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SPLINE SPACES ARE OPTIMAL FOR L2 n-WIDTH

BY

AVRAHAM A. MELKMAN AND CHARLES A. MICCHELLI

1. Introduction

Let X (X, I1" II) be a normed linear space, A a subset of X and X. an
n-dimensional linear subspace of X. The Kolmogorov n-width of: relative to
X is defined by

d#(A; X)= d(Ac’)= inf sup inf yll.
Xn x ,Yt" Y Xn

X. is called an optimal subspace for : provided that

d.(:) sup inf yll,
Yt y Xn

This concept of n-width was introduced by Kolmogorov in [8] and in his
paper he finds the exact value of the n-width for

W2"[0, 1] {f: f(’- ’) abs. cont. on (0, 1), IIf(’)ll <_ 1}
(11 e norm on [0, 1]).

Roughly speaking Kolmogorov showed that the n-width corresponds to the
nth eigenvalue of a boundary value problem and an optimal subspace is
spanned by the first n eigenfunctions. Kolmogorov claimed that W2"[0, 1] has
a unique optimal subspace and as late as Tihomirov [13] this error was
overlooked. It was first observed to be false by Karlovitz in [4] while in Ioffe
and Tihomirov [2] it is conjectured that W2"[0, 1] has an optimal spline
subspace.

Subsequently, Karlovitz [5] explored the question of nonuniqueness of opti-
mal subspaces in a general setting. The related question for min max and
max min characterization of eigenvalues has been treated in Weinstein and
Stenger’s book [17].
A main goal of this paper is to prove that W2’’ admits, for all r, optimal

spline subspaces. There are in fact two; one of degree r- 1 and another of
degree 2r- 1.

Before stating exactly our result for W2’’ we wish to point out that an effort
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has been made to present this result in as general a setting as we are aware that
it applies. A large portion of the paper deals with this general point of view via
the notion of oscillation kernel. The importance of this concept to integral
equations and Sturm-Liouville differential equations is the subject of the book
[1]. Our results for W2’" follow below.
The eigenvalue problem

(1.1) (- 1)’yt2")(x)= Izy(x), yti)(O) yti)(1) 0, i= 0, 1, r 1,

has positive simple eigenvalues 0 < #,, </2,, < < #+ ,, < and a corre-
sponding set of complete orthonormal eigenfunctions, y,,(x), y2,,(x),
y+ ,,(x), The function y+ ,,(x) has exactly n simple zeros in (0, 1), given
by

0 < ,, < ,, < < ,, < 1

and its rth derivative ,,’) has exactly N n + r zeros in (0, 1),)’n+ 1,r

0 < ql,r < 172,r <’’" < qn+r,r < 1.

The n-width of W2"[0, 1] is given by

d,(W2"[0, 1]; L2[0, 1])= ,,-/2

and the space of spline functions of degree r 1 with knots at

XnX+, [1, x,..., x’-x, (x ,,,)%-’, (x ,,,)%-x],
is an optimal subspace for the (n + r)-width of W"[0, 1] (x’+- x’- , x > 0,
zero otherwise, and [f, fm] linear space spanned byf,...,fm). Further-
more, interpolation off + WZ"[01,1] at r/x,,, r/, +,,, by an element in X.+, is
an optimal method of approximating WZ"[0, 1].

In addition, the space of natural splines,

X2N {S [1, x, x2r- 1, (x /1,r)2+r- 1, (X ?’In + r,r)2+r- 1].
S")(O) S")(1)= 0, i= r, 2r 1},

is an optimal subspace for the (n + r)-width of W2"[0, 1] and interpolation at
qt,,, r/,+,,, is an optimal method of approximating W2"[0, 1].
We also include in Section 4 a matrix formulation of our results on totally

positive integral operators, as well as in Section 3 the computation of n-widths
under restricted approximation.

This latter problem allows us to answer the following question of optimal
estimation.
Givenfin a certain set and sampled function valuesf(x t), ,f(x,), where is

the best place to samplefat n additional places to obtain the most information
about it ?
Some of the results presented here were announced in [10].



SPLINE SPACES ARE OPTIMAL FOR L2 n-WIDTH 543

2. Statement of problem

Let H denote the Hilbert space of real-valued, square-summable functions
on [0, 1]. We denote the norm and inner product on H by

]]fll 2 (f, f), (f, 9)= fo f(t)9(t) dt,

respectively.
Let K(x, y) be a continuous function on [0, 1] x [0, 1] and define

o,d= {f; K(x, y)h(y) dy" ]]h], _<

od is the image of the unit ball in H under the completely continuous operator

(rh)(x) fo r(x, y)h(y) dy.

Whenever T is an integral operator on H we will use the notation T(x, y) for
the kernel of T. Thus the adjoint of K which we denote by K* has a kernel
given by K*(x, y) K(y, x). We will be frequently concerned with the combin-
ations K*K and KK*. These operators have as kernels

(K*K)(x, y)= (K(’, x), K(’, y)) and (KK*)(x, y)= (K(x, .), K(y, .)).
K*K is a completely continuous positive semi-definite symmetric operator
with eigenvalues 2 > 22 >-"" >- 2, >-"" > 0, and corresponding orthonormal
eigenfunctions,

(2.1) K*Kdp,= 2b, (b, b,)=6,m,m,n= 1,2,

In addition, we define $, KS, and observe that

(2.2) KK*,, ,,q,,., (,,, ,,,)= 2,,6,,,,,, n, m 1, 2,

The following theorem is a familiar result for the Kolmogorov n-width of
see Shapiro [16, p. 188].

THEOREM 2.1. d.(cd; H)-- 2.x/+za and X [ 1, ], the linear subspace
spanned by 1, , is an optimal subspace for g4r.

To comment further on this interesting result we require the following idea.
A continuous kernel K is said to be totally positive provided that the Fredholm
determinant

K(xl’ Xn ) det K(x,,
kYl, Y. ,=

is nonnegative for all 0 < x < < x. < 1, 0 < y < < Y, < 1, n 1, 2,
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The following theorem of Kellogg [6], [7] gives useful information about the
spectrum of a totally positive symmetric kernel (see Gantmacher and Krein [1]
for various important extensions and applications of Kellogg’s theorem).

THEOREM 2.2. Let K(x, y) be a totally positive symmetric kernel such that

K(xl’xl,’’’’...,x") >0’0<x. xl<’"</.<l.

Then all the eigenvalues of K are positive and simple, 21 > 22 >’"> 2, >
"> O, and the corresponding orthonormal eigenfunctions Ku. 2.u,, n 1,

2,..., form a Markov system on (0, 1), that is,

U( 1,.,.,n l=det ]u,(x)[ >0, 0<xl<’"<x,<l,n=l, 2,
XI Xn !

Consequently, the (n + 1)st eigenfunction u.+ has exactly n simple zeros in
(0, 1).

We will call a totally positive kernel nondeoenerate if

dim [K(x,, .),..., K(x,, .)] dim [K(., x,), K(., x,)] n

for all 0 < x <"" < x. < 1, n 1, 2,

LEMMA 2.1. IfK is a nondeoenerate totally positive kernel then thefunctions
and .+ 1, defined above have exactly n simple zeros in (0, 1),

b.+ l(j)= .+ l(qj)= 0, j 1, 2, n,

0<1 <"- < , < 1, 0</1 <"" < q, < 1.

Proof. This lemma is an immediate consequence of Theorem 2.2. We argue
as follows" The basic composition formula [3, p. 17] applied to K*K gives

(K’K)(xl’yl, "", x.)=y,
0 <trl < <trn<

Thus K*K satisfies the hypothesis of Theorem 2.2 and consequently b.+ has
exactly n simple zeros in (0, 1). Similarly, KK* satisfies the hypothesis of
Theorem 2.2 and thus q.+ also has n simple zeros. We may now prove:

THEOREM 2.3. Let K be a nondeoenerate totally positive kernel. Then

x. [q,,, x. It(., r(.,
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and

X,2 [(KK*)(’, r/x), (KK*)(’,
are optimal subspaces for ff

Proof We begin by showing that X, is an optimal subspace for . Let P
be the orthogonal projection of H onto X,x. Then

6(U;X,x)= IIK-PKII= sup [IKh-PKh[]
lit, II---

and hence 6(ff{;Xn)2 is the largest eigenvalue of the operator
T K*(I P)K. An easy calculation shows that the kernel of T is given by

T(x, y)= Y’ ’ "(K’K) ( ’’,, ""’, "),
We begin the proof by demonstrating that 2. + is an eigenvalue of T. To this
end, observe that for any h H such that (K*h)()= O, i= 1, n, then
necessarily Ph =- O. Therefore, because K*(Kck.+ )() 2,+ b,+ () 0,
i= 1, n,

K* PKc#. )= K*K$.+Tn+l (Kck,+x +1 +1 1"

Now, to show that 2,+a is the largest eigenvalue of T we define To(x, y)=
T(x, Y) I. Then To(x, y) sgn b.+l(X) sgn b.+l(y)T(x, y) is a symmetric

nonnegative kernel with a nonnegative eigenfunetion ,+ l(X)l and corre-
sponding eigenvalue 2,+ t. Since To has a nonnegative eigenfunction it is a
familiar result that the corresponding eigenvaiue must be the largest eigenvalue
of To. Let us give the easy proof of this fact.
Suppose 2 is the largest eigenvalue for To andf(x) the corresponding eigen-

function. Then 2 f(x)] < To(I f )(x), x e [0, 1], and therefore

< (To([fl), 10,,+, ])--- (If I, To(l.+, I))-- 2.+,(Ifl,
Since (I f I, 14.+ l) > 0 we conclude that 2 < 2,+ . But we also have by the
definition of 2 that 2,+<2. Thus 2=2.+. We conclude that

IlK- PKI[ -,./z+ and X. is an optimal subspace for
Let us now prove the optimality of X.z. Suppose now, Q represents the

orthogonal projection of H onto the subspace [K(r/, .), K(t/., .)]. Thus
the operatorKQ takes H onto X, and di(3f; X.) < IlK KII IlK* QK*II,
Now, using our previous arguments (replace K by K*) we conclude that
K* K* .’/+,. Thus X. is also an optimal subspace for and the proof

is complete.
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Below we give some examples of Theorem 2.3. The n-width in L(R)[0, 1] for
our first example was computed in [11].

