe S is at 5, ..., #;.

Since Yy, = K@y € A and | 4, || = AY2;, Theorem 2.3 says that ., is
the “worst” function in the class 4" to approximate by s-dimensional sub-
spaces. Our above remarks say that, by sampling an f € ¢ at the zeros of ¥/, ,
we obtain the most information about the function f.

Now, we ask the following question. If we wish to fix the first s sample
locations at x,, ..., X, where is the best place to sample f € /" at n additional
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locations? Thus we wish to determine

(3.1) min E(z, S,) Y= (V1> .es Y 2= (Xg5 -+5 Xg» V15 -+ 5 Vu)-

y

Since (f— P, f)(x;)=0,i=1,...,s,f€ X, we are lead to the computation of
the following (restricted) n-width:

di(A"; H) = inf sup inf {|| f—g||: (f — g)(x;)=0,i=1, ...,s,geX,,ﬂ}'

Xn+s S €X
The value of d(¢"; H) is identified as follows:
Let
K= K(I- P,
K*K . hy= Ahy, (h, hy,) =0, Lm=1,2,...,
Ay = 2y(x),

Al 2},22132"'.

Then d&5(¢"; H) = A}/2,, and X9 =[K,h,, ..., K h,] is an optimal subspace
(we will prove this fact later). This result, of course, does not require K(x, y) to
be a nondegenerate totally positive kernel. However, when this hypothesis is in
force we can appeal to some results of Gantmacher and Krein, [1, p. 236-242]
and make assertions, as before, about the zeros of the eigenfunctions h,,, ; and
K h, .y

The kernel of the integral operator R, = K, K% is given by

KK* (x, Xy eons x,,)

(32) R(x, y) = Yo 2t %o)
KK* Xiseees Xp
Xiseees Xp

Kernels of this type are studied by Gantmacher and Krein in [1, p. 236-242]
where it is pointed out that if (KK*)(x, y) is the influence function for a
“continuum” for which “stationary (hinged) supports” are introduced at
Xy, ..., X, then R (x, y) is the influence function for the resulting constrained
continuum.

Lete(x)=(—1),x; <X <X;11,i=0,1,...,n (xo =0, x,,, = 1) and define
R (x, y) = &(x)e(y)R(x, y). When K is a nondegenerate totally positive kernel
then by Sylvester’s determinant identity [3, p. 3],

Rx(yl’ ey Yn

>0, O<y, <<y, <1,
yla""yn) yl y

ﬁx(;l""’;”)>0, 0<z; <<z, <1,0<y, <<y, <1,
l’co;, n
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where the z’s and y’s are chosen distinct from x, ..., x,. Let fy= K, h, 1= 1,
2,.... Then R, fy = A(x)fi, =1, 2, ..., and by Gantmacher and Krein [1, p.
236-242] A,(x) > A,(x) > -+, and f, , , has exactly n + s simple zeros. Exactly s
of them are at x, ..., x, because (K ,h)(x;) = 0,i=1,...,s,forany h € &, and
there are n more which we denote by 7n,(x),..., n,(x), 0 <n(x) < <
#.(x) < 1. Furthermore, if

ilx) = e(x)i(x)

then {f;(x), ..., fu(x), ...} is a Markov system on (0, 1) — {x,, ..., x}.
We now have enough information to solve our problem on optimal
estimation.

THEOREM 3.2. Let 2= (Xy, ..., Xg, Y1s -+> Vu) ¥ = (V1» - --» V) and suppose
K is a nondegenerate totally positive kernel. Then

inf E(z; S,) = E(zo; S,,) = At (X) where 2o = (x4, ..., X5 1(X), .-, 1a(X)).

y

Proof. Let us begin by showing that d5(#"; H)=d,(#;; H)= A1/ (x)
where,

A, = (K h: || < 1.
Note that, since K,h = K(h — P h), Ay={fe A f(x)=0,i=1,2,...,s}.
Clearly,
d(H'; H) > inf sup inf ||f— g|| = d,(H#; H) = L(x).

