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TEMPERED, INVARIANT, POSITIVE-DEFINITE
DISTRIBUTIONS ON SU(1,1)/{ +_ 1}

BY

WILLIAM H. BARKER

1. Introduction

Let G denote the group of conformal mappings of the interior of the unit
circle, a Lie group which is naturally isomorphic to both SU(1, 1)/[+ 11 and
SL (2,R)/[_+ I. In this paper we establish, via the Fourier transform, a bi-
jective correspondence between the collection of tempered, invariant, positive-
definite distributions on G and the easily defined class of tempered Bochner
measure pairs. Viewed in another way, the result shows that tempered, in-
variant, positive-definite distributions are merely integrals, in the distribu-
tional sense, of characters of the principal and discrete series representations
of G.
The major tools used in this work are the various isomorphisms which are

obtained via the operator Fourier transform on G. For each <_ p _< 2 let
c(G) be Harish-Cchandra’s Lp-Schwartz space, with ’(G) ’2(G). In his
Ph.D. dissertation [1| Arthur characterized the image of (G) under the
Fourier transform for G any semi-simple Lie group of real rank one. However,
an invariant, positive-definite distribution is not, in general, tempered; i.e., it
does not extend to a continuous linear functional on ’(G). Such distributions
extend, instead, onto I(G) [4, {}4]. Unfortunately, for _< p < 2, the
Fourier transform image of p(G) has yet to be determined, even for
SU(1,1)/{+ 11. Given the importance of such results for our work, in this
paper we will confine ourselves to the tempered distributional case.

In {}{}4-6 of this paper we state Arthur’s Theorem for SU(I, 1)/1+ 11, and
develop certain important results concerning spherical function spaces and
their images under the Fourier transform. In {}7 tempered invariant distribu-
tions are examined. It is shown that such a distribution T is determined, via the
spherical decomposition of the Fourier transform, by the zonal spherical
transform and a unique complex counting measure #d (Theorem 7.4). In {}8 it
is shown that if T is also positive-definite, then is given by a measure/, on R,
and both/c and/zd are non-negative and of polynomial growth. In fact, there is
a bijection between the collection of tempered, invariant, positive-definite dis-
tributions and the collection of pairs (/c,/a) (Theorem 8.2). In {}9 this last re-
sult is reformulated to show that a tempered, invariant, positive-definite distri-
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bution is, in the distributional sense, merely an integral of principal and
discrete series characters of G (Theorem 9.3).

Extensions of this work will depend upon the Fourier transform isomor-
phism theorems which become available. Arthur has extended his real rank
one if(G) isomorphism theorem to the general case [2],[3]. There are, at pres-
ent, no isomorphism theorems for g(G), _< p < 2, even for particular
semi-simple groups. Results for K-finite subspaces of (G), G of real rank
one, have been found by Trombi [11],[12]; these may serve the same role in a
general real rank one study of invariant positive-definite distributions that the
spherical function isomorphisms from 5 do in this work.
The author wishes to express his appreciation to Professor Sigurdur

Helgason of M.I.T. for the initial suggestion of this problem and for helpful
discussions during the course of its solution.

Partial support for this work was given by the Bowdoin College Faculty
Research Fund.

2. Preliminaries

(a) General notation. The standard symbols N, Z, R and C shall be used
for the sets of non-negative integers, integers, real numbers and complex
numbers respectively; Z’ will be the set of nonzero integers. If z E C, then "denotes the complex conjugate of z. If T c S, and f is a function on S, then
f] T denotes the restriction off to T.

If S is a topological space, then Co(S) denotes the space of compactly sup-
ported, continuous complex valued functions on S. If S is a topological vector
space, then S’ denotes its continuous dual.
For M a Co manifold countable at infinity we write Y(M) for the space of

compactly supported, Coo complex valued functions on M. When ’(M) is
given the Schwartz topology, then ’(M) is the set of distributions on M.
For a Hilbert space let B(,) denote the collection of bounded linear op-

erators on. Fix an orthonormal basis [vml for. Then for each A E B() let
A,n denote the matrix element (Av, vn).

(b) The group G. Let G denote the group of conformal mappings of the in-
terior D of the unit circle. Then G is naturally isomorphic to the group SU(1,
1)/[+ 11, where SU(1, 1) is the collection of all matrices of the form

g Il’-101= 1,

and the action of G on D is given by

g" . c" +/3 for " 6 D.
’+a

Important elements in g, the Lie algebra of G, are
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Corresponding elements in the group are uo exp(0Xo), a, exp(tX,), and

n exp(X). Matrix forms for elements in G shall be understood as modulo
sign throughout the paper.

Particular subgroups of G are defined by

K {uo’ORl, A [a," t(R} and N= In," R}.
The Iwasawa decomposition for G gives G KAN; i.e., each g G can be
uniquely decomposed into the form g uoa,n,. We also obtain an action of G
on K, u,---u,.o, defined by

gue u,.eatt,.e)rl,(e).