Example 2.1. Given any nonnegative real numbers tt,..., tm we define a
polynomial of degree r 2m by q,(x) I-I7-- x2 t). Let D d/dx and con-
sider the set

2 {f: ft,-t)abs, cont. on (0, 1),ft’) L2[0, 1],ft2k)(o)=ft2k)(1)----" 0,

k O, 1, m 1, IIq,(D)f[I < 1}.
Then 2 where K(x, y) is the Green’s function for the differential
operator

I-I -tj2 0, ft2k(0) =/’2k’(1) 0, k 0, 1, m 1.

It may be verified that

K(x, y)= 2
sin knx sin kny

k=l q,(ikn)

and (-1)IK(x, y) is a nondegenerate totally positive kernel [11].
The kernel K is symmetric with eigenvalues q7 t(ikn), k 1, 2, and corre-

sponding eigenfunctions sin knx, k 1, 2, Hence according to Theorem
2.3,

X.={= a sin jrx" (a, a.) R"},
Xx, ajK x, ..n + 1

and

X2. aG x, (at,... a,,) R"
=t n+l

where G(x, y)= (K(x, .), r(., y))= (r2)(x, y)are optimal subspaces for 2.
Note that X. is a subspace of (generalized) periodic spline functions of order r
while X.2 is a subspace, of (generalized) spline functions of order 2r. In [11], it
was shown that X, is also an optimal subspace for

oo {f K(x, y)h(y) dy" h U[0, 1], eSSos,tsup Ih(x)l < 1}
in L(R)[0, 1]. We conjecture that this fact persists for all L’[0, 1], 1 < p _<

Example 2.2 (Nondegenerate cyclic P61ya frequency functions). This
example is not quite covered by Theorem 2.3, however, the method of proof is
nevertheless applicable.
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Here we deal with the convolution operator

(K4’h)(x) fo dp(x y)h(y) dy

where b, h are in H and are both periodic with period one. We denote this class
of functions by
We cannot expect that the even Fredholm minors of K(x, y) b(x y) are

always nonnegative since

Ya, Y2n \ Ya, Y2n-1, Y2n
However, for the class of cyclic totally positive functions b, that is, those
functions for which the odd order Fredholm minors ofK are nonnegative, it is
possible to produce an analog ofTheorem 2.3. For a discussion of cyclic totally
positive functions see [3, Chapter 9]. When speaking about the cyclic totally
positive function b(x) we also require, as before, that the kernel K,(x, y)=
b(x y) satisfies the nondegeneracy hypothesis,

dim [K4,(x a, .),..., K4,(x., ")] dim [K(., x a), K(., x,)] n

for all 0 < x <"" < x, < 1, n 1, 2,
Returning to the proof of Theorem 2.3 we can readily see that to identify

optimal subspaces for the n-width we only need to know that the (n + 1)st
Fredholm minors of K are nonnegative and, of course, that the (n 4- 1)st eigen-
function of K*K has exactly n simple zeros. Keeping these facts in mind we
have the following results for the convolution operator K.

First, observe that all the eigenvalues of KK4, have double multiplicity,
except for the largest. In fact, if (n)= o c(y)e2i"r dy then

’’X 1(0)12, 22. ’2n+ [(n)12, n 1, 2,

and the corresponding eigenfunctions are

ba(x) 1, {qz,(X), 2.+a(x)}
1

sin 2nnx, cos 2nnx ,n 1,

(we may choose bz,(X)to be either l/x//2 sin 2nnx or 1/x//2 cos 2nnx). Hence
for n > 1,

d2,-a(g(0; Ha) d2.(K0;
and

T2,-a [1, sin 2nx, cos 2nx, sin 2n(n 1)x, cos 2n(n 1)x]
is an optimal subspace for the 2n 1 width of g(, while

X2. [1, sin 2nx, cos 2nx, sin 2n(n 1)x, cos 2n(n 1)x, cos 2nnx]
or [1, sin 2rx, cos 2nx, sin 2n(n 1)x, cos 2n(n 1)x, sin 2nnx]

are optimal 2n-dimensional subspaees.
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Since the 2n + 1-eigenfunction sin 2nn(x- o) has 2n simple zeros at
o + j/2n, j 0, 1, 2n 1, for 0 < 0 < 1/2n we conclude by the methods
employed in Theorem 2.3 that

and

xl, ), ee 2,,

X,= F(" ), F
2n

F(x) fo rk(t)rk(x + t)dt,

and optimal subspaces for all , 0 < < 1/2n.
Let us again return to the proof ofTheorem 2.3 and observe that the method

of approximation for the subspace X,2 is interpolation of Kh at r/, r/. by
elements of X.2. This fact is a consequence of the orthogonality conditions
which determine Qh, the orthogonal projection of h onto [K(ql, "),
K(rl,, )]:

0 (h Qh, K(rh, "))= (Kh KQh)(rh), i= 1,..., n, h H.