Xn feXxgeXn

Let
Z0, = [KK*(, xy), ..., KK*(*, x), f15 ..., f,] and X3 =[fy,..., fi]
Then d;(K; H) is bounded by
sup inf {|[f — gl|: f(x;) — Sy f(x:)) — g(x)) = 0,9 € X3}
ex
= fsup inf {||f—g|: g € X3} = A}, (x).
€ X 'x

the last equality follows from the fact that X? is an optimal subspace for ., .

Now, let us prove the theorem. We define P, , to be the orthogonal projec-
tion of H onto [K,(y1, ), .., Kx(Va» *)]- Recall that P,, P, are respectively the
orthogonal projections onto

[K(zy, *)s o K(Zg4ss ©)] and  [K(xy, ), ..., K(xg *)]
where z = (x4, ..., X5, V1, oo o5 Yu X = (X1, -.5 X), Y = (V15 -+, yn)- Hence

(3.3) K-KP,=K,—K,P,,
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because I — P, = (I — P,)(I — P,,). We conclude from Theorem 3.1 that
E(z; P,)= |K — KP,| = | K, — K.P, .|| > d,(¥; H) = 4,}1(x)

for all y. To complete the proof, we will demonstrate that

(3.4) 1Ky = KPyx | = 4a?21(x) where n = (:(x), ..., m:(x))

Then combining this fact with (3.3) the proof will be complete.
Let T=K, — K, P, ,. Then using the fact that

x* n,x*

T=K-KP,,, zo= (%1, ..., X5 71(X), ..., 1s(X))
we may compute the kernel of T*T to be

KK* (y9 Xgs oeey Xgy "l(x)’ e r’n(x))
Xy Xy oens Xgs 11(X), «- v, Ma(X)
KK* (xl, vy X M1(X), oo nn(x))
Xy enes Xgo N1(X), « .oy Ma(X)

Thus, T*T(x, y) sgn f,+1(x) sgn f,+4(y) = 0. But, because T = K, — K,P,
then (replacing K by K,) as in the proof of Theorem 2.3 we conclude that

T*Tﬂl+1 = A'n+1(x)f;l+l and A'max(T*T) = )“n+l(x);

hence (3.4) is verified.
According to the above theorem, both

X,(,) = [fla ’f;l] and Xr% = [(KXK:)(’ nl(x»’ SRR (KXK:)(’ ?‘["(X))]

are optimal subspaces for d,(#,; H). There is, of course, a third optimal sub-
space based upon the zeros of h, . ,(x) (it can be shown that h, . ,(x) hasn + s
zeros) and again interpolation at the zeros of f, , ,(x) is an optimal procedure.
However, the discussion of these facts will take us too far from our discussion
on optimal estimation. Instead, let us note that the results we have been con-
sidering in Section 2 and Section 3 extend when the operator K maps

(T*T)(x, y) = (TT*)(y, x) =

H,= {f; Jol F2(t) da(t) < oo} onto H;= {f: Ll () dB(t) <

provided that do, df are finite measures on [0, 1] which have mass throughout
the interval (the case when da, df are discrete corresponds to the matrix version
of the results of Section 2 and will be dealt with in Section 4). A particularly
relevant choice for da, df is

do(t)=dB(t)=dt + 1 Zs‘, ot — x;)

J
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d(t — x;) is the point mass at x;) where 7 is a nonnegative constant. Then the
j p j it
(n + s)-width of

A=

Kh: j 1 h2(t) dot) < 1}

in H, varies from the (n + s)-width of #" in H, © = 0, to the restricted n-width of
A" in H when 7 — oo. These facts are not difficult to prove.
We now turn our attention to the matrix version of the results in Section 2.

4. Matrix version

In this section we discuss the matrix version of the results in Section 2.

The inner product of x, y € R¥ is denoted by (x, y) = Y }-, x;y; and ||x|> =
(x, x). Subscripts will be used to denote components of a vector while super-
scripts are used to distinguish between vectors.

We assume that 4 = (a;;),i,j=1, ..., N,isan N x N strictly totally positive
matrix, that is, all the minors of 4 are positive. Then by the Gantmacher and
Krein Theorem [1], A*A has eigenvalues and eigenvectors such that

A*AX" = 2,x", (x", X™) =0y n,m=1,..., N,
A>A,> > A >0,

S*(Ax"*)=S"(Ax"*Y)=n, n=0,1,..., N—1,

S*(x"t*H)=8S"(x"*')=n, n=0,1,...,N— 1

Here S (x) equals the number of actual sign changes in the vector x where zero
components are discarded, while S*(x) is the maximum number of sign
changes obtainable by adding 1 or —1 to the zero components of x.

Hence x}*!x}"! # 0 and if x7*1 =0, 1 <j < N, then x}Z{x7}{ < 0. Also,
there exist by the above equations indices 0=l <l; < <, <N=1,,,
such that +x/*Y(—1¥ >0,1;<i<l;4,,j=0,1,...,n

Adopt convention that [; is such that either

@4.1) xpHIxphi <0
or
4.2) xpt'=0 and x7tix}ii <O.

For each j, j = 1, ..., n we define an N-dimensional vector ¢’ as follows: If (4.1)
holds, let

. R k=1L L+ 1

&), = lxk | ’ J> Y ’
(') 0, otherwise,
while if (4.2) arises we let (), = J,4. Thus

4.3) (¢, x"*)=0, j=1,...,n
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Similarly, for the vector y"*! = Ax"*! we construct f, ..., " € RY, such that
44) (fLy+h)=0, j=1,..,n

THEOREM 3.1. Let A be an N x N strictly totally positive matrix. Then the
n-width of A = {Ax: |x|| < 1}, n < N, is given by
A2 n=0,1,...,N—1
- 2Y = n+ 1> s Ly s s
d,(4; 1) 0, otherwise,

and
X0=[yl....y), Xi=[Ade', ..., Ae"], XI=[AA*!, ..., AA*"]

are optimal subspaces. Furthermore, if R is the N x N matrix defined by requir-
ing that R: RN > X! and (x — Rx,f)=0,i=1,...,n,x € R, for all x e R¥
then |4 — RA| = A3,

Proof. The proof of Theorem 3.1 follows the pattern of proof given in
Theorems 2.3 and 2.4. We will briefly indicate how our last assertion is proved.
First, let us note that, in obvious symbolic notation,

(%, Act) -+ (f%, A2") (£, 4x)

(/7 4e') - (f7 42) (f", 4x)
(45) Gx=Ax—RAx= Ae’ - Ae Ax
(/7 Aet) - (1, 4

(" Ae) - (1" Ae)

The determinant in the denominator is nonzero because A is strictly totally
positive and the n x N matrices F = (f}), E = (¢}) are totally positive (all
minors are nonnegative) and have rank n. According to the orthogonality
conditions (4.3) and (4.4) G*Gx"** = ,,,x"*! and thus we need only verify
that

(4.6) (G*G);jsgn x;* ! sgn x1*1 > 0.

Appealing to (4.5), we obtain by direct computation,
det | (f*, Ae)|
+1

kl=1,..,n
Gij=

det |(f* A€

=1, ..,n

where we define f"*! = 4/, the ith unit vector, (u*),= ,, k, I=1, ..., N, and
€"*1 = 4. The matrix whose columns are composed of the vectors e, ...,e"*1
has the property that the signs of all its (n + 1)st minors are (—1)*", if
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I, <j<l., A similar result holds for f*, ..., f"**. Hence using the total
positivity of A, as well, we obtain

G;isgn yi*'sgn xi*1 > 0.
Thus (4.6) is verified and the proof of the theorem is finished.