Define A + [a, "t > 0}. The Cartan decomposition for G then gives
G Kt(A+)K; i.e., each g6G can be decomposed into the form
g ua,u,. For g K this decomposition is unique; for all g the a, term is
unique. We write

t H(g). (2.1)

(c) Normalizations of measures. For a G let L. denote the left transla-
tion map g -.ag and Ro the right translation map g -ga-t. The groups K, A, N
and G have biinvariant Haar measures which we normalize as follows:

dk duo dO/2r (0 _< 0 < 2r),

da da, dt,

dn dn, d,

dx e’duoda,dn,.
Given two C-valued functions f and g on G, define their convolution by

(f.g)(y) f(x)g(x-y)dx for all y C G

whenever the integral exists. Further define the adjoint off by

f*(x) f(x-i) for all x C G.

(d) Differential operators. The complexified Lie algebra of G, g,, can be
identified with sl(2, C), the set of all 2 x 2 complex matrices of trace zero. The
conjugation Z - in g, is defined by

(X+iY) X-iY for allX, Yg.



86 WILLIAM H. BARKER

Let 0c denote the universal enveloping algebra of O There is an isomor-
phism A "*LA of [.Jc with the algebra of all left invariant analytic differential
operators on G. This isomorphism is determined by

d(Lxf)(x) f(x;X) - f(x exp(tX))l,.o

for all X , f C(G), and x G. Similarly, an anti-isomorphism with the
right invariant operators is determined by

d f(exp(tX)x)]o(Rxf)(x) f(X; x) -Four specific elements in Uo will be important in subsequent sections:

Zo iXo, Z/ -X,-iY, Z_ X,-iY, o X-X- y2.

3. Irreducible unitary representations

Let denote the collection of equivalence classes of irreducible representa-
tions of the compact group K. Then

_
is naturally isomorphic to IX. n C Z},

where X.(u0) e’".
Suppose r is an irreducible unitary representation of G on a Hilbert space

X’. For each n Z define the n-th weight space of r to be

X’(n) Iv t" r (u)v X.(U)V for all u K].

The subspaceof K-finite vectors of r is x X;.zX’(n), and the infinitesimal
representation dr of on X’. is defined by

d-(X)v - -(exp tX)v ,. for all X and v .
Define the r-classification operations on i by

Ho dr ( Zo) H/ dr ( Z ) H_ dr ( Z_) fl dr(o). (3.1)

There is a real number t, the Casimir scalar of r, such that

flv Cv for allvEK. (3.2)

Define the set of weights of r to be

M [m E Z af(m) is non-trivial}.

The following classification theorem can be found in [10, V. 5-6].

TI-IEOREM 3.1. Suppose r is an irreducible unitary representation ofG on a
Hilbert space X’ with weight set M and Casimir scalar 1. Then there exists an
orthonormal basis [Vm "m C M} for rg and a set of complex numbers
[tXm m M] of modulus one such that for each m M,
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H/vm c.+,(# + m(m + 1))1/2v.,/,, (3.3)

H_v, -t(dt + m(m-
where v. 0 if m M. U]
A basis for as specified in Theorem 3.1 will be called a canonical basis for

71",

For any irreducible unitary representation r with Casimir scalar t] it will be
convenient to define certain scalar constants. For each pair of integers (m, n)
define

-[[- (4+k(k-1)) ifm _> n,
k--n+l- (4 + k(k- 1))
k=m+

ifm < n.

(3.4)

Let t denote the collection of unitary equivalence classes of irreducible
unitary representations of G. There are two subcollections of d which will be
important for our work.

The principal series. Let c L’(K). For each X E R we can define an ir-
reducible unitary representation rx of G on go by

[r(g)ol(u0) ,(u., o)exp(- - (1 iX)t(g-’, 0)) (3.5)

for all g E G, uo E K and o E ..o. The representation rx has weight set Z and
Casimir scalar

t] (1 + X’) / 4. (3.6)

A canonical basis for 7rx is given by (o, m Z), where o.(u0) e-’’. The
collection (rx" X R} is called the principal series for G.

rx and r, are unitarily equivalent if and only if X + di. A unitary inter-
twining operator Nx c---e, can be defined by Nxom 0,(X)o, for all
m E Z where

Then

o,.(x)

]7 (k- -- (1 iX))/(k- -- (1 + iX)) if m >_ 0,
kn+

o

"]7" (k-- (1 + iX))/(k- - (1 iX)) if m < 0,
k--m+l

Nxrx(x) r_(x)Nx for all XE R and x E G.

The matrix coefficients for 7rx are defined by

(3.7)
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Umn(XsX) (,’lrh(X)tiOn

for all m, n E Z and x E G.

The discrete series. For each t’ Z’ there is an irreducible unitary
representation 0 on a Hilbert space X’ with Casimir scalar q el(1 e ])
and weight set

-t’-N fort’ > 0,
M(t’) -t’+N fort’ < 0.

