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SOME COHOMOLOGY INVARIANTS FOR DEFORMATIONS
OF FOLIATIONS

BY

DANIEL BAKER

In this paper we examine some new cohomology invariants for deformations
of foliations, or what we call n-foliations. An n-foliation of codimension q on M
is a codimension n + q foliation on M I" (where I" is the unit n-cube [0, 1]")
which intersects each slice M x {x}, x I", as a codimension q foliation.
Roughly speaking, these invariants are obtained by integrating the differential
forms in the image of the map WOq+,/* (M I", R) over the fiber I". If
certain conditions are satisfied, the resulting forms determine cohomology
classes in H*(M, R). These classes have been examined in the case of 1-
foliations in [8], and the construction given there uses Gelfand-Fuks cohomo-
logy. Their primary interest was the classes for 1-foliations which are the
derivatives of deformable classes in H*(WOq). However, there are also many
other classes for 1-foliations (and n-foliations) which cannot be interpreted in
this way. A discussion of characteristic classes for deformations of foliations
can also be found in [13, Section 8.7].

In Section 1 we give the constructions of these classes for C n-foliations and
for complex holomorphic n-foliations. This construction also has a local form
where, instead of integrating over the fiber I", one takes the interior product of
a form from WOq+, with the volume element O/Ot A.../xc/ct, on I". In this
way one gets characteristic classes at each point x e I" which contain local
information about the deformation at that point.

Section 2 is concerned with the construction of non-trivial examples of these
invariants. The basic idea is to look at cross products of n-foliations and
m-foliations, obtaining n + m-foliations. The classes for the product then factor
into products of classes for each of the factors. This fact was first pointed out in
the case of (undeformed) foliations in [14]. However, it seems to be a much
richer source of non-trivial examples for n-foliations than it is in the un-
deformed case. It is also worth noting that, in the examples constructed at the
end of Section 2, the usual invariants for undeformed foliations all vanish on
the individual foliations which make up the deformation.

If BFq is the classifying space for codimension q Haefliger structures, a
codimension q n-foliation on M determines a family of maps Fx: M BFq,
parameterized by points x e I". If the n-foliation has a non-trivial characteristic
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class, it is natural to ask what can be said about the homotopy or homology
types of the maps F, as x varies. This question seems to be very difficult.

If we ask instead for information about diffeomorphism type (or, for complex
analytic foliations, the biholomorphic equivalence type) of the foliations on M
as we vary the deformation parameter, then we are led very naturally to the
deformation theory of Kodaira and Spencer (see [12]). In this theory, given a
foliation on M, one constructs a subsheaf 0 of the sheaf of germs of sections in
the tangent bundle to M, and is led to view the sheafcohomology group Ha(M,
0) as the tangent space to the space of all non-trivial deformations of the
foliation on M. Thus an n-foliation on M determines at each point x e I" a
subspace of Ha(M, 0,,), where 0, is the sheaf associated to the foliation at x, and
this subspace should be viewed as the tangent space to the deformation at x.
This point of view is also taken in 10] where the author shows how to compute
the derivative of a class in H*(WOq) given only a codimension q foliation on M
and an element of Ha(M, 0).

In Section 3 we state two theorems (Theorems 3.3 and 3.6) which can be
viewed as generalizations of the results in 10]. They show that the cohomology
invariants for n-foliations at a point x I" are determined by the associated
subspace of Hi(M, Ox) and the structure of the foliation on M at the point x.

Such a theorem is of interest for two reasons. First, the sheaf cohomology
Ha(M, O) is in general very difficult to compute. An n-foliation on M has
non-trivial cohomology invariants at x only if the subspace of Ha(M, Ox) it
determines has dimension n. Thus the characteristic classes for n-foliations at x
give information about the size of Ha(M, 0,). Second, it shows that these
characteristic classes are actually defined as homomorphisms /" (Ha(M,
0)) H*(m, R) for arbitrary undeformed foliations on m. The element of
/" (Ha(M, 0)) here plays the role of the tangent space to an n-parameter
deformation of the foliation.

Because the proofs of Theorems 3.3 and 3.6 are very long and tedious, we do
not give them here. Instead we state a corollary which we will need (Corollary
3.4) and give a short independent proof of this fact.

In Section 4 we prove the following non-triviality theorem about n-foliations
(Theorem 4.1): Given a complex holomorphic n-foliation on a complex mani-
fold M, suppose that for some value Zo of the deformation parameter some
characteristic class at z0 is non-trivial. Then there is an open set z0 U in the
parameter space and the set of z U for which the foliation at z is bi-
holomorphically equivalent to the foliation at Zo is at most countable. Since
these invariants are continuous functions of the parameter space, if some char-
acteristic class is non-trivial at z o, it is non-trivial in some open neighborhood
of z0 (in fact this is the neighborhood U in the above theorem). It then follows
that any open neighborhood of z0 in the parameter space contains an uncount-
able number of biholomorphically non-equivalent foliations.

This theorem is proven using techniques from the paper [7] on deformations
of analytic structure.
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We do not know if such a theorem is valid for C n-foliations. At the end of
Section 4 we make some comments on where our proof breaks down in the Coo
case.

I. Definition of the characteristic classes

By an n-foliation of codimension q on a manifold M we will mean a codimen-
sion n + q foliation on M x I", where I" [0, 1]" is the unit n-cube, which
intersects each slice M x {x}, x I", as a codimension q foliation. Clearly n-
foliations can be thought of as deformations of the foliate structure on M
parameterized by I". The n-foliations we will consider will either be C or
complex holomorphic. In the case of complex holomorphic foliations we will
use an open subset O" c C" as the parameter space of the deformation, instead
of I". We will use the word foliation or 0-foliation to mean a foliation on M
(undeformed).