5. Further extensions

In this section we will indicate how Theorem 2.3 can be extended to sets of
the form ", = X, + A where X, is some fixed r-dimensional subspace of H.
Let k,(x), ..., k,(x) be continuous functions on [0, 1] and define

r

1) #, =T ahf)+ | K B0 dr ] <1 (- a) e R

j=1
=X,+ X
The main prototype, for us, of this class of examples is the Sobolev class
W20, 1] = {f: f*~ Y abs. cont. on (0, 1), /¥ e Z[0, 1], | /|| < 1}

which may be written in the form (5.1) by using Taylor’s theorem with

remainder:
SO0,

5.2 X) = — = xJ

I R T R ]

(x"t=x""1 x >0, zero otherwise).

Let Q, be the orthogonal projection of H onto X,= [k, ..., k,]. Then
Theorem 2.1 easily extends to ', as follows: We define K, = (1 — Q,)K. Then
K*K, is a completely continuous, symmetric positive semi-definite operator
with eigenvalues A,,>4,,>->0 and corresponding orthonormal
eigenfunctions,

K:‘Kr(bn,r = )'n,ra (¢n,r’ ¢m,r) = 6nm’ n,m= 1, 2’ ceee
Lety,, =K, ¢,,. Then

KrK;‘k'//n,r = n,r‘//n,ra (‘pn,r’ '/Im,r) = ;l‘nanm’ n,m= 1’ 29 cees

[ =y y0) dy

and

o0, n<r,
1/2
Z’n/—r+ 1,r nzr.

dn(fr) =

When n>r, X3 =1[ky, ..., kyy Y105 -..» ¥n—,,] is an optimal subspace for the
n-width of J¢,.

For the analog of Theorems 2.3 and 2.4 we require the following assump-
tions. For any points 0 <s; < <s,<1,0<t, < <t,<1 and any
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m < 0, the determinant

kl(.tl) kl(tgnﬂ)

K( Loy Py Sgyeens S )= kr(tl) kr(tt;l+r)
| STIRTINY AR AP S K(tl’ sl) K(tm'f" sl)
K(ti, Sn) = Ktmsrs Sn)

is nonnegative. The linear spaces
[kyy ..oy kpy K(+5 84), . K(*, 8)] and  [ky, ..., Kk, K(s35°)s o vy K(Sps *)]

have dimension r+m for all 0<s,<-*<s,<1, m=1, 2,..., and
{ky, ..., k,} is a Chebyshev system on (0, 1), that is

L...,r
k(’ > 1>0, 0<s; < <5, <1
Sqseees Sy

It is a fundamental result from the theory of spline functions that these condi-
tions hold in the special case (3.2) [15]. A large class of examples satisfying these
assumptions may be obtained from [9] by considering a totally disconjugate
differential operator subject to sign consistent boundary conditions.

We will now develop an extension of Theorem 2.3 to &, in a series of
lemmas. We begin with:

LemMA 5.1, K}K,(x, y) is a nondegenerate totally positive kernel.

Before we prove this lemma let us note that K,(x, y) itself is not totally
positive, since the range of K, is orthogonal to the Chebyshev subspace X,.
Hence K, h has at least r sign changes on (0, 1) for every nontrivial h € 2.

Proof. From the definition of Q,,
(kb‘kl) (kl’.kr) (klgh)
h=Qh)x)= |k, k) - (k. k) (k. h)

ki(x) - k(x)  h(x)
Gky, ..., k)
where G(ky, ..., k,) = det | (k;, k;)|, the Grammian of k,, ..., k,. Thus
(kla.kl) (kl’. kr) (K*k_l’ h)
(K¥K,h)(x) = (ky, ky) - (k,, k,) ( K*k,, h)

(K*ky)(x) - (K*k)(x) (K*Kh)(x)
Glky, ..., k)
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and
(kls.kl) (kl’. kr) (kl’ K‘('a y»
(K¥K,)(x, y) = (k,,.kl) ... (k,,‘ k,) k., K.( )
(K(, x) ky) -+ (K(, x) k) (K(,x), K(,y)
Glky, ..., k)

Hence by Sylvester’s determinant identity [3], we have

(K;"K,)(x“ ...,x,,)=

V15 -+-5 Vn
(kls.kl) o (kly' kr) (kla K(', yl)) e (kl’ K(‘9 Yn))
(kr"kl) o (kr" kr) (kn K(" YI)) e (kn K(" .Vn))