The collection [oe e z’l is called the discrete series for G. For each t’ Z’
fix a canonical basis [e m M(e)] for oe. If (’,’)e denotes the inner product
of X’e, then the matrix coefficients for o are defined by

v.(e, x) , (x),k G )r

for all m, n M(t’) and x G.

4. The Fourier transform

Supposef Co(G) and 7r is a representation of G on a Hilbert space X’.
Define the Fourier transform off at 7r as the operator ’f(70 ( B(X’) given by

ff(w) f(x)r(x-’)dx.

Let and 9TM denote the restriction of rto the representations wx and o respec-
tively, where, for each ), E R and t’ ( Z’, we write

*f(X) ff’f(r), ’V(g) ff’f(oe). (4.1)

The matrix coefficients ofY(X) and .f(t’) with respect to the canonical bases
chosen in {}3 will be denoted by 3rnf0,) and 5rnf(t’) respectively.
For a fixed pair of integers (m, n) define

e(m,n)
minim, nl
mini- m, n

0

ifn > Oandm > O,
ifn < Oandm < O,
if mn <_ O,

(4.2)

L(m,n)
lez e(m,n) <_ e <_ -11
le Z:l _< e _< e(m,n)l

ifn > Oandm > O,
ifn < Oandm < O,
if mn <_ O.

(4.3)

Then 2f(e) is defined if and only if e L(m,n). For convenience we will
define all the other symbolsr f(t’) to exist and equal zero.

Harish-Chandra’s Schwartz space on G is defined by

(G) If(7- C(G) Ilfll, < oo for all r_ N, D,E . O,I

where
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Ilfll,o. supxeol(1 + tr)e"V(Ezx;D)l (4.4)

and t H(x) as in 2.1. When topologized by these seminorms (G) becomes
a Fr6chet space with continuous inclusions (G) g(G)

_
L’(G). (G) is

dense in ’(G). Under convolution ’(G) becomes a topological algebra.
Let ffc() be the collection of all CO operator valued functions

:" R--B(ao) such that:

(i) Nx(X) Y’(-X)Nx for each X E R;

(ii) I111 rl.r2.3; < O0 for all r,, r2, r3, r E N, where

ItYI[,,._,:- sup k Ymn( )l(1 + I1 ’)(1 + Im[’)(1 + Inl).
XER,m,nEZ

(4.5)
When topologized with these semi-norms, cgo(t) becomes a Fr6chet space.

Define ’a(() to be the collection of all F" Z’-- eEzB(e) such that:

(i) F(e) E B(e) for each e E Z’;

(ii) [[F[[,:2.,3 < oo for all r, r2, r3 N, where

IIFII ,.. sup IFm,(e)l (1
eEZ’,m,nEM(e) (4.6)

When topologized by these semi-norms, ga(() becomes a Fr6chet space.
Let ’(t) ffc(G) cga((). Given the obvious topology, if(d) is a Fr6chet

space. Forf (G) let Yf denote (:f,Yf). Then Y’maps (G) into e(().

THEOREM 4.1 (Arthur). The Fourier transform f -.Yffrom Y(G) into (()
extends uniquely to a topological isomorphism from (G) onto g’(().
Moreover, the inversion formula, for anyf g(G), is given by

Y"m,f(’)Um,(’,X)) tanh (TrX/2)dXf(x)
z (4.7)

m,nEZ eL(m,n)

Arthur [1] dealt with the Fourier transform of "(G) for G any semi-simple Lie
group of real rank one; Theorem 4.1 is his major result when applied to
G SU(1,)/I+_ }.

Define

C,:(G) IfE :g(G) arf 01, Ca(G) IfE (G) .f 01,

where each space is given the relative topology from C(G).

COROLLARY 4.2. g(G) is the direct sum of %(G) and ca(G). Moreover, the
induced decomposition f fo +f yields two continuous mappingsfrom cg(G)
to c(G) and JG).
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5. The spherical transforms

For m, n E Z define ",,,., the space of spherical Schwartz functions of type
(m, n), to be the collection of all fE ’(G) such that

f(uxv) Xm(U)f(x)x.(V) for all x G, u, v K,

where Xm(uo) eira. Further, define

PROPOSITION 5.1. For each f (G) there is a unique expansion

m, nEZ m, nEZ

where fc,m .... and fdo .... The series converges absolutely to f in
(G), and the mappingsf-f, and f -f, are continuous.

Proof. Define an operator Ps on (G) by

P..f(x) .x.(u)x.(v)f(u-’xv-’)du dv.

This operator is a continuous projection of if(G) onto ff... Moreover, for any
fG (G), the series

m,nZ

converges absolutely tofin ’(G) [13, p. 161], and is easily seen to be a unique
expansion off into spherical functions. Our result follows by applying the ex-
pansion to each term fc and fa in the decomposition f fo + fa of Corollary
4.2. K]

Let II-IIs denote the Hilbert-Schmidt norm.

