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ALEXANDER MODULES OF SUBLINKS AND
AN INVARIANT OF CLASSICAL LINK CONCORDANCE

BY

NOBUYUKI SATO

Introduction

A link in Sa is an ordered collection L {Kx, Ks} of smooth, oriented,
pair-wise disjoint knotted circles in the 3-dimensional sphere. To any link, one
may associate the complement X S3

_
N(Ki), where N(Ki) denotes an

open tubular neighborhood of Ki in S3. The Alexander modules of L are the
homology groups of the universal abelian cover of X, viewed as modules
over the integral group ring A of the group of covering transformations. By
Alexander duality, this group is the free abelian group on m generators, so we
may identify A with the Laurent polynomial ring

Z[x, Xm, x; , x2, ].
We begin by studying the relation between the Alexander modules of a link

L= (Kx, Km)
in S3 and those of a sublink E (K 2,..., Ks}. The first result is the discovery of
certain short exact sequences which express this relationship (see Theorem 1.1).
An interesting corollary of this result is a new proof of a well-known formula of
Torres [12] which related the Alexander polynomial of L to that of , one
which does not use the free differential calculus. The proof of the formula turns
out to carry other important information as well. Investigation of a certain map
(which is always zero in the cases of interest for the proof of the formula) leads
to the discovery of a new link invariant I x(L)which detects non-boundary-
linking. In many instances this invariant is quite easy to compute; in fact, in the
examples in Section 3, it is far easier to compute than the Alexander polyno-
mial. The proof of the fact that Ix(L vanishes for boundary links (Theorem
3.1) indicates that Ix(L is related to a certain rank invariant r(L) which we
define in Section 4. This invariant turns out to be an invariant of link concor-
dance (Theorem 4.4). An application of r(L) to the Whitehead link shows that it
is not concordant to a boundary link, and therefore not a slice link. Finally, we
show how Ix(L and r(L) are related, and note that this implies that the
xamples of Section 3 are not concordant to boundary links.
The results of the first two sections are revisions of a chapter of my Ph.D.

thesis, Brandeis University 1978. I wish to thank my advisor, Jerome Levine,

Received October 19, 1979.

(C) 1981 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

508



ALEXANDER MODULES 509

for his guidance. The rank invariant and Theorem 4.4 were discovered indepen-
dently and earlier by Kawauchi [4]. I would also like to thank Jonathan Hill-
man, who pointed out a correction to the original manuscript, and the referee,
who made numerous helpful suggestions.

1. The Alexander modules of a sublink

Let L {K 1, Kin} be a link in S3, and let E {K2,..., Kin} be the sublink
of rn 1 components missing K1. We would like to relate the Alexander mod-
ules of E to those of L. The Alexander modules of L are modules over

A Z[x, x, xi-,..., x;, ],
while those of E are modules over the ring

R Z[x2, Xm, X" 1, X 1],
and this fact must be taken into account. If Y is the complement of E and is
its universal abelian cover, we would be looking for a map which
reflects this algebraic information. The easiest way is to interpose a certain
space ., to obtain maps . . .
The space X we want turns out to be a certain covering space of X.

Specifically, it is the covering space associated to the composition

ztlX H1X --’, H1Y
where the first map is abelianization and the second is induced by inclusion. It
is not difficult to see that ’ . is an infinite cyclic cover, and that . is a
subspace of 17 (in fact, 8 is obtained from 1r by removing all the pre-images of
N(K1) in ). The homology groups of are naturally modules over R.
We regard R as a A-module via the isomorphism R - A/(x 1).
THEOREM 1.1. There are exact sequences of R-modules

0

C

0- R ()A HI --* H1) Z-0

HIY

0

where C cok j.’ H2 - H2(I7, .) in the exact sequence of the pair (, ),
’- 1) /f H2 0. Here, 11 denotes thewhich is isomorphic to R/(x122x133 xm

linking number of K with Ki, and Z is re,larded as an R-module with trivial
action, isomorphic to

R/(x2- 1, x 1).
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Remarks. (1) H2 0 exactly when A(x2, Xm)= 0; see Proposition
2.5.

(2) The theorem generalizes, with the same method of proof, to give the
relation between the Alexander modules of a link of n-spheres in S/2 and
those of a sublink.

Proof of 1.1. Since . )? is an infinite cyclic cover, as in [6] we have an
exact sequence of chain complexes over A and R:

0 C.Y, - C,Y C.2 O.
xl-1

This yields a long exact homology sequence in the standard fashion. The tail
end of the homology sequence is as follows:

Hx) - H H
x-I

H0 H0
xl-1

We identify H/(x 1)H with R @AH, and we note that x acts as
the identity on Ho Z, so that we obtain the horizontal exact suen in
the statement of the theorem. The vertical exact sequen is a consequence of
the long exact homology sequence of the pair (, ). It remains only to calcu-
late H.(, ).

If l la l 0, then by excision,

n,(L 2) R @ n,(S x , S x S).
Thus, by the Knneth formula, H,(, ) R if * 2 or 3, and H.(L ) 0
otherwise.

If some l 0, we have H,(, ) H.(D2, S), sin the pre-images of
N(Kx) will be copies of its simply-connected cover D2 x R = D. The image of
n[N(K)] in H Y is the infinite cyclic group generated by x "Xm SO

--1)n(e, ) R/( ,
and H,(,)0 for * 2.

This computation completes the proof of Theorem 1.1.

2. A formula of Torres

In 1953, Torres [12] proved, among other things, that the Alexander polyno-
mial of a link L {K 1, K,,} in $3 is related via a formula to the Alexander
polynomial of E {K2, K,}. His proof involved a careful study of the
matrix produced by the free differential calculus of Fox from the Wirtinger
presentation of n X. We will show how this formula can be derived from
Theorem 1.1.
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The Alexander polynomial is an element of A, defined only up to multiplica-
tion by units of A, and is an invariant of the A-module H called an elemen-
tary divisor. These are defined for any finitely generated A-module M as
follows. Choose a presentation

A -, A -, M -. 0
d

with r > s, and represent d by a matrix D with entries in A. For 0, 1, s let
U(d) be the ideal of x minor determinants of D, and let A(M) be a generator
of the smallest principal ideal of A containing U_(d). The A(M)depend only
on M and are the elementary divisors. The Alexander polynomial of L is
Ao(H ).

Let l, 2, 3, m be the linking number of K and K. If A(x :, Xm) is
the Alexander polynomial of L and A(x 2, Xm) is the Alexander polynomial
of E, then the result of Torres is the following.

THEOREM 2.1 (Torres, [12, Theorem 3]). (i) If m 2,

x 1
A(x2).A(1, x2)=

x2 1

(ii) If m > 2,

A(1, xz,..., Xm)= (X/22X/33""" X/m 1) A(x2, x).
We will show that this result follows from Theorem 1.1. The main tool is the

following technical result of Levine.

LMMA 2.2 (Levine. [5, Lemma 5]). Let

O-ABCO

be an exact sequence offinitely 9enerated A-modules. Then

Ao(B) Ao(A) Ao(C).
Applying this in turn to the horizontal and vertical exact sequences in

Theorem 1.1 we obtain

Ao(R (R) Hx) Ao[R/(x2 1, x 1)] Ao(C) Ao(H ).
Now, it is easy to see that

Ao(H, )= A(x2, Xm)
and that Ao[R/(x2- 1, x 1)]- 1 unless rn 2, in which case
Ao[R/(x2 1)] x2 1. Therefore, we have

Ao(g (R)A H:.)= Ao(C) A(x2, xm) if m= 2,
X2__ 1
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and

Ao(R (A Ht)= Ao(C) A(x2, x,) if m > 2.

The theorem will follow from the next two lemmas.