(K('!{Cl)’kl) ot (K("'?Cl)9kr) (K("xl)‘, K(",Vl)) e (K(‘9xl)9‘K('9yn))
(KCsxah kr) o (KC %) k) (K x0) K(5 1) 0 (KC %) K, 30)
Glky, ..., k)
Using the basic composition formula we obtain
K}"K,(xl’m’x”)= Jl-~-jl K( Lo, 7y Xgy eney X )
Vis o5 Wn V] 0 Oy o035 0ps Opygs o053 Optn

0<¢71<"'<0n+r<1

L...,r
xK( peecs s Y1 eva Y doy,...,do,,,.
Gy ouesy Opy Orpgyeves Onsy

The lemma now follows from our assumptions on J¢,.

LEMMA 5.2. The set of functions {ky, k, ..., k. K, @y ,, ..., K, @p,, ...} form
a Markov system on (0, 1).

Proof. According to the identity
kl(:xl) kl(x‘n+r)

ki) o k)
(Krd’l.,r)(xl) (Kr¢1,f)(xn+r)

Kobro)i1) - (K bur)onsr)

! ! 1,..., 1,...,r,0q,...
- J' J é, "k 7501 0> On doy, ..., da,,
0 0 Oy ..., Oy Xqy o

oy Xps Xpg g5 0oy Xn+r
0<gy1<:<op<1
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where

o )=ttt

O1y-nes Op

this lemma follows directly from Lemma 5.1 and Theorem 2.1.
LemMma 53. Forn >0, Y, , has exactly n + r simple zeros in (0, 1).

Proof. Since V,.,, is in the range of I —Q, we conclude that
Wps1. ki)=0,i=1,2,..., r In addition,

((//n+ 1,r Kr¢l,r) = (Kr¢n+ 1,rs Kr¢l,r)
= (¢n+ 1> KrKrd’l,r)
= Al,r(¢n+ 1 ¢l,r)

=0, I=1,...,n

Hence ., is orthogonal to the Chebyshev subspace
Zn+r = [kb k2’ tery kr’ Kr¢l,n (AR Kr¢n,r]'

Thus y, ., , has at least n + rsign changes in (0, 1). However, ¥, + 1, € Z, 4,41
Thus ¥, ., , has at most n + r zeros in (0, 1). Therefore y,,, ; , has exactly n + r
simple zeros in (0, 1) and the lemma is proved.

We let

¢n+ l,r(éi,r) = 09 0< él,r << én,r < 15
Uns l,r(ni,r) =0, 0< N <" <Mptrpr < L

To state our extension of Theorem 2.3 we define an interpolation operator J,
from C[0, 1] onto [k, ..., k,] by requiring that (h — J,h)(n;,)=0,i=1,...,r,
h e H. J, is given explicitly by

kl('!l,r) kr(’?l,r) h(".l,r)

(53) (h - J'h)(x) = kl(:’,r,r) e kr("’r,r) h(?]..,,,.)
kl(X) Tt kr(x) h(x)

K( 1,...,r )
nl,n LR nr,r

We set K, = (I — J,)K, then we have:

THEOREM 5.1.

00 ifn<r,

d"(fr; H)= 41’1{_2'.'-1" if‘n: ¥yoooy
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and
Xper=[ks, ..., ks Koy s .., K],
Xoer= [k, oo ke K(, &1), - KC5 &)
Xoer=Tky oos ks (KR s i) ooy K KEC, Mo, )]
are optimal subspaces for the (n + r)-width of A’,.