PROPOSITION 5.2. (i) tr(f.f*)(k) IIf()llfor attfE l(G),k R.

(ii) tr(f.f*)(e) IlYf(e)ll for allfE g(G) e Z’HS

Proof. Using 3.7 it is easy to show that

fc(f,g)(k) Y’g(k)f(k), (f*)(k) (f(k))*

for allf(G) and X G R. The density of (G) in rg(G), the joint continuity
of convolution in i(G), and the continuity of Y; <(G)---rg,() prove these
relations valid for all f, g E if(G). It is then easy to show that

’mkfOk) .g(X), (5 1),o/:.(f,g)(X) ,
.9".(f*)tX) (ff",nf0k)) (5.2)
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for all m, n Z and X E R. Relation (i) is an easy consequence of 5.1 and 5.2.
The discrete case is handled similarly. IN

Ehrenpreis and Mautner [5] have characterized the image of .,. under the
spherical transform Y’,,, (Y’, Y’). We need this result for the case rn n.
Let Z be the collection of all CO functions ,I, R---C such that

(i) I,(-h) I,(k) for all k E R, and

(ii) q’ . < oo for all r, s C N, where

When topologized by the semi-norms II, I1,, becomes a Fr6chet space.
For each rn Z, let Z,,,. be the collection of all functions ,p" Z’---C such

that ,p(e) 0 for all e L(m, m). Z,, is a Fr6chet space when topologized
by the supremum norm

,11 sup
EL(m, m)

The following result is derived from [5, Theorem 3.1]; it is also a consequence
of Arthur’s Theorem (Theorem 4.1).

THEOREM 5.3 (Ehrenpreis and Mautner). Suppose rn Z.

(i) Y’,, gives a topological isomorphism from g.... onto Y.
(ii) 5r,, gives a topological isomorphism from d,mm onto mm.

6. Differential operators and spherical functions

PROPOSITION 6.1. Suppose f, g (G), X R, and m, n Z. Then:

(i) f.m(Lz/f)(X) ,(# + n(n -1))’2m._lf(h).
=_-’’ n(n 1))"2Y’,.f(X).(ii) f,,,_(Lz_f)(,) c (q +

(iii) ,_,.(R/f)(X)=-a,((t+m(m-1))"’-Y,f(X).
(iv) ,q’.(Rz_f)(k)

The same equations are valid for f,f(t),

Proof. Takef (G). Sinee,Cf(),) maps o into 0., the space of C. vec-
tors for r [10, Prop. 5.101, then the equations

fi(Lzf)(X)v dTr(Z)f(X)v,

fi(Rzf)OOv 3rfOOdr(Z)v,
are easily verified for all Z g and v 5 (R). Moreover,

(dTrx(Z)u, v) (u, dTrx()v)
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for all X E R, Z E 9c and u, v . Equations (i) thru (iv) forf 9(G) now
follow from 3.1 and 3.3. The density of 9(G) in (G), along with Theorem
4.1, prove the equations true for fE ’(G). The proof for the discrete case
follows in a similar manner. [2]

For any integer r define the differential operator er by

These operators were first introduced by Ehrenpreis and Mautner in [5, p.
439]. Throughout this section let m, n be fixed integers, with r m- n.

THEOREM 6.2. The mapping f- erf restricts to a topological isomorphism
of g’ onto .....

Proof. Given h E ’ .... define .m a.mh. Then a,. E by Theorem
5.3. Further, define .. ,./’,m. From 3.4 and 3.6 we see that ’..()) is a
polynomial in k which is uniformly bounded away from zero. It is straightfor-
ward to show that 3r.. G f. Hence by Theorem 5.3 there existsf .... such
that .f 3r... By Proposition 6.1 we have

f, (e. f f f "f ff’,mh

However, since h is in .... by assumption, and erf is in g by Proposition
6.1, we have ef h by Theorem 5.3. This proves surjectivity. For injectivity
assume ef 0 for some fE ’c Then ’...f 0 by Proposition 6.1.
Since ’. :# 0, then 5r.f 0. Theorem 5.3 then gives f 0. Clearly, e. is
continuous between the two Fr6chet spaces rg and g.... thus e is a
topological isomorphism by the Open Mapping Theorem, V1

THEOREM 6.3. The mapping f -.ef restricts to a continuous map of
into ’.... This mapping is (i) surjective if and only if 0 <_ m <_ n or
n <_ m <_ O, and (ii)injective if and only if 0 <_ n <_ m or m <_ n < O,

Proof. Proposition 6.1 shows that e maps g’,., into cg,..; it is clearly con-
tinuous. Suppose the mapping is surjective. Then from Theorem 5.3 and Prop-
osition 6.1, for each Hm., Z. there exists F.. E Z.. such that

.m(e)F..(e) H.(e) (6.1)

for all e G z’. In particular, take Hmm(e) when e L(m, m) (cf. 4.3) and
zero otherwise. Then 6.1 shows that F..(e) must be non-zero for g G L(m, m);
however, F..(e) can be non-zero only when e L(n,n). Thus L(m,m)
C__ L(n, n) when e, is surjective.