LEMMA 2.3. Ao(R (R)A HI 2’) A(1, x2,..., Xm)"

Proof of Lemma 2.3. We begin by fixing a resolution for Ht’ as a
A-module"

A --, A --, HX --,0.
d

Since a resolution for R (R)A H ) is obtained by tensoring the above with R,
we see that U,(1 (R) R) is the image of U,(d) under the map A R which sends
x. to 1. But a result of Crowell and Strauss [2] states that

U,(d) A(x,, x) (x, 1,..., x 1)
where p depends only on m. Hence, Ao(R ()A Ht .)= A(1, x2, Xm).
LEMMA 2.4. IfA(x2, x) =p O, then Ao(C)= x22"’" Xm
Lemma 2.4 will follow from the description of C given in Theorem 1.1 and

the next proposition. IfM is any R-module, the rank ofM is the dimension of
the vector space Ro (R) R M, where Ro is the quotient field of R.

PROPOSITION 2.5. Let be the universal abelian cover ofthe complement Y of
a link ofcircles in S3. Then H has the same rank as H . In particular, since

H is R-torsion-free, if H is R-torsion (i.e. if a(x, x.) o) then
HFO.
Remark. I am indebted to the referee for the information that, for unsplit-

table links, part of this proposition is contained in the work of Cochran and
Crowell [1].

.Proof. As in [7], collapses to a finite 2-complex K. Since H I7 Hz/
which is a submodule of the free R-module Cz/, Hz must be R-torsion-free.
The Euler characteristic of Y is zero. Hence, the Euler characteristic over R of

is zero. Since H3 - 0 and Ho F - Z so that the ranks of both of these
modules are zero, we have rk H lr rk H l?.

3. A linking invariant

There is a question which arises naturally from consideration of Lemma 2.4
and Proposition 2.5. Namely, what happens when H2 4: 0? The question
breaks up into two cases: when all the l are zero and when some l 4: 0. The
case when all the l are zero turns out to be more interesting, as it will be seen
that analysis of this case relates to the question of which links are concordant
to boundary links.
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A boundary link is one in which the components bound disjoint Seifert
surfaces. It is easy to see how this implies that all the linking numbers must be
zero. Since linking numbers are preserved under concordance (for definitions,
see Section 4) any link concordant to a boundary link will have all zero linking
numbers; in particular, this will be true of slice links.
When H2 1 0 and 12 13 --0, we have H2(17 I) R, gen-

erated by a transverse disk to the first component K a. Thus, the image of
H2
-, H2( ) will be an ideal in R, and it is easily seen that this is an

invariant of the link. We will first show that this ideal must be zero for any
boundary link. We will then interpret the inclusion map H2
geometrically to give us a method of computing the image from a diagram of
the link. Finally, we will use this invariant to obtain results about specific links.

Let I a(L) be the ideal in R defined above. Note that I a(L) is always zero if
m 2, since H2 - 0 in that case (Y is a knot complement). Thus, it is an
invariant of links of at least three components. Clearly, if enough linking
numbers are zero, we can analogously define invariants ls(L), for 2 < j < m.
This will be the case, for example, when the link is boundary.

THEOREM 3.1. Let L {Ka, K2, Km}, m >_ 3, be a boundary link. Then the
invariants Ij(L), 1 < j g m, are all defined and equal to zero.

Proof There are two ingredients in the argument. First, there is the fact
that, for a boundary link, the rank ofH over A is m 1. This is well known;
it follows for example from the vanishing of the elementary ideals, or from a
description of Ha ,17 as the direct sum of a A-torsion module and the
abelianized commutator subgroup of the free group on m letters, which has
rank m- 1 over A (see [10, Lemma 2.5]). The second is a general fact about
Betti numbers. Let C, be a free chain complex of finite type over an integral
domain R, and let f: R - S be a ring map where S is also an integral domain.
The Betti numbers of C, are the ranks (over R) of the homology groups of C,
and the Betti numbers of C, (R)R S are the ranks, over S, of the homology of
that complex. It is an easy observation of Milnor (see [7, page 145]) that the
Betti numbers of C, are bounded above by those of C, (R)R S.
We put these two ingredients together as follows. Since C, C,. (R) A R,