Proof. Since 6(A',; Xi.,)=|K,— PK,|* where P is the orthogonal
projection onto [K,(*, &,,), ..., K,(*, &,.,)] we conclude from Lemma 3.1 and
the argument used to prove Theorem 2.3 (note that the proof only requires
K*K, to be nondegenerate totally positive) that (4 ,; X!,,) = AL/, ,. Thus
X1, is an optimal subspace for the (n + r)-width of ",. To prove the optima-
lity of X2,, we observe that

5(%” X3+r) < ”Kr - KrQHZ
where Q is now the orthogonal projection onto the subspace

[Kr("r+ 1 )9 ERXE) Kr(ﬂn»m : )]

A glance at the proof of Theorem 2.3 shows that X2, is an optimal subspace
for o, if we can demonstrate that

(5.4) sgn Ier-;!g (xa Nr+ 1,70+ "n+r,r)

ya ’1r+ 1,r9 20> ’1”+r,r
= Sgn l//rt~)-r,r(x) sgn '/’n+r,r(y)’ X, y € (0’ 1)

(Observe that K, K¥(x, y) is not a totally positive kernel.) Let us now compute
the Fredholm determinant for K, K¥. According to (5.3),

kl("l,r) kr('?l,r) K(nl.,n.")

(55) K'(x’ y) = kl(ﬂ, ,-) T kr(;lr,r) K(f],.:,,., y)
ki(x) - k(x) K(x )

K ( 1,...,r )
Nips coes nr,r
Since K, K¥(x, y) = {5 K,(x, 0)K,(y, o) do we have, by the basic composition
formula,

Xqy ooy X 1 1 Y s sty
K,K:‘( 1 ')= j j K,("‘ "')K,(yl y)dol,...,da,.
yl’cto,y, 0 0 61,...,01 0'1,...,0'1

0<gy1<-:<g1<1
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Now Sylvester’s determinant identity applied to (5.5) gives

( L,...,r0q4...,0
s (X1 Xy Nies oo MrpXgs eevs X
K, = .

yl""’y' K( 1""’r )
nl,r’ sy "r,r

1 1

Thus we obtain

K'- K";k (X, Hr+ 1,75 ** > "r+r,r

1
y,nr+1,,,~--,n..+,,r)=(K( 1L,...,r ))2 Io L

Nis oovs Nrr 0<gy<-:<on+1<1

8 K(l,...,r, Gy eens Ons o',,“)
”l,r’ e ’1n+1,r’ X

1,...,71,04,...,0, Cps
XK( ’ > v o Tt dal,...,do'n+1.
nl,ra LRRE '7n+r,n y

Hence (5.4) is valid and the proof of the theorem is completed.

LEMMA 5.1.

K(la veey r’ él,ra "-aén,r)>0'

nl,r’ crey ’7n+r,r

The proof of this lemma parallels the proof of Lemma 2.2 and we omit the
details.

We can now define an interpolation operator
Lr: C[O’ 1] AX:’ X'} = [kla KRS kn K(, ﬁl,r)s ceey K(.’ én,r)]

by requiring that (L, h)(n;,)=h(m:,), i=1,..., n+r, heC[0,1], and, as
before, we may verify that

1, R éi,n --.,én,r’ X)

X
R (5, y) = (K = LK)(x, y) = — e eter o
K( IRAAERER P WIS n,r)

nl,r’ ERRE nn+r,r

and R;'er ¢n+ 1r = An+i1,r ¢n+ L,re Thus we have

(Rer)(X, .V) Sgﬂ ¢n+ l,r(x) sgn ¢n+ l,r(y) = 0’ X, y € [0’ 1]
and:

THEOREM 5.2. |K — L K| = AY2,,.
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Hence, again interpolation is an optimal procedure for estimating the class
KA,
Let us now apply Theorem 5.1 to an example discussed by Kolmogorov in

[8].

Example 5.1. kit)=¢"Yi=1,...,r,K(x,y)=1/(r— 1)}, x,y € [0, 1]. In
this case

A, ={f: ¢V abs. cont,, [ e 2[0, 1], | /| < 1} = w>0, 1].

The eigenvalue equation K¥K,¢,,=4,,¢,,,n=1,2,...,is easily seen to
be equivalent to

(3.6) Yo ()= pn,yus(x), YR =y00)=0,i=0,1,....,r -1,

where y,, = K¥K,¢,, and pu,,4,, =1 Thus the results concerning this
example mentioned in the introduction follow from Theorems 5.1 and 5.2.
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