Suppose the mapping is injective. Then from Theorem 5.3 and Proposition
6.1 this injectivity is equivalent to: if F.. E Z.. is such that ’.s(e)F..(e) 0 for
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all IEL(m,m), then Fnn(l)= 0 for all lEL(n,n). This easily shows
L(n n) C L(m m) if , is injective.

Suppose L(m, m) C_C_ L(n, n). This is equivalent to having 0 _< m <_ n or
n _< m _< 0. In both of these situations nm(e) is non-zero for e E L(m, m).
This follows from 3.4 with t] lel(1 lel). Take any h i.mm and define

F,,(1) rm(l)/nm(1) for all lL(m,m),

and zero otherwise. Then Fn, E Z,,, and hence there exists fE ., such that
,a,F Fn by Theorem 5.3. Thus, as in the proof of Theorem 6.2,
5rm(e,f) mh on Z’, and e,f h, proving e, surjective.
Suppose L(n, n) c_q_ L(m, m). Assume e,f 0 for some f(E ’a.... Then

nm(l)J’nf(l) 0 for all l Z’.

But, as shown above, ’nm(/) : 0 when l E L(n, n), and hence ’nf(l) 0 for
all l L(n, n). Thus a,nf(1) 0 for all l, provingf 0. This shows that , is
injective. U!

For any integer r define the differential operator tr, L. The follow-
ing result is an easy consequence of Proposition 6.1,

PROPOSITION 6.4. Suppose f C(G), ) R, and m, n Z. Then

The same equations are valid for ’n(a,f)(f) with f Z’ replacing ,. U]
From the Ehrenpreis-Mautner theorem we know that all the spaces ’.... are

isomorphic via the Fourier transform with the space e. This gives natural
isomorphisms between the ’.... spaces which can be concretely realized via the
and o operators as in the next result.

PROPOSITION 6.5.
given by

such that

Proof.

There bs a topological bomorphbsm m. "4.... --c...
e,f a,f for allf ....

,mn (..’enn)-I Or’rn" (6.2)

From Proposition 6.1 we see that tr, maps ’.... into itself; Theorem
6.2 shows mn is a well-defined mapping of g.... into g..... Equation 6.2
follows directly from Proposition 6.4, and in turn verifies the remainder of the
proposition. [-1

For the discrete series analogue of the preceding result, suppose m and n are
such that 0 _< m _< n or n _< m _< 0. Then Zmm C__._ Z, and, via the inverse
Fourier transform, this sets up a natural injection of ’a.mm into ’a.n as con-
cretely realized in the next result.
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PROPOSITION 6.6.
given by

There is a continuous linear injection Bin. d.m--.

erf"* trrf for allfE ’,.

such that

B,. ()-1o i.o
where i. is the natural inclusion map of Zm. into Z...

(6.3)

Proof. From Proposition 6.1 we see that trr maps .,. into itself; B,, will
then be a well-defined map of cga.,, into .,, once we show trrf 0 for any
fE cg. such that ef 0. This is, however, easily seen from Proposition 6.4
and Theorem 5.3(ii). Equation 6.3 follows from Proposition 6.4, and yields
the rest of our result from Theorem 5.3(ii).

7. Tempered, invariant distributions

A distribution T on G is called tempered, if it extends to a continuous linear
functional on the Schwartz space Cg(G), i.e., T E "(G). Given such a T, for
each pair of integers m, n define

Tc,,,,[f] T[f,.,.l, T.,.[fl T[fa.,,,l

for all fE if(G), where fo.,,, and fd.,, are as defined in Proposition 5.1. The
following result is immediate from Proposition 5.1.

PROPOSITION 7.1. Suppose TE g’(G). Then

r= T,.,,,. + T,.,.., (7.1)
m,nEZ

where the series converges absolutely to T in the weak topology of ,’ (G). [-]

A tempered distribution T is said to be invariant (or central) if
T[f*] T[f] for allf g’(G) and a G, wheref(x) f(a-’xa).

PROPOSITION 7.2. Suppose T is an invariant, tempered distribution.

(i) To.,, 0 and T., 0 unless m n.

(ii) TtLzf] TtRzf] for all Z E g, andfE (G).

(iii) T[e,f] T[tr,f] for allfE g(G) and rE Z.

Proof. (i) It is easily seen that

T,.,,[fl x,(u-t)x,(u)To.,.If]

for all fE ’,.,,. and u E K. Part (i) then follows for To.,,,, and similarly for
Td,
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(ii)

and

Suppose E 9(G) and X (E I. Define c(t) exp tX for all t, and

k,(x) ((xc(t)) (x))/ t fort #:0, (7.2)

d (7.3)b(x) dt (xa(t)) ,--o"

Then Lxo ,, and from Lemma 7.3, proven below, we know k, converges to, in Y(G) as t-0. Thus

T[Lxo] lim (Ttx[o(x exp tX)]- Tic,l)/t. (7.4)
t--O

However, the invariance of T shows

Ttx[o(x exp tX)] Ttx[oexp tX.x)],

and the analogue of Lemma 7.3 for o(a(t)x), along with 7.4, then yields
T[Lxo] T[Rxo]. The density of (G) in ’(G), and the linearity of Z-Lz
and Z--Rz on 0 prove (ii). Part (iii) is a consequence of (ii). [2]

Suppose o E (G), c(t) a CO curve in G with ct(0) e, and ,, defined as
in 7.2 and 7.3.

LEMMA 7.3. , converges to k in Y(G)as t-O.

Proof. There exists a compact set C which contains the supports of and
for all tl _< 1. A Taylor expansion on t,(xo(t)) will show

sup [DE(k- k,)(x) It sup DE --dk(xc(t)) ,’,xx_C xEC

for some [tx[ _< tl and D (resp. E) any left (resp. right) invariant differential
operator on G. The lemma is an easy consequence of 7.5. V1
Suppose T (E "(G). Then for each pair m, n (EZ define the (m, n)-spherical

transforms of T, .T and m,T, by

.Y’.T[,.q’.f] Y’,,,,.[f], Y’.T[,.f] T,,,,,.[fl

for all f (G). To show ,Y’.T well-defined we need only show fo,,.. 0
whenever 3r..f 0. This, however, follows easily from inversion formula 4.7.
In a similar fashion, dY’.T is shown well-defined.

Consider fE Cgoo. Then Y’f 0, and, as a consequence of [10, V.9], for
each ) R we have

fO,) 0
ifk 0
otherwise.

Here [ok k Z} is the canonical basis of go, andfis the zonal spherical trans-
form of f as defined in |10, V.9]. Thus oCof f for all f cg(G) and
oCoT , where IV is the zonal spherical transform of T, defined by
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[fl T[fl for allf Voo.

THEOREM 7.4. For each invariant, tempered distribution T there is a unique
complex counting measure Izd defined on Z’ such that, with fE (G),

5r.mf, T[f] can be expanded byrm, .gfand F,m

Proof. From Proposition 7.1 and Proposition 7.2(i) we obtain

T[f] fm’.T[’--] + f2.T[F--l, (7.7)
mZ mZ’

for allfE (G), where r, ",fandF, f. Moreover, Theorem 5.3
shows’mmT ’ and ’,mT Z,, for each m Z.

LEMMA 7.5. (i) 3r,T .’,Tfor all m, n Z.

(ii) =’T z.,for all O <_ m <_ norn< m <_ O.

Proof. For fE ’o. and r m- n, we have ,f o. and r,f .....
Hence from Proposition 7.2,

To. mm[,fl T [e,f] T[a,f] T. ,[r,f].
In the notation of Proposition 6.5 this shows

Tc,.. T,,,,,.m,,,

and Proposition 6.5 then yields -,T f.T, proving (i).
The discrete case follows in a similar way using Theorem 6.3 and Proposi-

tion 6.6. 7q

Returning to the proof of Theorem 7.4, we see, from Lemma 7.5(i), that

.r.T for all m Z. For the discrete half of 7.6, observe that Z.m is
isomorphic to CI’I and r,,TZ’mm. Hence there exists a unique set
la’/’E C e L(m m) such that

TtF..I F.m(e)a’ for all F,m Zm..

From Lemma 7.5(ii) we then have, for 0 <_ m <_ n or n <_ m <_ 0,

Fmm(e)a’/’ . F..(g)a

for all Fs. Z... This proves a? a}’ for all m, n M(e), and allows us to de-
fine a complex counting measure z on Z’ by (e) a’for any m M(e).
Combined with 7.7, this finishes the verification of 7.6.
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8. Tempered, invariant, positive-definite distributions

DEFINITION. (/zc, #d) is a tempered Bochner measure pair if:

(i) / is a non-negative Baire measure on R which is symmetric and of
polynomial growth; i.e.,

d#o(- X) d/o(k) for all k E R,

and

d#o(k) < oo for somer > O.

(ii) /zd is a non-negative counting measure on Z’ Z- [0] which is of
polynomial growth; i.e.,

(e) < oo for somer > O.
,z, 1/ lel

DEFINITION. A distribution T on G is said to be positive-definite if
T[f,f*] _> 0 for all fE Y(G).

THEOREM 8.1. Suppose (/z, #) is a tempered Bochner measurepair. Define
T: ’ (G)--C by T To + T where

To[f] lntr3rf(X)d#o(X) and T,df] tr.Y’df(e)#(e)
ez, (8.1)

for all f (G). Then To, Tn and T are tempered invariant, positive-definite
distributions.

Proof. Each ’(k), for ’C %(() and k R, is an operator of trace class.
Moreover, using 4.5, there exists M < oo such that, with r as in the definition
of #,

lnltrr(X)ldo(X) _< Ml[[[.,o;o for all (),

proving the map - :r(X)d#(k)
continuous from () into C. Theorem 4.1 then shows T to be a tempered
distribution. Arguing in a similar manner proves T to be a tempered distribu-
tion.
To prove T invariant it suffices to show

tr :*(f")(X) tr ff’*f(k) (8.2)

for all fC (G), R and a C G; this is easily verified since each x is
unitary. Ta is handled similarly.
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The positive-definiteness of T and Ta is a direct consequence of Proposition
5.2.

THEOREM 8.2. Every tempered, invariant, positive-definite distribution
arises from a unique tempered Bochner measure pair as in Theorem 8.1.

Proof. Suppose T is a tempered invariant, positive-definite distribution.
From Theorem 7.4, there exists a unique complex counting measure/d defined
on Z’ such that T Tc + Td where, for each fE

and

Tc[f] [gr.f] (8.3)
mEZ

Since T and Ta represent the first and second terms in 7.1 respectively, then
Proposition 7.1 shows both to be tempered distributions.
From the spherical Bochner theorem ([4], Theorems 4.5 and 5.5; also see

[9], Theorem 2 and [8|, Theorem 2) there exists a unique non-negative Baire
measure # of polynomial growth on R which is symmetric and generates ac-
cording to the formula

[] I00d/(X) for all E r.

Thus 8.3 becomes

f(X)d ,o(X) (8.5)Totfl .
mEZ

for all fE (G). By using the semi-norms 4.5 of ’(), and the polynomial
growth of/z, it is easy to see that the function

mZ

is in LI(/Q. Dominated convergence then changes 8.5 into

T[f] [ tr 9rf(),)d(X). (8.6)
R

We now show that #a is non-negative and of polynomial growth.
For each rn E Z’ considerf rga,,m. Then T[f.f*] >_ O, so by the discrete

series analogues of 5.1 and 5.2 we obtain

eEL(m,m)

However, from Theorem 5.3(ii) we can choosefm rga. such that
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d if= -m

0 otherwise.

Thus d(-- m) > 0 for each m Z’.
For anyf (G), m, f Z’, we know :.(f,f*)(f) 0 from the discrete

series analogues of 5. and 5.2. Thus, using f,f* in 8.4 yields

Ta [f,f*] trfa(f,f*)(e)n(e). (8.7)
eZ"

where the switch in order of summation is legal since this is a sum of non-
negative terms with a finite limit. We use this equation to prove that is of
polynomial growth.

Define dT Cd()-C by

fdT[f] Td[f] for all f d(G).

Since Td is a tempered distribution, Theorem 4.1 shows ydT to be a well-
defined, continuous linear operator on ffd(). Thus there exist r, r, r N
and M < such that

for all H d() (cf., 4.6). Hence

for all h d(G). Let r r + r + r.
For each > 0 define Fn d() by Ffe(-O (1 + el0-/ for all

]e[ , and F(e) 0 otherwise. Let ho fn.f, where fn d(G)
and fo . Then 8.7, combined with 8.8, yields. d(e) M sup [(1 + [e[9-’(1 + ]el")(l + ]el’q(1 + lel’ )l.

Since the right side of this inequality is bounded above as a function of , we
have shown g to be of polynomial growth on Z’.

Return to 8.4. As in the proof of Theorem 8.1 we can now show, since g is
of polynomial growth, that the function g--smr ff(g)l is in L’(g) by
appealing to the defining semi-norms 4.6 of (). Hence the summations in
8.4 can be reversed and we obtain 8.1. The proof of Theorem 8.2 is thus com-
plete.

9. The tempered invariant Bochner theorem

The distributional character of an irreducible unitary representation r is
that invariant, positive-definite distribution (R) defined by

() If] tr l J(x)r(x)dx for all fC ,(G).

Such characters can be realized as invariant, locally summable functions on
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G, which we will denote by the same symbols as the distributions themselves.
Let D(x) be the coefficient of s- 1 in the expansion of det(s- Ad(x)) in

powers of s 1. Then D is invariant, and

D(a,) (e"- e-"’)’- D(u,) (e’’2- e-"’) (9.1)

for all t, O E R [7, IV.2]. Let dgA be any G-invariant measure on G/A. The
next result follows from [7, Theorem IV. 1.5] and the proof of Step I in [7,
IV.2].

PROPOSITION 9.1. Forf Co(G) define

A/(a,) D(a,)I ’ I /af(ga’g-l)dgA for t R.

Then As is a bounded function on A which vanishes outside of a compact
subset ofA.
We will also need another technical result, this one a consequence of [6,

Lemma 12.1 and Corollary 13.1 ].

PROPOSITION 9.2.
which there exists numbers Co, m >_ 0 such that

Let S be a locally summable invariantfunction on Gfor

S[fl I f(x)S(x)dx for allf ’(O).