A similar, but perhaps less obvious, fact holds for the subspace X.. Before we
explain this further we need:

LEMMA 2.2. Let K be a nondeoenerate totally positive kernel. Thenfor 1,

and rI1, q,, defined in Lemma 2.1, we have

Proof If the above determinant is zero then there exist constants 1, .,
not all zero, such that the function f(x)= = K(x, )vanishes at q x,

q.. Also, since dim [K(., x), K(., ,)] n there is an r/o 4: q a, q, such
that f(r/o) 4: 0. We choose a constant d such that ft,+ (r/o) df(rio) O.
Now, since

K ( rlo, rl l, rl. ) >_ 0
XO, X1, Xn

for all 0 < xo < < x. < 1 (and strictly positive for some choice ofx o, x.)
there exists a function 9(x)= --o flK(r/, x) which weakly changes signs at
, ,; O(x)(- 1) > 0, < x < +, (o 0, .+a 1). In particular,
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g(i) 0, i= 1, n, and

0= fl(,.+(r/)- df(rl))
j=O

o
fo IO.+(x)l la(x)l dx

This contradiction proves the lemma.
Since the above proof requires only that the (n + 1)st Fredholm minors ofK

be nonnegative we have the following periodic version of Lemma 2.2.

LEMMA 2.3. Let dp be a nondeoenerate cyclic totally positive function. Let
K,(x, y)= ck(x y). Then

1 2n- 1
,a +2--2,...,a,, + 2n

K, 1 2n 1
fl’+--’""+ 2n

1
#0 forO < , fl < 2--

where dp(n)e2’i’-) is real.

Proof. The proof follows the idea used in Lemma 2.2 and uses the equation

Kq,(x y)sin 2nn(y fl) dy I()1 sin 2nn(x ).

According to Lemma 2.2
L: C[0, 1] X, defined by

(Lh)(q,) h(r/,),

there exists an interpolation operator

i= 1, n, h e C[O, 1].

THEOREM 2.4. Let K be a nondeoenerate totally positive kernel. Then

This theorem say that for the class or, approximatingf g by Lfis as good
as approximatingf by Pf where P is the orthogonal projection onto

x., Jr(., ,), r(., .)].
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Proof.
compute the kernel of the operator R K- LK,

K (X, rll,

Y,I, ,n
R(x, y)= (K- LK)(x, y)=

1, ,n
in the proof of

The proof is quite similar to the proof of Theorem 2.3. First, we

and then demonstrate, as
R’Rip, + 2, + , + a. Finally,

(R*R)(x, y) sgn d?.+ l(x) sgn .+ I(Y) >- 0,

Theorem 2.3, that

because

x, y [0, 1],

(R*R)(x, y)= f, x, 1, ’_... Y._’.L’ " da

.I!
and we conclude that the largest eigenvalue of R*R is given by
2m(R*R) 2,+ 1" Thus the proof is complete.
Lemma 2.3 leads also to a result similar to Theorem 2.4 for convolution

operators. Thus, in Example 2.2, interpolation at , + (2n 1)/2n by the
subspaee

2n- 1)2n

is an optimal procedure for the class

3. n-widths under restricted approximation

In this section we study n-widths under restricted approximation. We begin
by describing our initial motivation for this problem.
Suppose we sample a function f(x) at s points x (xx, x), 0 < x <
< x < 1. Given only thatf Yg and the data f= (f(x), ...,f(x)) we wish

to find an optimal method of estimatingf(x ). To describe what we mean by this
we let T be any mapping (not necessarily linear) from R C[0, 1]. This map-
ping determines the estimator Sf Tf forfand the error, given only thatf
is

E(x; S) sup f- Sf
fe

We will say that So is an optimal estimator for gcg, provided that

E(x; So) inf E(x; S)
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where the infimum is taken over all mappings from R into C[0, 1]; see [12] for
a related problem.

Let P,, be the orthogonal projection of H onto the subspace

x, [K(,. ), K(,,. )].
For f= Kh 74r we define Sxf= KPh. Since Ph 0 for any h such that
(Kh)(x) O, i= 1,..., n, Sx is a well-defined estimator which uses only the
information

We define

f= (f(xl), ...,f(x)).

C(x)= sup {ll f ll: f(x,)= o, i= 1, s,f g4r}.

THEOREM 3.1. S is an optimal linear estimator for off and E(x)= C(x).

Proof. Let fe :{’, f(x)=0, i= 1,..., n. Then for any mapping
T: R C[O, 1],

Ilfll-< 1/2[llf- w(0)ll / IIf/ W(0)ll] _< sup IIf-sfll
fe

where Sf= Tf. Hence C(x) < E(x).
The reverse inequality follows from the following reasoning. First observe

that

Ilf- sfll gh KPhII IlK(h Ph)ll.
Now, K(h Ph) e because lib Phll <- Ilhll -< 1 and also, #(x,)= 0,

1, s by the definition of P,,. Hence

E(x; S)-- sup Ilf- Sfll <- C(x),

and the theorem is proved.

According to Theorem 2.3, when K is a totally positive nondegenerate
kernel,

E(; S,)= IlK KP. d,(; H) E(x. S)
where 1 (r/l, ...; r/8), q8+ 1(r/i)= 0, i= 1, s. Thus, in this case, the best
place to samplef is at r/l, r/.

Since O+x K+a 3g and I1+, ,]112+1, Theorem 2.3 says that q+x is
the "worst" function in the class A" to approximate by s-dimensional sub-
spaces. Our above remarks say that, by sampling anf off at the zeros of q+ ,
we obtain the most information about the function f
Now, we ask the following question. If we wish to fix the first s sample

locations at x x, x, where is the best place to samplef g at n additional
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locations? Thus we wish to determine

(3.1) min E(z, S.) y (Yl, Y,), z (11, xs, Yl, Y,).

Since (f P.f)(xi) O, 1, s,f ;,, we are lead to the computation of
the following (restricted) n-width:

d(3ff; H)= inf sup inf (Ill-  ll: (f- 0, i= 1, s, 9 X,+s}
X./s f

The value of d(3ff; H)is identified as follows:
Let

K r(I- P,,),
K*K,,ht 2h, (ht, h,,,)= 6, l, rn 1, 2,...,, ,(x),

Then d,(cg; H)= 2.1, and X. [K,,hx,..., K,,h,,] is an optimal subspace
(we will prove this fact later). This result, of course, does not require K(x, y)to
be a nondegenerate totally positive kernel. However, when this hypothesis is in
force we can appeal to some results of Gantmaeher and Krein, [1, p. 236-242]
and make assertions, as before, about the zeros of the eigenfunetions h.+ and
K,,h.+ 1.

The kernel of the integral operator R,, K,,K* is given by

(3.2) R,,(x, y)= Y, X1, Xn

Kernels of this type are studied by Gantmacher and Krein in [1, p. 236-242]
where it is pointed out that if (KK*)(x, y) is the influence function for a
"continuum" for which "stationary (hinged) supports" are introduced at
x, x. then R,,(x, y) is the influence function for the resulting constrained
continuum.

Let e(x) (- 1)i, x < x < x,+ 1, 0, 1, n (Xo 0, x. + 1) and define
,,(x, y) e(x)e(y)R,,(x, y). When K is a nondegenerate totally positive kernel
then by Sylvester’s determinant identity [3, p. 3],

/(Yx,..\yx, "’, Y.Y") > 0,

/ (zX,\yx, "’", Y.Z") >0’
0<y <’"<y. < 1,

0<zl <"" < z. < 1, 0 < yl <"" < y. < 1,
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where the z’s and y’s are chosen distinct from x 1, xs. Let f Kxh, 1,
2, Then R,, f 2(x)f, l= 1, 2, and by Gantmacher and Krein [1, p.
236-242] 21(x) > 22(x) >’" ", andf, + has exactly n + s simple zeros. Exactly s
of them are at xl, xs because (Kxh)(xi) 0, 1, s, for any h , and
there are n more which we denote by r/l(x), q,(x), 0 < r/l(x)< <
r/,(x) < 1. Furthermore, if

then {f(x), f(x), ...} is a Markov system on (0, 1)- {x, x}.
We now have enough information to solve our problem on optimal

estimation.

THEOREM 3.2. Let z (x l, xs, Y l, Y,), Y (Y l, Y,) and suppose
K is a nondelenerate totally positive kernel. Then

inr E(z; S,)= E(zo; So)= 2/+21(x) where Zo (xl, xs, r/l(x ), r/n(x)).

Proof.
where,

Let us begin by showing that d(gC’, H)= dn(C’, H)= ,,n+l(x)l/2

{K,,h" Ilhl[ _< 1}.

Note that, since K,,h K(h P,,h), o,Y’ {f 9C" f(x)= O, i= 1, 2,..., s}.
Clearly,

d,(3ff’, H) _> inf sup inf Ilf- d.(; H)= ,,.+(x)./2
Xn f x g Xn

Let

Z+, [KK*(., x),..., KK*(., x),f, ] and X [f, ].

en d(K; H)is bounded by

sup inf {Hf- 1" f(x) S f(x) #(x) O, X}
fe

sup inf

the last equality follows from the fact that X is an optimal subspace for .
Now, let us prove the theorem. We define P, to be the orthogonal projec-

tion of H onto [K(y, .),..., K(y, .)]. Recall that P,, P are respectively the
orthogonal projections onto

[K(z, .),..., K(z+, .)] and [K(x, .),..., K(x,, .)]

where z (x, x,, y,..., y), x (x, x,), y (y, y). Hence

(3.3) K- KP, K-
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because I- P, (I P,,)(I- P,,,,). We conclude from Theorem 3.1 that

E(z; P.)= IlK- KP.II IIK- KP,,II >_ d.(; H)= k/+21(x)
for all y. To complete the proof, we will demonstrate that

(3.4) IIK- KP,,,I 2/+(x) where

Then combining this fact with (3.3) the proof will be complete.
Let T Kx K,,Pn,,,. Then using the fact that

T= K- KP.o, Zo=(X,...,x,,

we may compute the kernel of T*T to be

KK, (y, 11, xs, r/l(x), t/(x)), ,, ,, ,(x), (x)(T*T)(x, y)= (TT*)(y, x)=
KK* (x 1,..., x,, "1 ix),

Thus, T*T(x, y) sgnfn+ l(x) sgnfn+ I(Y) > 0. But, because T= K,,- r,,Pn,,,,
then (replacing K by K,) as in the proof of Theorem 2.3 we conclude that