the ranks of the R-modules H, ;g must at least equal the ranks of the A-
modules H,. Since Ha ’ has rank m 1, by Proposition 2.5, so does H2.
Thus H2X has rank at least m- 1. Since the removal of the first component
leaves an (m 1)-component boundary link, H2 has rank m 2. We know
from an earlier calculation that n3(, ) n2(, g) R. The long exact
sequence of the pair (, ) reads

i, j,

R rank>m-1 rank=m-2 R
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By exactness and rank counting, H2" must have rank m 1 and cok i, must
be an R-torsion module. But cok i, im j, c R, and so j, must be the zero
map.

In order to make use of I(L), we must be able to compute this. To do this,
we first interpret j, geometrically, Since K has intersection number + 1 with
its transverse disk, a lift of which generates H2(, ),j, is given by equivariant
intersection with a lift of K, as follows"

where c H2(), G Z is the group of covering transformations of I7 Y,
( ) is the ordinary integral intersection number, and/(1 is a pre-chosen lift
of K1 to I7. This interpretation, which allows us to work in the base space
rather than the covering space, allows us to work from a diagram of the link.
The method is best illustrated by means of an example. Consider a diagram

of the Borromean rings (Figure 1). Removal of any components of L as
pictured in Figure I results in the trivial link of two components. The generator
of H2 ’ is (a lift of) the 2-sphere which separates K2 and K3, pictured as a
plane between K2 and K3. The sphere is given an orientation, so that passing
through the plane from left to right is the negative direction. We also orient K 1.

KZ

X

FIG.
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If x represents the element of H x which comes from the meridian drawn
around K2 and y represents the element which comes from the meridian drawn
around K3, then R Z[x, y, x-, y-] and I(L) will be a principal ideal
generated by a polynomial in x and y.
We begin at the base point of K (marked with a heavy black dot). We pass

through the sphere in the positive direction, which gives + 1, around K2 and
back through in the negative direction which gives -x, around K3 and back
through in the positive direction getting + xy, around K 2 in the inverse direc-
tion, and back through the sphere in the negative direction picking up a
-xyz- -y and back around K3 and to the base point again. Adding, we
get It(L) (1 x + xy y). The reader may verify that this computation
yields the equivariant intersection of the sphere and K up to multiplication by
units of R and replacing a variable by its inverse.
A consequence of this calculation is that the Borromean rings are not a

boundary link" in particular, the link is non-trivial.
Of course, this is not surprising, because the Alexander polynomial of L is

(1 x)(1 y)(1 z)
according to Fox [3]; the advantage here is ease of computation. The next
example is a link of four components whose Alexander polynomial is zero,
according to O’Neill [8], who studied this link and showed it was non-trivial
using a higher order Mas" V product. We will show that it is in fact not a
boundary link using our method. The link is pictured in Figure 2; note that the
removal of any component leaves a trivial link of three components. Both
pictures represent the same link, which the reader may verify. The plane in the
right-hand picture is part of the sphere which separates K2 from K3 and K,
and is one of the generators of H2 I7. Following the same method as before, we
see that the equivariant intersection of this sphere and K is giveo by (1 x) x
(1 y)(1 z), and therefore I(L) O. In fact, it turns out that I (L)is just the
principal ideal generated by (1 x)(1 y)(1 z)in

R= Z[x, y,z,x-, y-l,z-].
If L is a boundary link, then the role of the spheres in the computation

process is played by the boundaries of regular neighborhoods of Seifert
surfaces for L.

4. The rank invariant r(L) and link concordance

The proof of Theorem 3.1 indicates that the vanishing of !(L) is related to
the rank of H2

, which by Proposition 2.5 is equal to the rank of H ’. With
this in mind, we define r(L)= rank HI. rank H2.. Making use of the
observation about Betti numbers in the proof of Theorem 3.1 and noting that,
by Alexander duality, H2 X is a free abelian groups of rank m 1, we obtain:

PROPOSITION 4.1. 0 g r(L) < m- 1 for any m-component link L.
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Furthermore, r(L) carries the following more precise information (compare
Cochran and Crowell [1])."

PROPOSITION 4.2. If r(L)= 1, then H2) - A.

Proof By the "equivariant" form of Poincar6 duality due to Milnor [7,
Lemma 1],

n2 n(/-], 02; A).
Here, He*(, O; A) represents the cohomology of the cochain complex
HOmA (C.(., t?)?; A), and for a right A-module M, represents the left
A-module with the same underlying albelian group where the A-action is
twisted as follows. If J[ represents the image of 2 e A under the involution of A
which carries the variables x to their inverses, then for m
Furthermore, by the Universal Coefficient Theorem, which in this case takes
the form of a spectral sequence (see [10, Theorem 4.2] for a statement),

He(", O;A) HOmA (H(.,, O.; A).
Now O consists of cylinders and planes; the cylinders occur when a com-

ponent of L has linking number 0 with every other component of L, and the
planes occur in the other cases. The important fact is that this implies that the
A-modules Hk(O) are A-torsion, and therefore of rank 0. From the long exact
sequence in homology of the pair (’, t?), we see that rank H1)
rank HI(), 0.). Since r(L)= 1, H I(, t?)is a A-module of rank 1.
The proposition now follows from the next lemma, whose proof is left as an
exercise for the reader.

LEMMA 4.3. Let R be a unique factorization domain, and let M be a finitely
tenerated R-module of rank one. Then Homg (M, R)- R.
Two links Lo and L ofm components are said to be concordant if there exists

a collection of disjointly and properly embedded smooth annuli S x I in
S3 x I, such that the restrictions to S x 0 yield Lo c Sa x 0 and the restric-
tions to S x 1 yield L c Sa x 1. Often, one requires that the concordance
look like a product near 0 and 1, but we will not concern ourselves with that
here. Dropping the smoothness condition on the annuli yields the more general
notion of /-equivalence (see Stallings [11, p. 176]). Any invariant of I-
equivalence is thus an invariant of link concordance.
The complement Z of the/-equivalence in S3 x I contains in its boundary

both link complements Xo and Xx. A key fact is that the inclusions of the X
into Z induce homology equivalences.

Let : be the universal abelian cover of Z; if. is the universal abelian cover
of X, 0, 1, then 37i c ; for each i.

THEOREM 4.4 If Lo is I-equivalent to L l, then r(Lo)= r(L).
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Remark. This result, in the case of smooth concordance, was obtained by
Kawauchi [4] independently, with a much different proof.

Proof. Let 0 or 1. Since H,X - H,Z, we have H,(Z, X) 0. By the
observation about Betti numbers as in the proof of Theorem 3.1, the groups
H,(,’, ) have rank zero as A-modules. Hence, the rank ofH, equals the
rank ofH, for each q. This completes the argument.

Combining this with the proof of Theorem 3.1, we observe the following
facts:

(1) If r(L)= m 1, then II(L) 0
(2) If r(L) < rn 1, then Lo is not/-equivalent (and hence not concordant)

to any boundary link.

Putting these together yields the following statement.

COROLLARY 4.5. If It(L):/= 0, then L is not I-equivalent (and hence not
concordant) to a boundary link.

5. Examples

The Whitehead link (see [9, p. 68]) is a two-component link where the two
components are unknotted and have linking number 0. However, it has Alex-
ander polynomial (1-x)(1- y), according to Rolfsen [9]. Therefore,
r(Whitehead Link)= 0 and the Whitehead Link is not/-equivalent to any
boundary link; it is afortiori not concordant to the trivial link, i.e., it is not a
slice link.
The two examples of Section 3 are such that removing any one component

leaves a trivial link of one fewer components. However, since I (L) 0 for both
of these, they are not concordant to any boundary links.
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