From [10, V.7] we have the following formulas for Ox and (R)e, the
characters of rx and o respectively:

bX(ga,g-) (e’x’/2 + e-’X’/2) / e‘/2 e-t/2 i, t 0, (9.3)

e(ga,g-’) e’-e’’ / e"- e-"l, t , 0,

e(gu-) sgn(e)e’ e-e / (e,O, e-,O,), O/2r Z.

All other values of these functions are zero. Hence, from Proposition 9.2, for
all f (G) we have

(9.4)

THEOREM 9.3. There is a natural one-to-one correspondence between
tempered invariant positive-definite distributions T and tempered Bochner
measure pairs (l,, Id). This correspondence is given by

T= lim ( &xd/z’0) +
n-. ,s,e, sn

t) e#d(e))

D(a,)l’lS(a,)l <_ Co(1 + tm) for almost all t > O, (9.2a)

and
ID(uo) ll/’-IS(uo) <- Co for almost all O. (9.2b)

Then S yields an invariant tempered distribution according to theformula
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the limit understood in the tempered distributional sense.

Proof. Suppose T is a tempered invariant positive-definite distribution on
G corresponding to the measure pair (/zc,/a). From Theorem 8.1 and equations
9.4 we have, for allfE C(G),

Ta[f]
ez’ (If(x)()e(x)dx)#(e)’,

and

For each n >_ 0 define T,,n (G)-C by

By Theorem 8.1, T.n is a tempered, invariant, positive-definite distribution.
We show that the order of integration may be reversed in 9.5.

First restrict tore (G). By 9.1, 9.3, and [10, Proposition .7.131 we have

Here dg is an appropriately normalized G-invariant measure on G/A.
However,

[O(a,) l" I(a31 2[cos(Xt/2)1. [O(a,) /.

Let A Al be as defined in Proposition 9.1. Then

From Proposition 9.1 we know the last iterated integral is finite. Thus Fubini’s
Theorem applies to 9.5 whenf 9(G).

For each n > 0 define S G-C by

From above we see that S is a locally summable invariant function which
equals the distribution T,. on 9(G). Moreover, &(ud 0 for all O, and

I&(a,) 21D(a,) I-"z,([- n, nl) for t > 0.

Hence Proposition 9.2 shows each S gives a tempered distribution. This
proves that

T,.] =[if(x)o ([X(x)dz,(X)_ dx for allf (G). (9.6)
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From 9.5 it is easy to see by dominated convergence that Tc is the tempered
distributional limit of the To0.; thus 9.6 shows

To ,li_rn I?Xd/z,00 (9.7)

as tempered distributions.
For Ta the procedure is similar. For each n > 0 define Ta0, ’(G)--12 by

Ta [f]
leln

Since the sum is finite there is no problem in bringing it inside of the integral.
We will then obtain

Tn lim ()e/a(e) (9.8)

as tempered distributions.
Equations 9.7 and 9.8, when combined with Theorem 8.2, prove our

theorem.

REFERENCES

1. J. G. ARTHUR, Harmonic analysis oftempered distributions on semi-simple Lie groups ofreal
rank one, Ph.D. Dissertation, Yale University, 1970.

2. , Harmonic analysis of the Schwartz space on a reductive Lie group L preprint.
3., Harmonic analysis of the Schwartz space on a reductive Lie group I1, preprint.
4. W. H. BARKER, The spherical Bochner theorem on semi-simple Lie groups, J. Functional

Anal., vol. 20 (1975), pp. 179-207.
5. L. EHRENPREIS and F. I. MAUTNER, Some properties of the Fourier transform on semi-simple

Lie groups III, Trans. Amer. Math. Soc., vol. 90 (1959), pp. 431-484.
6. HARISH-CHANDRA, Harmonic analysis on real reductive groups I: the theory of the constant

term, J. Functional Anal., vol. 19 (1975), pp. 104-204.
7. S. HELGASON, Analysis on Lie groups and Homogeneous Spaces, Regional Conference Series

in Math., No. 14, Amer. Math. Soc., 1972.
8. Y. MUTA, Positive definite spherical distributions on a semi-simple Lie group, Mem. Fac. Sci.

Kyushu Univ., vol. 26 (1972), pp. 263-273.
9. M. NICHANIAN, Transformdes de Fourier des distributions de type positifsur SL(2, R), C. R.

Acad. Sci. Paris., vol. 278 (1974), pp. 17-19.
10. M. SUGIURA, Unitary Representations and Harmonic Analysis, Kodansha, Tokyo, 1975.
l. P. C. TROraBI, Harmonic analysis of Co(G:F) (1 <_ p < 2), J. Functional Anal., vol. 40

(1981), pp. 84-125.
12., Invariant harmonic analysis on split rank one groups with applications, Pacific J.

Math., vol. 101 (1982), pp. 223-245.
13. G. WARNER, Harmonic Analysis on Semi-simple Lie Groups II, Springer-Verlag, New York,

1972.

BOWDOIN COLLEGE
BRUNSWICK, MAINE