In this section we will generalize the definition of characteristic classes for
foliations given in [1] to obtain characteristic classes for n-foliations. We will
assume that the reader is already familiar with the constructions in [1] as well
as the TP forms in [5], so that we shall be brief on these subjects.

Given an n-foliation of codimension q on M, let vM M x I" be the normal
bundle to the codimension n + q foliation on M x I". If X T(M I"), the
tangent bundle to M x I", let be its image in the normal bundle vM under the
canonical projection. Call a connection V on v a basic connection if

Vx [X, Y] whenever X is a vector field tangent to leaves of the foliation.
In [1] it is shown that this definition is well defined, and that a choice of a
Riemannian and a basic connection on VM lead to a map O" WO,+
/k* (M x I", R) where/k* (M x I", R)is the complex of differential forms on
M x I". We will give the construction of characteristic classes for n-foliations
using this map .

Let Clhj WO,+q be a monomial where I ia < < ik and J =j <
""< Jl are multi-indices and c ci,..., ci, hj h,..., h. Let w(cthj)=
i + + ik and let ZO,+ be the cycles in WO,+q generated by monomials
with w()= n + q. For ZO,+ let & /k* (M, R) be the form obtained by
integrating tI)()/k* (M x I", R)over the fiber 1" (see [1]).
LEMMA 1.1. determines a characteristic class [] e H*(M, R), i.e. is a

closedform whose cohomology class is independent of the choice ofbasic connec-
tion and Riemannian connection which determined .
Proof For Y a smooth simplex in M,

Oa dO(a)+ Oa _+_ Oa
y In y In cln din

(since O() is closed). Now the restriction of the foliation to x I" has co-
dimension < n + q 1. Since w() n + q, r 0,, O() 0 (this is essentially
Bolt’s vanishing theorem for basic connections, see [1]). Thus & is closed.
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The proof that [] is independent of the choice of connections is standard. Let
0o and 01 be two choices of basic connections and 090, 091 two choices of
Riemannian connections. We can pull the n-foliation on M back to one on
M 1 using projection M x I --. M. On M I we can define a basic connec-
tion 0 whose restriction to each slice m {t} is given by tO1 + (1- t)Oo.
Similarly choose a Riemannian connection 09 whose restriction to each slice
M {t} is given by t091 + (1 t)09o. The resulting form & /* (M l, R)is
closed so that its restriction to M {0} differs from its restriction to M {1} by
an exact amount. At M {0}, 0 =Ooand 09 090, and at M {1}, 0 01 and
09 o. This proves the lemma.
At this point one should note that some of the classes from ZO,+ will always

vanish on codimension q n-foliations.

LEMMA 1.2. For o ZO,+q, write cx hj where I <_ <_ ik, J --j <
< jt. Then if either ik > q or j > q the class [&] H*(M, R) will vanish.

Proof If (tl, t,) are the standard coordinates on I", then one has n
linearly independent sections in vM" c3/c3tl, t3/c3t,. Since the leaves of the
n-foliation are contained in the slices M {x} of M 1", if X is a vector field
tangent to the leaves then [X, c3/t3ti] must betangent to th,_.e slices.M {x}. If
one chooses a basis of local sections for vM, Y1, Yq, c3/c3t 1, c3/c3t,, where
Y1,..., Yq are local vector fields on M, then one can choose a basic (and
Riemannian) connection to satisfy V , O,j and Vt3/-tj , Oi,q+ Yi for
certain one-forms 0j. It follows that the connection form 0 takes values in the
Lie subalgebra of ((n + q, R) whose last n rows are zero. Since the Weil
polynomials for the Chern classes Ck, k > q, vanish on this subalgebra, so will
O(h) and (c)* (M I", R). Q.E.D.

Remarks. In the next section we will give many examples of non-trivial
classes from ZO,+q. The reason we do not redefine ZO,+q to exclude the classes
in Lemma 1.2 is that in what follows it will be notationally more convenient not
to.

If the normal bundle v. has a basis of global sections, then one gets a map

*: W,+q --./k* (M x I", R).
Let Z,+q be the cycles in W,+ generated by monomials with w(0) n + q.
Then a construction analogous to the one just given yields characteristic classes
from Z.+ .
The classes [&] have a local formulation which will at times be more conven-

ient. Let V- t3/c3tl/x ...ix t3/c3t, be the volume element on I". Then for each
point x I" we get a closed form &, e//k* (M, R) given by fix ivO()It x
where iv denotes interior multiplication by V and we restrict the form to the
slice M {x}. The form &, can be viewed as a derivative of & as we evaluate
on smaller and smaller cubes centered at x. Thus &x determines a characteristic
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class in H*(M, R) which we will denote as xand which contains local informa-
tion about the deformation at the point x I".
The construction of characteristic classes for complex holomorphic n-

foliations is similar to the C case, but there are some differences and in fact
there seem to be a number of different approaches one can take, resulting in
different characteristic classes. We give here one construction of a group of
classes that will contain many non-trivial examples, as will be seen in the next
section.

Let M be a complex manifold with a complex holomorphic n-foliation of
codimension q defined on it. The normal bundle vM of the codimension n + q
foliation on M x O" is then the quotient of the complexified tangent bundle
T(M x O") by the subbundle of vectors which are either tangent to leaves of the
foliation or vectors of type (0, 1), (A tangent vector is of type (0, 1) if, in local
coordinates, it is a linear combination of the /.) As in the real case, if
X T(M x O"), let denote its image in vM. A connection V on v is called
basic if Vx [X, Y] whenever X is a vector field which is either tangent to
leaves of the foliation or of type (0, 1). This is well defined and a choice of a
basic and a Hermitian connection on v determine a map : WU,+q*(M x O", C), (see [3]). If v has a basis of global sections then we get a map

A, (M x 0., CO" + +
and this is the case we shall examine.
The complex Z,+ c + 1 will be the source of characteristic classes,

and in analogy with the C case one might here try to define a class for each
Z,+ by integrating @() over the fiber O" of M x 0". However, in order to

insure convergence of this integral, some additional assumptions about O"
would be needed, so it seems more convenient to use the local formulation and
take the interior product iv @() where V is the volume element on 0". It will
turn out when looking at examples in the next section that this is still not quite
what we want. Instead let V 8/8z ... 8/8z, where (z, z,)are the
standard complex coordinates on O" C".

LEMMA 1.3. For each z 0", theform ivO() restricted to the slice M x {z} is
a closed form and determines a characteristic class for the n-foliation.

Proof The proof uses the formula ix d + dix Lx where X is some com-
plex tangent vector, ix is interior product, and Lx is Lie derivative.

Suppose n 1. Then

i/z, d() + di/ozl () dio/zl () L/oz,().
Since w() n + q, and on each slice M {z} the foliation has codimension q,
it follows that () vanishes on the slices M {z}, so that L/Oz () must also
vanish on M {z}. Thus, when n 1, i/oz ()is a closed form on M {z}.
Assume inductively that iv() is closed for (n 1)-foliations. By viewing O"
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as 01 X O 1, we can view an n-foliation on M as an (n- 1)-foliation on
M x 01. Let zl be the 01 coordinate and let (z2, z,) be coordinates on
0"- 1. Let V’ 8/z2 ix.../x 8/t3z,,. Then

io/ div, 0(o) + di,/z iv, 0() L,/ziv, O(et)

By the induction hypothesis the first term on the left must vanish on any slice
M x O x {z’}. Thus to prove iv (I)() is closed on M x {z} we must show that
iv, ()= 0 on the slices M x {z}, so that L/ iv, (I)()= 0 as well.

Recall that, for a basic connection, the curvature fi is a sum of forms co/x q
where co is of type (1, 0) and vanishes on the leaves of the foliation (see [2]). It
follows that, since w() n + q, O() is a sum of forms co/x r/where co is of type
(n + q, 0) and co(X1, X,+ q) 0 whenever any of X 1, X,+ q are tangent
to a leaf. Since the normal space to a leaf in M x O" has complex dimension
n + q, and O/Ozl,..., c/Oz, lie in this normal space it follows that the form co
must contain a factor dZl/x.../x dz,, hence so does O(0). From this it is clear
that i/,^ /z, () 0 on any slice M x {z}.
The proof that the cohomology class of ivY(X) in H*(M, C) is independent of

the choice of basic connection is exactly the same as in Lemma 1.1.
It is inconvenient to require trivializations of VM in order to get characteristic

classes, and we would like to eliminate the need for this condition. Perhaps the
easiest way to do this is to regard (I) as a map

--,A*(N,, c)W.+q (R) w.+
where NM is the bundle of bases associated to VM. This can be done without a
trivialization, and gives us a characteristic map S" Z,,/q H*(NM, C).
The following is an explicit expression for the map "

O(Ck (R) 1) Ck(D.)

where Ck is the Weil polynomial for the kth Chern class and f is the curvature
of a basic connection 0 on NM;

,:I,(1 (R) c,,) c,,(a)

where f is the conjugate form to ;

where

for

O(hk (R) 1) TCk(O)

TCk(O) k :o Ck(O / g/- l) dt

O, tf + 1/2(t2 t)[O, 0].
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TCk(O) is the TP form associated to Ck (see [5]);

0(1 (R) ) TC(O),
the conjugate form to TC(O).

Remarks. Note that some of the classes in Z,+ will live in H*(M, C) even if
VM isri’t trivialized. They are the classes of the form c, involving no hj’s. Let
P,+ c Z,+ be the subspace spanned by these elements. Then for arbitrary
n-foliations, at every point z O" there is a characteristic map

S" P,+ H2"+"(M, C)
defined. Theorems 2.3, 3.3, and 4.1 in the sequel remain valid if we replace the
map S defined above with this map .
There arc actually a number of variations of the above construction which

lead to other classes. For example let

fv(a) w(c,,) + w(c,2 for ot c,, ?, hj wa,,+q.
Then by looking at cycles a e WU,+q with @(a)= 2(n + q) and by taking
interior products with O/3z ix.../x t3/cz,, /x t3/O ix.../x t3/O,, we would obtain a
different set of classes. We have made the choices we did because in Section 2
we are able to construct many non-trivial examples of the resulting classes.

II. Examples

Characteristic classes for 1-foliations have been examined in [8], where the
authors were primarily interested in those classes which are the derivative of
deformable classes in H*(WO). Their construction of these classes uses
Gelfand-Fuks cohomology and is different from the construction given here.

For example consider the Godbillon-Vey class c] h G H2q+ l(woq). Under
the natural inclusion WOq WOq+ 1, cq h is no longer a cycle and

d(c] hi) c] + ZOa+ 1.

Given a 1-foliation on M, suppose that Z is a smooth singular 2q + 1-cycle in
M. Then

Thus integrating the form ]+ over Z gives the difference of the Godbillon-Vey
class evaluated at time 0 and time 1 on the deformation. For any point x e I,
(c]+ 1)x is the derivative of the Godbillon-Vey class at the point x in the
deformation.

Similarly, given a complex holomorphic 1-foliation of codimension q on a
complex manifold M, and a smooth singular 2q + 1-cycle y in M,
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y {z}

f die/ezO(Cq h, 1)
yx{z}

f O(c’ h, 1) (since t3y 0).