T*Tf+t 2+ t(x)f+t and 2x(T*T)= ;t+ t(x);

hence (3.4)is verified.
According to the above theorem, both

X [ft, ...,f] and X2 [(K,K**)(., r/t(x)), (K,,K**)(., r/,(x))]

are optimal subspaces for d(cd,; H). There is, of course, a third optimal sub-
space based upon the zeros of h/ t(x) (it can be shown that h+ t(x) has n + s
zeros) and again interpolation at the zeros off+ t(x) is an optimal procedure.
However, the discussion of these facts will take us too far from our discussion
on optimal estimation. Instead, let us note that the results we have been con-
sidering in Section 2 and Section 3 extend when the operator K maps

I-L f: f(t) de{t) < o onto /-/ f: f(t) dB(t) <

provided that de, dB are finite measures on [0, 1] which have mass throughout
the interval (the case when de,d are discrete corresponds to the matrix version
of the results of Section 2 and will be dealt with in Section 4). A particularly
relevant choice for da, dfl is

da(t) dfl(t)= dt + z (5(t x)
j=l
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(6(t x) is the point mass at x) where z is a nonnegative constant. Then the
(n + s)-width of

:,d Kh: h2(t) d(t) < 1

in Hvaries from the (n + s)-width ofd in H, z 0, to the restricted n-width of
d in H when z --, oo. These facts are not difficult to prove.
We now turn our attention to the matrix version of the results in Section 2.

4. Matrix version

In this section we discuss the matrix version of the results in Section 2.
The inner product of x, y g is denoted by (x, y)= =t xjyj, and IIx]l 2---

(x, x). Subscripts will be used to denote components of a vector while super-
scripts are used to distinguish between vectors.
We assume that A (a), i, j 1, N, is an N x N strictly totally positive

matrix, that is, all the minors of A are positive. Then by the Gantmacher and
Krein Theorem [1], A*A has eigenvalues and eigenvectors such that

A*Ax" 2,x", (x", x) 6,, n, m 1,..., N,

S+(Ax"+x)=S-(Ax"+t)=n, n=O, 1,...,N-a,

S+(x"+X)=S-(x"+t)=n, n=0,1,...,N-a.

Here S- (x) equals the number of actual sign changes in the vector x where zero
components are discarded, while S+(x) is the maximum number of sign
changes obtainable by adding 1 or -1 to the zero components of x.

"+ 0, 1 < j < N, then x_ x x++ at < 0. Also,Hence x]+ XxTv+t q: 0 and if x
there exist by the above equations indices 0 lo < It <... < I, < N l,+

n+lsuch that +x (- 1}/> 0, l < < l+ t, j 0, 1, n.
Adopt convention that l is such that either

n+l.n+l(4.1) x + < 0

or
n+ n+,+a=0 and -xx+<0.(4.2) x

For each j, j 1, n we define an N-dimensional vector d as follows" If (4.1)
holds, let

k= lj, lj+ 1,(el)k
0, otherwise,

while if (4.2) arises we let (d)k fik" Thus

(4.3) (d,x"+1)=0, j= 1,...,n.
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Similarly, for the vector yn + Ax + we constructf, f Rs, such that

(4.4) (if, y"+)= 0, j 1, n.

THEOREM 3.1. Let A be an N x N strictly totally positive matrix. Then the
n-width ofA (Ax" II ll -< 1), n < N, i #iven by

i/2
l. + , n=0, 1,..., N- 1,

d(A 12
0, otherwise,

and

X, [y’, y"], Xx, [AeX, Aen], X2, [AA*f, AA*ff]

are optimal subspaces. Furthermore, ifR is the N x N matrix defined by requir-
ing that R" RN -, X and (x Rx, fi)= O, 1,..., n, x RN,for all x R
then IIA RA =1/2

n+ 1"

Proof The proof of Theorem 3.1 follows the pattern of proof given in
Theorems 2.3 and 2.4. We will briefly indicate how our last assertion is proved.

First, let us note that, in obvious symbolic notation,

(4.5)

(f,.Ae) (f’,.Ae") (f,.Ax)[
(f", "Ae) (fn,:ae") (f",’ax)[
Ae Ae AxGx Ax- RAx
(f, .Ae (f,.Aen)l
(f", Ae’) (f", :Ae")

The determinant in the denominator is nonzero because A is strictly totally
positive and the n x N matrices F (f), E (e) are totally positive (all
minors are nonnegative) and have rank n. According to the orthogonality
conditions (4.3) and (4.4) G*Gx+ 2+ x+ and thus we need only verify
that

(4.6) n+ sgn n+(G*G)i sgn xi x > O.

Appearing to (4.5), we obtain by direct computation,

det I(f, Ae’)l
k,l= n+l

--j’i- aet I(fL Ae’)[
k,! n

where we define f"+ u, the ith unit vector, (uk) tkt k, 1, N, and
e" + u. The matrix whose columns are composed of the vectors ex, e" +
has the property that the signs of all its (n + 1)st minors are (-1)’+", if
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l, <j < lr+ 1. A similar result holds for fl, f.+ x. Hence using the total
positivity of A, as well, we obtain

n+lGj sgn y7 + sgn xj > 0.

