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ON THE BOUNDARY BEHAVIOR OF FUNCTIONS
IN THE SPHERICAL DIRICHLET CLASS

BY

WILLIAM ABIKOFF

A classical result of Fatou has the almost immediate consequence that a
holomorphic injection of the unit disc, A, in the Riemann sphere, (, had radial
limits almost everywhere on OA. This theorem is quite striking since the cluster
sets of such "schlicht" functions may be quite bizarre. Later Beurling [1]
showed that radial limits exist except on a set of logarithmic (inner) capacity
zero for the wider class of meromorphic functions in the spherical Dirichlet
class. Tsuji [2] extended Beurling’s argument to show that we have limits in any
Stolz region at points in tgA, and the images of radial segments to the boundary
are of finite spherical length. Tsuji’s exceptional set is also of capacity zero.
Here we examine the question of the boundary behavior of normally con-

vergent (i.e., uniformly convergent in the spherical metric on compact subsets
of A) sequences of meromorphic functions in the spherical Dirichlet class. First
we set the notation. Let be the L2 norm with respect to Lebesgue measure
dx dy in A. Iff is almost everywhere differentiable on A let

Tf If’l/(1 + Ifl).
The spherical Dirichlet class D* is the set of functionsfwhich are meromorphic
in A and satisfy A[f] Tfl < c. A[f] is the spherical area of the Riemann
surface of f- spread over C. For f D*, set

f(e lim f(re)
r--*l

whenever the limit exists. For B cA, cap B is the logarithmic inner capacity.
We will prove the following two theorems.

THEOREM 1. Let f. D* and suppose f, f normally and

(1) E IITL- Tfll 2 < oo.

Then there exists a set E ?A with cap E 0 such that f.(e) --, f(e) for all
ei e cOA\E.
THEOREM 2. Let f., f D* and assume f. - f normally and A[fn] --* A[T].

Then there is a subsequence f, and a set E cOA of capacity zero, so that
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f.k(ei) f(e’) for all e’e c3A\E. In particular, this result is true for schlicht
functions f,, f provided f, f normally and A[f,] A[f].

These theorems permit us to interchange radial limits and limits of a sequence
subject to the stated restrictions. An application of Theorem 2 to Kleinian
groups will be presented elsewhere.

I would like to express my gratitude to Bob Kaufman and Joe Doob for
sharing their insights with me and to Albert Baernstein whose comments and
suggestions resulted in a considerable strengthening of the original result.

1. An estimate

Let g: A R / w {0) be measurable and let I111 denote the L: norm ofg. We
define

(0)= dO (z) dzl for-g<O<r
rt/4 q,

where le is the linear segment from e’ to {I z .9} having an angle with the
inner normal to #A at g0. Suppose # is a probability measure on #A. There is an
associated conductor potential

u(z)= fe log
1

z
d#(t).

The function u is harmonic in A. Let

v(,) sup .(=).
Izl<

The argument given below is basically due to Tsuji [2, p. 344 ff]. We refer the
interested reader to the arguments and diagrams contained therein.

LEMMA 1. In the above notation,

ii too(o)ct#(o)<_ 4=’/=lloll[max (v(#), 2)] ’/2.
A

Proof If

J=, 9 -r r dr dO

then Tsuji’s argument shows that

(2) j2 i111 =
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and also

He also shows

J Ilia J() d#() where

2tr

J(b) fo dr fo g(rei)(-d arg (rei eik).

(3) J(O) > flz-1/21-< 1/2

Now

9(z) dr dO ’llll.

re /4

=I r  (z)i zl cos
r/4 "1 /4

which Tsuji shows is less than or equal to 22 1,- /21 < /2 9(z) dr
Combining this with (3) we obtain

(4) O(0) 22[J(0)+ /2111,
Equation (4) may be rotated by angle 0 to show that

g(O) 2#2[J(0)+ /211gl[].
Integrating with respect to d, we obtain

(o)d.(O)[+ llall].
A

Inequality (2) then yields

(o)d.(O) ’/111[(.)’/ + ]
A

and the lemma follows immediately.