By now there are many examples of non-trivial deformations of classes in
H*(WOq) and H*(Wq (R) Wq), see [4], [9]. It follows that the corresponding
classes for 1-foliations are also non-trivial. However, most of the classes in
ZOq+ cannot be interpreted as derivatives of other classes. For example
cq/ hi ZOq+ is not exact in WOq+ 1, so it cannot be the derivative of a class
in H*(WOq).

Suppose M is foliated in codimension p, and N is foliated in codimension q.
Then the cross product foliation on M N has codimension p + q, and in [14]
an algorithm is given for computing the characteristic classes for the foliation
on M N in terms of the values of characteristic classes for the foliations on M
and N. We shall use the same principle to construct many new examples of
non-triviality for characteristic classes of n-foliations.

Suppose -o is an n-foliation of codimension p on M and 0-1 is an m-
foliation of codimension q on N. Then -0 x 1 is an n + m-foliation of co-
dimension p + q on M N. We require n + m > 0.

Define a map $: WOp+q+n+ WOp+ ( WOq+ by

ll(ck) Z Ci ( Cj (where Co 1)
i+j=k

and

/(hk) hi (R) cj + ci (R) hj (wherehs=0forseven).
i+j=k

The map q is extended as an anti-derivation. Now if w(cthj) p + q + n + m,
then /(Cl hj) will be a sum of terms a (R) fl where w(ot) p + n, w(fl) q + m. It
follows that restricts to a map p" ZOp+q+,+,, ZOp+, (R) ZOq+,,,.

THEOREM 2.1. There is a commutative diagram

ZOp+ q+ n+

ZOp+. (R) ZOq+

H*(M x N,R)

H*(M R) (R) H*(N, R)
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where the top map is the characteristic mapfor ,0
,- and the bottom map is

the tensor product of the characteristic maps for o and 1.

Proof. Note that the normal bundle of -o x - splits as a direct sum of
the pull-backs over M N of the normal bundles for ,-o and W 1. One can
choose basic and Riemannian connections to respect this splitting and obtain a
diagram

oxl
WOp+q+n+ /* (M x N x I"+, R)

WO +. WO+ A* (M I", R) A* (N Im, R)
The map E is given by exterior product, and the diagonal map A arises because
the connections for o x ,1 are Whitney sums of the pull backs of corre-
sponding connections for 0 and a. The upper triangle commutes. If the
lower triangle commuted as well the theorem would be proven, but unfor-
tunately it is only cochain homotopy commutative. Since we are dealing with
cycles in WO,++.+m and not cohomology classes, some care must be taken.
From the Whitney sum formula for the Weil polynomials for Chern classes,

it follows that

Unfortunately *.-o @*.-, #(h=)= a(h=)+ exat (see IS]). Vhus to prove
Theorem 2.1, we need the following lemma"

LMa 2.2. Suppose " WO=+,+.+= * (M x N x t"+=, R) satisfies
8(c,) *.,ox.,,(=), 8(h=) *.ox.,,(h=) + exat.

Then the ps @ and @,o , will induce the same characteristicp on coho-
loIy for n + m@liations.

Theorem 2.1 now follows by letting @ E @,o @ ,,
Proddem 2.2. We can assume inductively that 8(h)=

for all k except one, say ko, and @(h,o @,o x,,(h,o + d.
Recall that, for x I"+m and c h; ZO++.+m, the form

(, h,)= i(*.,ox.,,(,h,))J=,= where V /t, ’../,+

is the volume element on I"+=. A little thought shows that

i(*,,o x,,, (, h,)) i(..,o .,, (,)) *.-o= .-, (h,) + other terms

and the other terms will vanish when restricted to M x N x {x}. This is
because

W(Cl) p + q + n + m,
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so for dimension reasons (I),0x.-l(Cl) must contain a factor dtl ix...

Thus

(c, hj)x iv(t,o ,, (Cl)) /x ,o,(hj) I u

if the multi-index J doesn’t contain ko. If J does contain k0 let J’ be the same
multi-index but with k0 removed. Then

(ci hj)x iv((Cl)) (hj,) ((hko) d)

and this proves the lemma.
Theorem 2.1 has an obvious analogue for complex holomorphic n-foliations.

There is the map " + q+, + +, + ,

1
hNc+cNhj,O(c)=+j=kZccj and O(h)=+j=

which restricts to p" Zp+q+,+ Zp+,@ Zq+m. Suppose N0 is a complex
holomorphic n-foliation of codimension p on a complex manifold M and is
a complex holomorphic m-foliation of codimension q on N, where n + m > 0.

THEOREM 2.3. There is a commutative diagram

Zp+q+.+ H*(NMxN, C)

Zp+, ( Zq+ " H*(Nt, C)(R) H*(Nu, C)
where the top map is the characteristic mapfor 0 x 1, the bottom map is the
tensor product of the characteristic maps for 0 and 1, and the right hand
vertical arrow is induced by the inclusion NM Nu NM u.

Example 1. Thurston has constructed a deformation of the Godbillon-Vey
class [Chl] on S3 (see [15]), i.e., a 1-foliation on S3 where []] H3(S3, R)is
non-zero. By taking a slice S3 x {x} we also have a 0-foliation on S3 with
non-trivial [c h 1]. The cross product of the 0-foliation and the 1-foliation yields
a 1-foliation of codimension 2 on S3 S3. The map

iO Z03 -- Z01 ( Z02

sends chl to 3cahl (R) c + 3ca (R) c2h. Thus [ch] H6(S3 S3, R) is non-
zero. One can continue taking cross products with the 1-foliation on S3 obtain-
ing n-foliations of codimension n + 1 on S3 S3(n + 1 times) and the
class [cx2"+Xhx]e H3"+($3 ...x S3, R) will be non-zero. Note that the
usual invariants for 0ofoliations, coming from H*(WO,+ , R), must vanish on
the slices S3 x x S3 x {x}, x I", in these examples.
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Example 2. In [1] an example is given of a complex analytic 1-foliation on
C2 {0} which deforms the complex Godbillon-Vey class [c h 1]. Note that the
value of [cl hl] 6 H3(C2 {0}, C)is a holomorphic function of the deformation
parameter z. Thus i/,z t9(c2) will be non-zero, and the same procedure that was
used in Example 1 can be used here to construct non-trivial invariants for the
n-foliation ofcodimension n + 1 on (C2 {0}) x... x (C2 {0})(n + 1 times).

For all of the deformations constructed in [4], the values of the deformed
classes are holomorphic functions of the deformation parameters, so that
Theorem 2.3 can be used to generate non-trivial classes on cross products of
these foliations.

III. Kodaira-Spencer deformation theory

There is a connection between the previously described invariants and the
sheaf cohomology invariants of Kodaira-Spencer deformation theory; see [11]
and [12]. The connection we will develop fits into the context of both C
n-foliations and complex holomorphic n-foliations. However, since in the next
section we shall be interested in the complex holomorphic case, we shall do this
case explicitly, and only remark briefly on the modifications needed for the Coo
case.

Let M be a complex manifold with a complex holomorphic n-foliation of
codimension q defined on it. As before, let O" c C" be the parameter space of
the deformation so that the n-foliation is actually a codimension n + q foliation
on M x 0". Let (Zl, z,) denote the standard complex coordinate system on
0", and let : M x O" O" be projection.
A coordinate chart on some open set Us c M O" will be called distin-

guished if the coordinates (Xl, x, YI, Yq, z], z]) satisfy the following
properties:

held constant are the intersection of the(a) the slices y], yq, zl, z,
leaves of the n-foliation with Us and

(b) in these local coordinates, n: M O" O" has the form

Note that for 0-foliations this definition still makes sense except that there
are no z coordinates and condition (b) becomes vacuous. Given a 0-foliation on
M, we can define a subsheaf 0 of the sheaf of germs of holomorplic vector fields
on M as follows: A holomorphic vector field X on M is a section of 0 if and
only if, using any distinguished coordinates, X f t3/t3x + gi t3/r3y] where
gj/t3x 0 for all 1,..., r andj 1,..., q.

Let TM be the complex tangent bundle for M, v the complex normal bundle
for the foliation, and p: TM ---, v the canonical projection. Then a holomorphic
vector field X is a section of 0 if and only if p(X) is a holomorphic section of v
which is covariant constant along leaves of the foliation with respect to a basic
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connection. Let 0 be the sheaf of germs of such sections in v, so that the
projection p induces a map of sheaves " 0 - 0.
For an n-foliation on M and any value z (zl, z,) O", let M be the

slice M {z} of M O" and let 0z be the sheaf associated to the 0-foliation on
Mz which is the restriction of the n-foliation on M O". Let O"z be the complex
tangent space to O" at z. Kodaira and Spencer define a sheaf cohomology
deformation invariant

pz O"z--, I-I(z, Oz)
as follows: Choose an open set V with z V O". For U, Ua open sets in M
choose distinguished coordinates (x, y, z)on U x V and (x, , z) on

Ua x V. Then a one cocycle for pz(/dZk) on U Ua is given by the vector
field /dz d/dz. We must check that this is actually a cocycle and that it lies
in Oz.
On U Ua U, (O/Oz]- O/Oz) + (O/Oz O/Oz]) + (O/Oz- O/Oz]) O,

so this is a one cocycle.
Note that, since (x, y, z)and (x, y, z) are distinguished coordinates, the

transition functions must satisfy O/Ox 0 and z z, It then follows that

for some holomorphic functions a. Then

since O/dxl 0. Thus

/z Z x/z /x + Z A/z/ + /z
and

/zZ /z Z x/x /x + E A/z/.
This vector field lies in 0 by equation (3.1).
One must check that a different choice of distinguished coordinates changes

the value of this one cocycle by a coboundary and this is done in [12].
Call an n-foliation , trivial if there is a biholomorphic equivalence of

M x O" with itself, commuting with projection n: M x O" O", which carries
onto a cross product of a fixed foliation on M with O".

LUA 3.2 (see [12]). If an n-foliation is trivial then Pz 0 for all z 0".

Proof For the cross product foliation, one can choose distinguished coor-
dinates on M x O" which are cross products of distinguished coordinates for
the fixed foliation on M with the usual coordinates on O". For two such choices
of coordinates it will follow that d/Oz /Oz so pz(O/OZk) O.
The biholomorphic equivalence in the definition of trivial n-foliations must

carry distinguished coordinates to distinguished coordinates. Thus
p(O/dZk) 0 for any trivial foliation, which proves the lemma.
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THEOREM 3.3. Given a O-foliation of codimension q on M, there is a map

if" A (H’(M, 0))(R) Z,+q - H*(NM, C)
with the property that, for an n-foliation ofcodimension q on M and z 0", there
is a commutative diagram

/n (HI(Mz, )) (R) Zn+q H*(NM, C)

where () *(pz(t/t3z 1)) A A *(pz(c/tzn)) @ . Here * is the map on coho-
mology induced by " 0 O, and the diagonal map is the characteristic map for
the n-foliation at z 0n.

Remarks. Suppose n and z Zn+qrepresents the derivative of a charac-
teristic class for (C or holomorphic) 0-foliations. Then an explicit algorithm
for computing q(x, z), x Hi(M, 0), has been given by J. Heitsch and can be
found in [10].
The map q is determined completely by the foliation on M, and is an invar-

iant of the foliation. Thus if the dimension of the image of q is different for two
different foliations on M, then they cannot be biholomorphically equivalent.
The examples of the previous section show that the map q is non-trivial for
many foliations.
The proof of Theorem 3.3 is rather long and involves many sheaf theoretic

constructions. We omit the proof and here give an independent proof of the
following corollary:

COROLLARY 3.4. Given an n-foliation of codimension q on M, suppose the
characteristic map Zn+q H*(NM, C) is non-trivial at some point z On. Then
the Kodaira-Spencer map Pz" 0" --. HI(M, 0) is an injection.

Proof Call a tangent vector X in T(M x On) a leaf vector if X is tangent to
a leaf of the foliation or if X is type (0, 1). Recall that a basic connection for the
normal bundle of a foliation is defined uniquely only in the directions of leaf
vectors, and extended in other directions in an arbitrary fashion.

Suppose Pz isn’t injective. The idea of the proof is to choose an extension of a
basic connection in such a way that the characteristic map

A* c)
will be 0 over all points in M, and from this the corollary will follow. We can
assume, for example, that p(O/cza) 0. Then, for the one-cocycle for p(O/Oz )
defined in terms of distinguished coordinates, O/cz] O/cz X X where
{X} is a zero cochain in 0. Thus c/cz]- X’= c/Oz- X and there is a
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holomorphic vector field Z in T(M x O") defined only over Mz, which locally
has the form Z O/Oz] X. Z also has the property that [X, Z] is a leaf
vector field whenever X is a leaf vector field.

For Y a tangent vector in T(M x O"), let I7 be its image in the normal bundle
to the foliation. Now choose an extension of a basic connection so that, at
points in mz, Vz " [Z, Y]. Note that, since [X, Z] is a leaf vector field if X
is, this is well defined.

It now follows that, for any leaf vector X,

(3.5) R(X, Z)Y VxVz- VzVx- Vx,z
[X, [Z, Y]] [Z, IX, Y]] -[[X, Z], Y]

=0

by the Jacobi identity. The rest of the argum.._.._entisstandard (see [1]). Using
distinguished coordinates and the basis {0/Oy, O/c3z,} for the normal bundle
of the foliation, one finds that the curvature form fi is a sum of forms of the
type o/ dZk or e/ dy for arbitrary forms o. Note that dz](Z) so that, by
equation (3.5), the only terms in 2i involving dz] at points in M must be linear
combinations of dZk/x dz and dy/ dz. From this it follows that any Chern
polynomial in ) of total degree 2(n + q) must vanish at points in M, which
proves the corollary.

Finally we indicate briefly the modifications necessary to prove analogous
theorems for C foliations. Distinguished coordinates are defined in the same
way except of course they will be real valued instead of complex valued. For a
0-foliation on M, one defines a subsheaf 0 of the sheaf of germs of C vector
fields on M in an analogous fashion to the holomorphic case. Let 0 be germs of
sections in the normal bundle to the foliation on M which are covariant con-
stant along leaves of the foliation with respect to a basic connection, so that, as
in the complex holomorphic case, there is the map of sheaves/: 0 0. The
kernel of is just germs of C vector fields on M which are tangent to leaves,
and this is a fine sheaf. It follows that the sheaf cohomology groups Hk(M, O)
equal Hk(M, O) for k > 0.

For x I" let I, be the tangent bundle to I" at x. Then the Kodaira-Spencer
invariant p,," I Ha(M, 0,) Ha(m, 0,) is defined in exactly the same way as
in the holomorphic case (see [12]). The fact that one can view the image as
Ha(m, 0,,) instead of Ha(M, Ox) is different from the holomorphic case where
the kernel of the map " 0 0 is the sheaf of germs of holomorphic vector fields
tangent to leaves, not a fine sheaf. This corresponds to the fact that, in the
complex analytic case, it might be possible to non-trivially deform a foliation
by altering the complex analytic structure of the leaves, leaving the normal
structure unchanged.

Returning to the C case, one still has the subcomplex ZO,+q and the
characteristic map for n-foliations.
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THEOREM 3.6. Given a O-foliation of codimension q on M, there is a map

" A" (Hi(M, 0))(R) zo,/q- H*(M, R)
with the property that, for an n-foliation ofcodimension q on M and x In, there
is a commutative diaoram

.x)) (R) R)A" * *

ZO/
where ()= p(?/ct,)A "’A p(C/Ot) (R) and the diaoonal map is the charac-
teristic map for the n-foliation at x e I (usin its local formulation).
As in the complex holomorphic case, the map 0 is an invariant of the

foliation on M, and, if two foliations on M are diffeomorphic, then the dimen-
sion of the image of 0 must be equal for these foliations.

IV. Non-triviality of deformations

Lemma 3.2 shows that for trivial n-foliations the Kodaira-Spencer map (and
hence all characteristic classes for n-foliations) must be zero. This characteriza-
tion of triviality (or non-triviality) still leaves something to be desired. It does
not exclude the possibility of non-trivial invariants for an n-foliation on M
where, for each z 60", there is a biholomorphic equivalence ofM onto a fixed
Mo, carrying the foliation on M to the foliation on Mzo, and varying discontin-
uously in the parameter z.

This same question first arose in the context of deformations of analytic
structure on a complex manifold. A theorem of Fischer and Grauert, [7], states
that if all the compact manifolds Mzare biholomorphically equivalent, then the
Kodaira-Spencer invariant must vanish identically. It then follows from [11]
that the deformation is locally an analytic cross product.
The following theorem about non-triviality for n-foliations is proven using a

modification of the techniques appearing in [7]. It is valid for non-compact as
well as compact M.

THEOREM 4.1. Given a complex analytic n-foliation of codimension q on M,
suppose that for some Zo 0 the characteristic map Z,+q - H*(NM, C) is non-
trivial. Then there is an open neighborhood Z o U c 0 and the set of z

_
Ufor

which the foliations atM are biholomorphically equivalent to thefoliation at Mo
is at most countable.

Remark. Clearly if the characteristic map at Zo is non-trivial it will be
non-trivial in some open neighborhood z 0 U = 0", and this is the neighbor-
hood referred to in the theorem. We reiterate, as in the introduction, that
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Theorem 4.1 implies that any open neighborhood of Zo O" contains an un-
countable number of non-biholomorphically equivalent foliations on M.

Proof Let A be the set of z e U for which the foliation at Mz is biholomor-
phically equivalent to the foliation at Mzo. If A is uncountable we will show
that, for some zl A, the characteristic map at zl is zero, a contradiction. This
is done by showing that there is a holomorphic vector field in T(M x 0"),
defined only over Mzl, having the same properties as the vector field Z in the
proof of Corollary 3.4. Specifically IX, Z] is a leaf vector field whenever X is,
and there are no points in Mzl at which Z is a leaf vector. From this it follows
as in the proof of Corollary 3.4 that the characteristic map at z is trivial.

For each z A, let fz: Mz0 --* Mz be a biholomorphic equivalence preserving
foliations. We show that there is a point za e A and a sequence of points
for which

fos:
converge uniformly on compact subsets to fz: Mzo Mz (it follows of course
that {os} converges to z in O").

Let .g/(Mzo, M x O") be the space of analytic maps from Mz0 to M O",
topologized with the compact open topology. It suffices to find a sequence
converging to fz in ///(Mzo, M O"). Since Mzo is locally compact and the
topologies on Mzo and M O" are second countable, it follows that the topo-
logy on #//(Mzo, M O")is also second countable (see [6], p. 265]). If

{f:mzomzlzA}
is uncountable then this set must have a cluster point in //(Mzo, M 0"). This
cluster point is the map fz and clearly the sequence {f,s} must also exist.

Let go, f,os f- M M,,s. Clearly ,, is a biholomorphic equivalence
preserving foliations, and the sequence {} converges uniformly on compact
sets to the identity id: Mz Mz. The idea now is to try to take the derivative
of the sequence {g,s} and let this be the vector field Z on Mz. The problem is
that each g,s can be altered by composing it with a foliation preserving biholo-
morphic equivalence of Mzl with itself, and this ambiguity means that there is
no reason to expect a derivative to exist. Thus we must introduce certain
corrections to the sequence {,} to rectify the situation, and this turns out to be
a somewhat technical procedure.
To render what follows more digestable, we give a brief outline of the rest of

the proof. Our first concern is to modify the sequence {go,s} so that we can take
its derivative on Mz, obtaining a holomorphic vector field Z. This modified
sequence, {ho,}, is finally constructed in Lemma 4.4. Because the functions
preserve the foliation, it will follow that [Z, X] is a leaf vector field whenever X
is. The vector field Z must also be nowhere tangent to the leaves of the foliation
on M, and in fact we show in Lemma 4.6 that, for n: M O" O" projection,
drc(Z) O. It is in the proof of Lemma 4.6 that the technical condition imposed
on the sequence {h,s} in Lemma 4.4 is used. This completes the outline.
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For each s choose a compact set Ks M so that K1 is the closure of an
open set in Mzl, Ks is contained in the interior of Ks+ 1, and
Choose a countable dense subset {xs} in the interior of K1. Let

I4( tz , Oz ), 0),
and let be a complementary subspace to o ff in
if0 ff,-.

Let be the tangent space to M x O" at x, and choose a splitting
T W, where V, is the subspace of T spanned by the vector fields in
One can choose coordinates in M x O" about each point x,, and it will be
convenient to think of them as maps

for some open set x U = M x 0". In this way we can require that *(x,) 0
and that d*, be the identity map.
Given X H (M, Oz), X ay not generate a one parameter family of

biholomorphic equivalences on Mz, since Mzt isn’t compact. However, for any
K, X generates a one parameter family of holomorphic embeddings of K in
M, and these embeddings preserve the leaves of the foliation on M (this is
most easily seen by looking at the expression for X in distinguished coordin-
ates). Furthermore, for X e , this one parameter family leaves x
fixed. Let

GL {f e (K,, Mz) f preserves the foliation}
and let

Gts f e G f(xs)
Choose a metric d on M x O" and, for f 9 e //(K,, M x 0") let

dt(f 9)= sup{d(f(x), 9(x))}.
xeKt

LEMMA 4.2. Fix , s, and t. Then there is a 6 such that for
g .//g(K,+l, M x 0")

with d,+ 1(9, id) < (5 there is a fl Oo<_r<_s-1Gtr with composition g fl defined on
K,, d,(g fl, id) < e and Os g fl(xs) W, i.e., using the chart Os, 9 fl(x) has
no non-trivial V coordinates.

Proof Since the vector fields in s span V, an integral curve construction
gives an open neighborhood 0 B = C", cz dim Vs, and a holomorphic map
: B x K, - M, with q(0, k) k and dq I0.) mapping the tangent space to B
onto Vs. Let Bs q(B {x}) and let Hs - I(W,). Then Bsand H.are clearly
transverse to each other at x,.
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Note that q induces a map qt" B 0o_<r_<s- Gtr Now if dr+ l(g, id) is small,
then 9- l(Hs) will still intersect B and there will be a b e B such that

9 q(b, x) H.
Clearly b approaches 0 as 9 approaches id. Choose i small enough so that the
map ,(b,-) maps K, into K,+ (so composition with 9 is defined) and so that

d(C/(b, .), id) < ( ).
Then for fl (b, "),

d,(go fl, id) < d,(g fl, fl) + d,(fl, ia) d,+ 1(9, id)+ d,(fl, id) < e,

Q.E.D.

LEMMA 4.3. Fix e and s. Then there is a fi such that ifd2(g, id) < 6, there are

fl o<_r.<_ -1 G2 -, 1 <_ <_ s, with the composition

h=go fll fls
defined on Ks, ds(h, id)< e and Or h(xr) W for r <_ s. In particular if g
preserves the foliation on M x 0", so will h.

Proof. This is an easy induction on Lemma 4.2, noting that flt(xr)= xr if

LEMMA 4.4. There is a sequence ofmaps h, /(K, M x O") preserving the
foliation, converging uniformly to the identity on compact sets, and satisfying
Or h,,(xr) W for r <_ s.

Proof Apply Lemma 4.3 to a subsequence of {go}. Note that
h.,(Ks) M,.
Now fix a number and a finite number of open sets {U} in M so that
(a) K V and
(b) for each a the closure is compact with / V for some open

V M,, and there is a distinguished coordinate chart on some neighborhood
ofVinM xO".

It will facilitate the following computation to write the distinguished coor-
dinate functions as (x], x+"), making no distinction between coordinates
which vary in the leaf or in the parameter space. Since {h,} converges uni-
formly to the identity on , we can assume that h,(O) is contained in the
domain of our chart. In this way we get a tech zero cochain on the covering
{V}, s e (2({ Us}, (9"+") where n + m dim M x O", (9"+" is the sheaf of
germs of C"+"-valued holomorphic functions, and is defined to be the map
h,, id written in local coordinates on Us.

Define

I1  11, sup {l,(x)l} where (’, "+",).
t, U, 1<_ i<_ m+n



SOME COHOMOLOGY INVARIANTS 187

Note that 0 < I[s II, < so we can define s (O({us}, C"+") by

It follows that [[ [[, 1, so that, by Vimli’s Theorem, there is a subsequence of
{s} (which we will also call {})with ] converging uniformly to some on .
Let ({U,}, c,+m) be this limit cochain.
Now the ith coordinate of is given at some point x U U, by

[xS(hs(X) -1

x/Ox I[x(ho(x))-x](x)] + higher order terms}
where the higher order terms involve products of the [x(h(x)) x(x)]. Since

x](h Xx)) x](x)
it follows that the higher order terms vanish in the limit and that ( ((’,
("+ ’) where

Thus the zero cochain ( transforms like a vector field and determines a holo-
morphic vector field Z in T(M x O") defined over Kt.
We claim that Z4=0. For each (s there is a point y , , with
("(y) for some value of/and . (Note that ( is actually defined on ,,

not just Us.) By the compactness of , , there is a subsequence of {ys}
converging to y e t,. It follows that (’(y) 4:0 for all with y , hence
Z(y) + o.
Furthermore we claim that [Z, X] is a leaf vector field whenever X is. To

show this we relabel our distinguished coordinates as (x., y}, zT,) using the
convention given in the last section. Since h,,, preserves the foliation and
z, h, is the kth coordinate of rn z l,

c3/c3x(y] h,) 0 and c3/cox(z,o h,,) c3/c3y(z,o h,o) 0.

It follows that Z Z a, c/c3x + Z bj c/c3y + Z Ck C/CZk where the holomor-
phic functions bj are constant on leaves of the foliation and Ck are constant on
all of Us. This is sufficient to prove the claim.

LEMMA 4.5. The vector field Z extends to a holomorphic vector field on all of
Mzl satisfyin9 [Z, X] is a leaf vector field whenever X is.

Proof The construction we have given for Z on K works as well on Kt+ 1.
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On Us

and since both Z+ and Z are non-zero they must be multiples of each other.
This shows that Z extends to Kt+ satisfying the lemma. By induction we can
extend Z to all of Mzl K,.

It remains only to show that Z is nowhere tangent to the leaves of the
foliation on Mz,. For this it suffices to show that dg(Z)4:0 for r: M x
O"---, O". Note that

dr(Z) Z Ck C/CZk lim (tos- z,)ll sll;’

Recall the sequence {x} used in the construction of {hs}.

LEMMA 4.6. drc(Z) 4: O.

Proof We first show that if dr(Z)= 0, then Z(xs)= 0 for all s.
If d(Z)= 0 then Z H(M, 0). Recall that

and X is a complement to o c % in go "" N,-1.
Note that Z(x,) is tangent to the sequence of points {h,s(x,)} converging to x,.

Since h, was constructed so that @s ho,,(x,) W, for < s, it follows that
Z(x,) W, for all t. Thus Z(x,) V, if and only if Z(x,) 0, by Lemma 4.4.
Now Z H(M,, 021)=o so assume inductively that Z e go

%-l. ThenZ=X+ YforXego c... %and Ye,.Wehave

Z(xs) X(x) + Y(x) 0 + Y(x) + V
since Y e 0s. Thus Z(x)= 0, and Z e s for all s.

Since the set {x} is dense in the interior of K 1, and Z is holomorphic, if Z
vanishes on {x}, Z must vanish identically on all of M,. But as noted in the
construction of Z, Z 4= 0, so Z(x) 4:0 and hence dn(Z)4: 0, Q.E.D.

This completes the construction of Z and all its properties and so completes
the proof of Theorem 4.1.

Remarks. Actually we have shown that the Kodaira-Spencer invariant
p,(dn(Z)) 0, since the zero cochain
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for d(Z)- Ck /Zk, will bound the one cocycle for pz,(d(Z)). The only
place where Theorem 4.1 uses the non-vanishing of characteristic classes, as
opposed to the Kodaira-Spencer invariant, is in the fact that characteristic
classes vary continuously and are non-zero on open subsets of the parameter
space.
The proof of Theorem 4.1 does not generalize to the case of C n-foliations

because Vitali’s Theorem that locally bounded families of holomorphic func-
tions are normal does not hold for C functions. Thus, in the C case, there is
no way to extract a convergent subsequence of the zero cochains {(s}. At this
time we do not know if a C version of this theorem is true.
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