Thus (4.6) is verified and the proof of the theorem is finished.

5. Further extensions

In this section we will indicate how Theorem 2.3 can be extended to sets of
the form 9rr X + 9" where X, is some fixed r-dimensional subspace of H.

Let kl(x),..., k,(x) be continuous functions on [0, 1] and define

(5.1) 9f, ak(x) + K(x, y)h(y)dy" I[hll _< 1, (al, a,)e R’
j=l

The main prototype, for us, of this class of examples is the Sobolev class

W2"[0, 1] {f: ft,- abs. cont. on (0, 1),ft’ L2[0, 1], [If ’ ll 1}
which may be written in the form (5.1) by using Taylor’s theorem with
remainder"

’ f’’(0) 1 f(5.2) f(x) x + ) (x Y)7 ft’)(Y) dy
=o J! (r- 1

(x- x’-, x _> 0, zero otherwise).
Let Q, be the orthogonal projection of H onto X,= [k, k,]. Then

Theorem 2.1 easily extends to , as follows" We define K, (1 Q,)K. Then
KK, is a completely continuous, symmetric positive semi-definite operator
with eigenvalues 2,, 22,, "" 0 and corresponding orthonoal
eigenfunctions,

KK,,,= 2,,, (.,,, s,,)=6m,n,m= 1,2,

Let .,, K, .,,. Then

K g ln,r n,rln,r ln,r I ,r /n (nm n, m 1, 2,...,

and

n < r,
d.(c,) 1/

-,.-+ 1,,, n > r.

When n > r, X. [k, k,, ,,,, ._,,,] is an optimal subspace for the
n-width of
For the analog of Theorems 2.3 and 2.4 we require the following assump-

tions. For any points 0 s < < ss 1, 0 < < ts 1 and any
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m < 0, the determinant

K( 1, r, st, Sm )=tl, tr, tr+ 1, tr+m

is nonnegative. The linear spaces

[kt, k,, K(., st),..., K(., s,)] and [kt,..., k,, K(st, "),..., K(s,, .)]
have dimension r/m for all 0<st<...<sm<l, re=l, 2,..., and
{k t, k,} is a Chebyshev system on (0, 1), that is

O<st <... <s, < 1.

It is a fundamental result from the theory of spline functions that these condi-
tions hold in the special case (3.2) [15]. A large class of examples satisfying these
assumptions may be obtained from [9] by considering a totally disconjugate
differential operator subject to sign consistent boundary conditions.
We will now develop an extension of Theorem 2.3 to r,, in a series of

lemmas. We begin with:

LEMMA 5.1. K*K,(x, y) is a nondeoenerate totally positive kernel.

Before we prove this lemma let us note that K,(x, y) itself is not totally
positive, since the range of K, is orthogonal to the Chebyshev subspace X,.
Hence K,h has at least r sign changes on (0, 1) for every nontrivial h L2.

From the definition of Q,,

(kt, kt)

(h Q,h)(x)= (k,,’kt)
kt(x)

Proof
(kt, k,) (kt, h)

(k,, k,) (k,i h)
k,(x) h(x)

G(kt,
where G(kt,..., k,) det I(k,, k)l, the Grammian of kt, k,. Thus

(K*,K,h)(x)
(kt, kt) (kt, k,) (K*kt, h)

h)
(K*kt)(x) (K*k,)(x) (K*Kh)(x)

G(kt,
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and

(r*, K)(x, y)--

(k, k) (k, k,) (k, K(’, y))

(k,,’k) (k,," k,) (k,, K(’, y))
(r(’, x), k) (r(., x), k,) (K(., x), K(., y))

G(k, k,.)
Hence by Sylvester’s determinant identity [3], we have

(K,, K,)(x,,\y,, ...,, Y,X")
(k, k) (k, k,) (k, r(’, y)) (k,, K(’, y,,))

(k,,’k) (k,.’k,) (k,. K(’, y)) (k,, Ki’, y.))
(K(’, x), k,) (K(’, x), k,) (K(’, x), K(’, y)) (K(’, x), K(’,

(K(’, .), k) (K(’, c.), k,) (K(’, ),’K(’, y)) (K(’, x.),’K(., y.))

G(k k,)

Using the basic composition formula we obtain

1, Yn 0"1, O’r, O’r+ 1, (Tr+n

0 <rl < < rn +r <

xK( l’ r’ Yl’ Yn )dal, dan+
O’1, Gr (r+ 1 (n+r

The lemma now follows from our assumptions on

LEMMA 5.2. The set offunctions (k,, k2, k,, K, the,,,..., K, ,,,, ...)form
a Markov system on (0, 1).

Proof.
k,(x)

0 <trl <...<trn<

According to the identity

k(x,+,)

0"1, O’n Xl, Xr, Xr+ 1, Xn+r
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where

(1,...,n)=detffl O’n

this lemma follows directly from Lemma 5.1 and Theorem 2.1.

LEMMA 5.3. For n > O, .+ a,r has exactly n + r simple zeros in (0, 1).

Proof Since ff,+,, is in the range of 1-Q, we conclude that
(.+ ,,, k) 0, 1, 2, r. In addition,

(n + l,r, gr l,r) (Krn+ 1,r, Kr

=0, l=l,...,n.

Hence .+ ,, is orthogonal to the Chebyshev subspace

us .+ a,, has at least n + rsign changes in (0, 1). However, .+ ,, Z.+,+ .
Thus ft.+ x,, has at most n + r zeros in (0, 1). Therefore ,+ ,, has exactly n + r
simple zeros in (0, 1) and the lemma is proved.
We let

0, 0 < ,,, <... < ,,, <
#.+ ,,(q,,)= 0, 0 < qa,, <... < q.+,,, < 1.

To state our extension of Theorem 2.3 we define an interpolation operator J,
from C[0, 1] onto [k, k,] by requiring that (h J,h)(q,,,)= O, = 1,..., r,
h H. J, is ven explicitly by

(5.3) (h- Jrh)(x)---

We set "r (I Jr)K, then we have"

THEOREM 5.1.

1/2’n + 1,r



SPLINE SPACES ARE OPTIMAL FOR L2 n-WIDTH 561

and

X+, [k,, k,,

X+, [kx, k,, r("
X2,+, [kx, k,, (g,g*, )(., r/,+ x.,), I(,g*, (., r/n+,,,)]

are optimal subspaces for the (n + r)-width of

Proof. Since 6(,ut:,; X,+,)= where P is the orthogonal
projection onto [K,(., {,,,), K,(., {,.,)] we conclude from Lemma 3.1 and
the argument used to prove Theorem 2.3 (note that the proof only requires
K*,K, to be nondegenerate totally positive) that 6(::Ir’Xl,+,)r, "n]l/2+ 1,r" Thus
X.+, is an optimal subspace for the (n + ,)-width of oug,. To prove the optima-
lity of X.2+, we observe that

(::,; X.+,)_< IIg,-/,11

where Q is now the orthogonal projection onto the subspace

A glance at the proof of Theorem 2.3 shows that X2.+, is an optimal subspace
for g,, if we can demonstrate that

(5.4) sgn/(,/(,, (x, r/,+x,,, r/,+,.,)Y, r/r+ 1,,, r/n+r,r

sgn 0,+,.,(x)sgn 0,+,,,(Y), x, y e (0, 1).

(Observe that/,/,* (x, y) is not a totally positive kernel.) Let us now compute
the Fredholm determinant for K, K,*. According to (5.3),

kx(r/x,,) k,(r/x,,) K(r/x.,,y)

(5.5) g,(x, y)= kx(’r/,.,) k,(rl,.,) K(r/,.,, y)
kx(x) k,(x) K(x, y)

r/1,r, r/r,r

Since Iri*, (X, y) 0 R.r(X, a),r(y, a) da we have, by the basic composition
formula,

I, xx,...,x t, yx’’’’’y
dax,...,dat.

\Yl, y \0"1, 0"! \0"1, O"

0 <al <"" <ttl <
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Now Sylvester’s determinant identity applied to (5.5) gives

/ \

I(rlXI Xl
\Y, Y

K( 1,...,r, al,...,a )/1,r, rlr,rX1, X!

Thus we obtain

Y, fir + ,r, ln + r,r

/1, lr,r O<al<’"<an+l<l

x K 1’/ r, 0"1, O"n, O’n+l/\
/1,r, /n+ 1,r, X

K(1, r, cr 1, ., cr,+lidal dcr,+l"x
]l,r, In/r,r, Y !

Hence (5.4) is valid and the proof of the theorem is completed.

LEMMA 5.1.

r, l,r, n,r) > 0.
gll,r, /n+r,r !

The proof of this lemma parallels the proof of Lemma 2.2 and we omit the
details.
We can now define an interpolation operator

t,. c[o, x2, X [kx, kr, K(’, 1,r), r(’, n,r)]

by requiring that (h)(rh,,)= h(rh,,), i= 1, , + r, h C[0, 1], and, as
before, we may verify that

K(1, r, l,r, n,r,
rl ,r, rl. + r,r, YRr(X, y)-. (g- LrK)(x y)= [1,..., r, l,r,.’..,’n,rK I/71,r, .+r,r

and R*rRrCn + l,r -’.2n+ 1,r)n+ 1,r" Thus we have

(R*rRr)(X, y) sgn cn+ 1,r(X) sgn b.+ ,,r(Y) >-- O, X, y [0, 1]
and"

THEOREM 5.2. IlK L gl[ :1/2
’n + ,r"
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Hence, again interpolation is an optimal procedure for estimating the class
r"

Let us now apply Theorem 5.1 to an example discussed by Kolmogorov in
[8].

Example 5.1. k,(t)= t’-, i= 1, r, K(x, y)= 1/(r- 1)!, x, y 6 [0, 1]. In
this case

:g, {f: f’-)abs, cont.,f’) s L2[0, 1], IIf’)ll _< 1} wz,’[0, 1].
The eigenvalue equation K*rKrdpn,r 2n,rdPn,r, n 1, 2, is easily seen to

be equivalent to

(3.6) y.,,, )--0, i-0, 1, r- 1,Yn,r

where y.,, K*,K,c.,, and #,,,2.,, 1. Thus the results concerning this
example mentioned in the introduction follow from Theorems 5.1 and 5.2.
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