2. Proof of Theorem 1

We denote by the chordal metric on C. Fix e > 0 and let e e be the set of
all e dA so that f(e) and f,(d) exist, but

lim z[f,(d),f(d)] > e.

It suffices to show that cap e 0, for then the set E may be taken to be a
countable union of sets e,: together with the set wheref(d) or someL(e) fails
to exist.
For0<R< landfD*,let

T f(z) lTf(z) for z JR, 1)
0 for Izl < R.
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LEMMA 2. For any > 0 andf e D* there exist R (.9, 1) and e’ cOA so that
cap e’ < fi and C(Tg f)(O) < /8 Jbr ei cA\e’.

Proof Since f D*, limR TR f 0. Let

E(R) {ei (TR f)(O) >_ e./8}.
Let PR be the equilibrium distribution of a closed subset of E(R). Then, by
Lemma 1,

< (TR f)(O)d#R(O)< 4rtl/Z{max [V(#R), 2]}*/ZIITR fll8-- ,A

It follows that limg_. V(lg)= and consequently cap E(R)-O. Setting
e’ E(R) for some well-chosen R completes the proof of the lemma.

Let e" e/e’ and E, {ei

LEMMA 3. For f D* and n sufficiently large, ( TR f. TR f I)(0) > e/8
for all ei E..

Proof Since c is linear and (TR f)(O)< e/8 on E,, the lemma follows
from showing that (TR f,) > /4 for n sufficiently large.

Let l, l, m {R < z < 1} and for a smooth curve c t, let L()denote
its chordal length. Then

(5) L[f(l,)] f_ T L dz

A similar statement holds forf A curve is no shorter than the distance between
its endpoints, so

L[f.(/,)] > z[f.(ei), f,(ao) where ao o c {I z R}.
Since f,funiformly on zl < R, for n sufficiently large we may assume

(6) x[f,(a0), f(ao) < e/4rt.
The triangle inequality shows that

Now

L[f,(/,)] _> z[f,(ei), f(ei)] z[f(ei), f(aq,)] z[f(a,), f,(aq,)].- > C(TR f)(O)= L[f(l’o) d >
r14. r14.

and using (5)and (6), we obtain, for e’ E,,

z[f(ei), f(a,)] dff

which is the desired result.

Q(TR fn)(0)
-/4

L[f.(/)] dq > - e
8 24r

> -4
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Conclusion of the proof of Theorem 1. For all 0, C(Tf.-Tf)>
(TR fn TR f). If pn is the equilibrium distribution of a closed subset F. of
E., Lemma 1 shows that

(7) g _< 4rl/2{max [V(/z.), 2]}/11 rf.- rfll.

Equation (1) implies lim._, rf rf 0, consequently lim._. V(,.) m.
By Frostman’s Theorem (see Tsuji [2, p. @]), V(,.)= v(F.)where v(F.)=
log (cap F.). Since E. is inner capacitable, we may choose F. to have capacity
arbitrarily close to cap E.. From (7), we obtain

(E)-1 < Ilrf Till for n > no n(e, 6).

It follows that =.o v(En)- < m" By Tsuji [2, p. 56 and 63],

v E. +log2 2 [v(E.)+log2]-x.
n=l n=l

We immediately obtain lim v(= Ek)= . Since for every n,
e" c =, E,

which converges to zero as n oo. Theorem 1 is proved.

Proof of Theorem 2. Fix e > 0. Since fnfnormally, there is a compact
subset F c A so that, for n large,

L2,’) > A[f e and Tf. Tf 2
L2(F) <

It follows from the Minkowski inequality that

rf rf < + rf Zf L2(AF)

< 5a2

for n sufficiently large. By passing to a subsequence n, f_ Tf Tf <
and the result follows from Theorem 1.

REFERENCES

1. A. BEURLING, Ensembles exceptionnels, Acta Math., vol. 72 (19), pp. 1-13.
2. M. TsuI, Potential theory in dern function theory, Maruzen, Tokyo, 1950.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS


