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THE LATTICE OF GROUPS CONTAINING PSL(n,q) AND
ACTING ON GRASSMANNIANS

BY
JUSTINE SKALBA

Section 1

We consider here the set  of all subspaces of a fixed dimension inside a vec-
tor space. This set is technically called a Grassmannian. The special linear
group has a natural representation on £, which we will show to be essentially
maximal inside the symmetric group on Q. More precisely, we have the follow-
ing terminology and result.

Let V be an n-dimensional vector space over a finite field with g elements.
Let @ = Q(V,k) be the set of all k-dimensional subspaces of V. Then
PI'L(n,q) has a faithful natural representation on Q(n,k), which we will
denote by G, = G,(n,k). In the case n = 2k, (G,,Q) is permutation iso-
morphic to its dual, and we have natural graph automorphisms arising from
the inverse transpose transformation. We define G, = <G.,,j > where j is any
non-trivial graph automorphism of G,. Observe that G, has index 2 in G,, and
all graph automorphisms are contained in G,. Let S, = S,(n,k) be the
representation of PSL(n,q) on Q. Denote by A, the alternating group on (.
Finally, let G be any subgroup of S, containing S,. We will prove:

THEOREM. Suppose 1 = k < nand (n,k) # (2,1).
Ifn + 2k, then GES G, or A, € G.
Ifn = 2k, then GC G, or A, € G.

There are questions concerning what occurs when we represent a Chevalley
group on the cosets of a maximal parabolic subgroup. In particular, when is
this group maximal in the alternating or symmetric group on these cosets? A
maximal parabolic subgroup is maximal as a subgroup of its Chevalley group
[9]. In the case of PSL(n,q), the maximal parabolics fix k-dimensional sub-
spaces for 1 = k < n. Therefore the representation of S, on Q is primitive. In
our case, it’s very easy to prove this directly. As the idea of the proof is used in
a later lemma, we include it further on in our introduction.

The cases Kk = 1, n = 3 have already been solved by Kantor and
McDonough [7]. Considering the dual space of V, the cases k = n— 1 with
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n = 3 are also done. In particular, all cases when n = 3 are completed. This
will be used as a starting point for a proof by induction on 7.

We will be considering two groups, T and H, where T is generated by a cer-
tain group of projective transvections in S,, and H is the centralizer of T in G.
The group H has been introduced to deal with special difficulties arising in the
k =2 case. In Section 2, we find key information about the structure of No(T)
and Ng(H).

Continuing, in Section 3, we show T and H to be almost weakly closed in
their Sylow p-subgroups. Finally, in Section 4, G is shown to preserve the rela-
tion {(a,B)|a,8 € @ and dim(eNB) = kK — 1}. Chow [2] and Dieudonné [3]
have used this relation to characterize PT'L(n,q) acting on Q(V,k) in such a
way as to give a generalization of the fundamental theorem of projective
geometry. Using the result [2] or [3], our theorem follows immediately.

A proof of this theorem has been announced by V.A. Ustimenko-
Bakumovskii [10], but unfortunately contains serious errors and omissions.

At this point, we present a short, elementary proof on the primitivity of S,.

Let o € Q. Define A(a) = {BEQ|dim(aNP) = k—i+1},1 =i =< k+1.
These A(«) form the orbits of (S,), on Q.

LemMma 1. S,(n,k) is primitive on UV,k) forall1 < k < n.

Proof. Clearly S,(n,k) is transitive. Let & be a block of S,(n,k) with
|®| = 2. Then & contains « and 3, where 8 € A,(c) for some i > 1. Thus

{0} UBY> = {a} U Ala) € &.
By symmetry, A(G) € ®. As an element of the projective geometry P(V),
a=aoa +(@NP) and B =B +(@NP)

where dim(a’) = dim(B8’) = i—1 = 1.

Let oy €ENa’,1) and § € UV,i— 2), where { N = ¢ N (o, + B) = 0. This
makes sense as i—2 < k—1. Then y = (¢NPB)+ a; + { € A(B), so yE .
Since v € A,-i(e) also, A-y(a) € .

Suppose i # k+ 1. Thus dim(eNB) = k—i+1 = 1. Let

B:€Q@B,1), t€QanNB,k—i) and »EV,i-1),

where N (a+B) =9NPB =0. (Here i—1 < k—-1.) Then 6 =
£+ B+ 1 € A(B), s0 6 € d. Since § € Auy() also, Aui(a) € P.
Continuing in this manner, we can show & = Q.

Notation and terminology. For each element f€ Hom(V,F,) and v € f~'(0)
there corresponds a transvection #;, : x—x+ f(x)v, where x€ V — {0}. Let W
be a hyperplane of V, and T = T(W) be the group generated by the projective
transvections fixing W. Then T is an elementary abelian p-group stabilizing the
chain ¥ > W >0 for some prime p, and |T| = |W| = g™

Let A be the support of 7 on @, and I' the fixed point set of 7, so that
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' = Q(W,k). For w € Q(W,k—1), we define y, = [« EAlaNW = w}.
Clearly, y. is an orbit of T on QV,k), and |y.| = |W/w| = ¢*. We shall
use A for the set {y.|w € QW,k — 1)} of orbits of T on A.

We introduce the notation

[] =i|:rl__g'__":_1_and[;] =1, wherer=zs=0;[] =0ifs < 0.
= g*1—1

Thus
Q] = [;1,IT] =[], |A] = [[2] and |A] = ¢+[20).

Our proof of the theorem is by induction on n. Therefore, in all the remain-
ing lemmas, we assume that the theorem holds for every vector space of di-
mension less than n. Because of the result of Kantor and McDonough, we also
assume Kk # 1, n— 1 and » = 4. In addition, we suppose that A, ¢_ G.

Section 2

We need the following result in order to prove Lemma 2.1: If x = 25, then
there is a prime r such that x < r < 6x/5[5].

LeEmMmA 2.1. Let N _lle any subgroup of G containing Ns, (T) and having A
and T as orbits, with A as a set of blocks. Then:
(i) either
N&C N°(T)d = PTL(n- 1,q)
or
n=2k-1 and N*C (N5(T)%),
and
(i) either
NT C Ng(T)" = PT'L(n—1,9)
or
n=2k+1 and N*<S (Ng(T)).
Proof. Since N (T) € N, it follows that Ny (T)* € N4 and Ns(T)" € NT.
We observe that (N5 (T)%)’ acts like Sy(n—1,k—1) on Q(W,k — 1), and

(Ns(T)T)’ like S,(n — 1,k) on Q(W,k). Thus we can apply our inductive as-
sumption.

(A) Suppose Az € N We now show that Az C N? also.

If not, NT has Az as a composition factor. Using induction to find the possibil-
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ities for NT, this can happen only if |I'| = |A], that is, n = 2k. Then
(NY)' = (NA)’ = (N"U%)’ = Ajz. Let p,, p, be projections of (NTY%)’ onto
(NT)" and (N®)’, respectively. Thus ¢ = p,op;' : (NY)’' —(N*)’ is an isomor-
phism. As |I‘l > 6, we know that ¢ is a permutation isomorphism. There-
fore, for « in T", the subgroup ¢((NF).) fixes a point § in A. In particular,

#(Ns,(T)%) fixes B also, and we have a contradiction. Hence, Az C NA As
|A] > 2, this means that N2is transitive.

Since T is transitive on each y., and T € Npz, it follows that Ny is tran-
sitive on A. As G is primitive, by 13.1 of [11], G must be doubly-transitive.
Therefore 15.1 of [11] holds, i.e.,

™) m = —‘%- - —23@, where m is the minimal degree of G.

Case (i). kK > 2. Let h be a p-element of N whose image in N§ is a pgn*-
cycle, and let g = 47", Then g moves only (pg™*)g** points. Since

|sup(g)| < J—?—'—'—Z-,’@
this contradicts (*).

Case (ii). k = 2. Let L be the kernel of the homomorphism N —»NpA_.

(a) Assume g*2 = 100. Let 4 be an element of N whose image in N# is an
r-cycle, where r is a prime such that |y,|/4 < r < 3|¢.|/10. If L has no
elements of order r, then |sup(h'*')| < rg*?, contradicting (*) as before.
Thus, we assume that L has an element of order r. Since T € L, the set of non-
trivial orbits of L is A. Hence each L*“ has an element, say g.,, of order r. Our
g. consists of at most 3 r-cycles because 4r > |y..|.

Suppose L is imprimitive. Let § be a non-trivial block of L**. As |6] | | .|,
wehavep < |6 < |y.|/p. Choose 6 to contain a point « in sup(g.)). Suppose
0 ¢ sup(g.). Let BE 6 N fix(g,). Clearly {8} N a<e> C 6, ands0|0| = 1+ r.
As |y.| < 4r, we must have || = |y.|/p, where p is 2 or 3. Next, suppose
6 € sup(g.). In addition, assume || > 3. Then 6 contains two points of an
r-cycle of g,. As r is a prime, it contains the entire r-cycle, and again
|6| = ¥.|/p. Combining all possibilities, we have |8| = p or |y.|/p, where

= 2,3. Hence L¥* is contained in

S, Wr Sy, OF Sy, WIS,

and has a composition factor which acts primitively on a set of degree |y..|/p
and contains an r-cycle. Since r < 3y./10 and |y.| = 100, we have
r+3 < |6|. Then wecanuse 13.9 of [11] to show that L** hasA4,, ,asacom-
position factor. Thus m < 6|A | or 15|A7| for p = 2 or 3, respectively. But
this contradicts (*). We conclude that L* is primitive.

If we consider g, again and 13.10 of [11], we must have 4, C L"~. Since
q"* # 4 or 6, any non-trivial homomorphism (L")’ — (L"“")’ is a permuta-
tion isomorphism. This means if g|,_ is a 3-cycle, then g|, _, is a 3-cycle or the
identity element. Thus m < 3| A" |, a contradiction.
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(b) For the cases g** = 25,27,32,49,64 and 81, let r be 7,11,17,13,17 and
23, respectively. We easily obtain contradictions as above. Now consider the
remaining cases: g"> = 4,8,9 and 16. Define s to be 5,13,11 and 19, respec-
tively. Clearly Nt has an element of order s. Let 4 be a pre-image of this ele-
ment in Ny, and g = A'tl, Thus Inn(g) acts on each L* and has order s. All
groups of degrees 4,8,9 and 16 are known, and in every case s € w(L**). Thus g
normalizes a Sylow subgroup P, for each prime ¢ € w(L"**). Let | |L*| for
some integer u, so Aut(P,/ ®(P,)) is a subgroup of GL(u,?). Since s{f |GL(u,1)|,
it follows that g centralizes P,/ ®(P,). By a theorem of Burnside (5.1.4) [4], g
centralizes P,. This is true for all ¢, thus g centralizes L, for each w. Hence g
centralizes L, and therefore 7. We can choose ¢ € T so that sup(g) # sup(?),
and consequently # # ¢, a contradiction. Therefore (i) holds.

(B) Suppose Ar € NT. Then NT does not have PSL(n — 1,q) as a composi-
tion factor, and so Ar € N3. As |[I'| > |y.|, we have Ar € N and a contra-
diction by 13.5 of [11]. Hence (ii) holds as well.

Let v be a non-zero vector in V-W, and define 7’ = T’(v) to be the group
generated by the projective transvections fixing <v>. Then T” is the elemen-
tary abelian p-group of order g»* stabilizing the chain ¥ D<v> D0.

Further, let A’ = sup(7”’) and I’ = fix(T’) = {a € UV,k)|<v> Caj.
For each o € QW,k), we define g. = o’. Then {g.|a € QUW,k)} is the set
A7 of orbits of 7" on A’. Clearly |o.| = | Hom(a,<v>)| = g*. Note that

IT'| = [5) [A7] = [%'1and [A"] = ¢*[7].
Since N5 (T”) on Q(V,k) is permutation isomorphic to Ns (T') on Q(V,n — k),
we have the following result.
CoROLLARY 2.2. Let M be any subgroup of G containing Ns (T') and hav-
ing A’ and T’ as orbits, with A’ as a set of blocks. Then
(i) either
M3 C Ng(T')2" = PTL(n-1,q)
or
n=2k+1 and M~ C (N5(T')*),
and
(ii) either
M C N (T')" = PTL(n—1,q)
or
n=2k-1 and M" C WN(T')').

Let X be any group acting on a set Q, and A some subset of Q. Define X ,, to
be the largest subgroup of X fixing A as a set.
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LemMa 2.3. If J is the largest subgroup of G having A’ and T’ as orbits,
then

JU'C Ne(T')"" = Giirny = PTL(n - 1,9)
or
n=2k-1 and J*' C(G;5").

Proof. Define M as in Corollary 2.2. Then M C J, and so N;(T')"" €
Jr’. If the lemma does not hold, then, by induction, Ar, C J*’.

(A) Suppose J*’ is imprimitive. By Corollary 2.2 some « in Q(W, k) belongs
to a non-trivial block o distinct from g,. Since M C J, it follows that ¢ is a
block of M’ also, and so is contained in g.. As o is non-trivial, there is a 8 in
o — {a}. Define Y = N;(T').. Then Y C J, and Y maps 8 to each point in
0« — {a}. Thus ¢ 2 g., a contradiction.

(B) Suppose J4' is primitive. Define R to be Jr,. Since R<JJ and T' C R,
it follows that R4’ is transitive.

Case (i). Suppose R4’ is imprimitive. Let 7 be a non-trivial block of R4’ of
minimal length. As R<]J, we know that 7¢ is a block of R for each g € J, and,
in particular, for each g € N, (T’). This means that 7N 7¢ is a block as well.
Since 7 is non-trivial and of minimal length, | 7N 7¢| > 1 implies that 7 = 7.

Now suppose o and 8 are points of 7 in distinct 7’ orbits on A’. We may
assume o € YW, k).

(a) We claim that we can choose 8 in Q(W, k) also.
Now B € g, for some y # a, yE€ QW,k). If aNy = 0, then §% = g,; s0O
in this case, take 3 = +. It remains to consider the situation where

{ = dim(aNy)=1.
Let
a=(aNy)+a’ and vy = (aNy)+v',

where dim(a’) = dim(y’) = k— ¢ = 1. Considering %> again, we may
choose 3 so that v’ € 8. Suppose BEZ QW, k). Then 3 = 8’ ++’, where dim
B'=fand B’ S aNy+ <v>.Thus B’ = 6+ By, where 6€ Q(aN,f — 1)
and 8, = <w+av> for some wE (aNy)—6 and o€ F§f. We have
B=06+B+7".

Let U be the set stabilizer in N5 (T”) of the subspaces o’ + <v>, §, <w>
and B, of V. As

TN0.28(1) = (aNy)+ FEQVE ¢ C (o + <v>)},

we have 7 = 7for each u € U. But this means thereisane = 8, + 6+ ¢’ in7,
where ¢/ € QW — (aU ¥), k—1). Clearly we have a t€ T’ C J such that
B, e € 7*N W. Replacing («,8) by (8, ¢’), we are done.
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(b) Weclaim that 7 = A’.
Let o and 3 be distinct points in 7N Q(W,k). Since

7N ea28B) = ((aNP)+EQVE § C (o' + <v>)),
we have
7 = 7 for each g € N5 (T")au<.>

and similarly for each g € Ns(T")su<,>. Clearly dim(aNB) = k—i+ 1 for
some i, where 2 < i < k' = min{k + 1,n/2}. Thus

A() NQW,k) C 7,
and, by symmetry,
AB)NUWK)E 7
also. We proceed as in Lemma 1, to find points
Y € Aii(a) N ALB) N QW k)
and (if i # k)
8 € Aii(a) N AB) N QUW,K).

Continuing, this shows Q(W,k) € 7. Next let o be any point in Q(W,k).
Choose 8 in Q(W,k) so that N B = 0. Then a'? = ¢, € 7, and so A’ C 7,
contradicting R4’ imprimitive.

We must have 7 C g, for some «, hence |7| < g*. Since R’ = Jp’ is
transitive and G is primitive, by 13.1 of [11], G must be doubly-transitive. Let-
o and B be distinct elements of I''. As R = Jr, is transitive on A’ and
Ar, C JT', either G, has orbits of length |[I'/| —2 and |A’| or G is triply-
transitive. Suppose G, is imprimitive. If 8 and vy are distinct points of a non-
trivial block ¢ on @ — {a}, then v°*# C ¢. Since |A’| > |Q]/2, the G, blocks
have length |[I'’ | — 1. Bt RC G.and |[I'’ | — 1 > g* Hence .G, is primitive.
We continue with other points in I'’ to obtain the conclusion that G is at least
T | — g*+ 1 transitive.

Case (ii). R"’ primitive. By an argument as in the above paragraph, G is at
least |’ | — transitive.

We now combine these two cases with a well-known transitivity formula.
(See p. 21 of [11].) If we define ¢ to be the degree of transitivity of G, then

t <3In|Q|.

Observe that || < |I'’ |2 Hence we obtain |[I'’ | — g+ 1 < 6 In|I"’|. This
leads to a contradiction in all cases except those when either (n,k,q) = (5,2,2)
or (n,k) = (4,2) and q < 43. Except for the n/2 = k = q = 2 case, our
transitivity is so large that we can produce a prime s which divides |G| and
also satisfies || —¢ < s < |Q]| -2 unless » = 4 and g = 5,8 or 13, in
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which case |Q| — ¢ < 25 < |Q| — 2. For n/2 = k = q = 2, if we consider
| A’ |, then G has an element consisting of four 7-cycles. In all cases, we have a
contradiction to a well-known theorem (13.10 in [11]) constraining elements of
prime order in a primitive group. Thus A/ ¢_ Jr’, and our result follows.

Let K be the kernal of the homomorphism Ng(T) —No(T)?.

LEMMA 2.4. Let Q be a Sylow p-subgroup of Kr. Then, for each Y., in A, we
have Q" = T**. Ifk > 2, then Q = T.

Proof. For a non-zero element x of W, set
I/ = {a € UV,Kk) |x € a).

Define Y, = Gir;,. By Lemma 2.3, using x in place of v, we know that

Y C Gy, = PTL(n-1,9).
Set A, = ANTI',. Then
A = {0€EQ-QW,k)|xE o} = Ulyu|wE AW,k —1) and x € w).

Any subgroup of K (thus K;) leaves each y,, in A invariant. Hence Kr C Y,. As
T C Kr, we have Q% = T*. In particular, Q* = T%+ for each w in
W,k — 1) which contains x.

Now assume k > 2. Suppose Q DT and take h € Q*. Then k| , € T« for all
XxE W.Thus h|s, = 1|s 01 h|a, = i |s, Where g(x) € W — {0} and £, is a
projective transvection in T with (¢, — 1)V = <g(x)>. Therefore
h|s, = 1]4, if and only if <g(x)> = <x>. Now suppose that h& T. As
h #+ 1,thereisau € W — {0} such that ., = t.|a. # 1]a.. Replacing 2 by
ht},,, we may assume that 4|, = 1|a,. Since A & T, thereisavE W— <u>
such that h|a, = ty|a # 1]a. We take o€ A, N A,. It follows that
o = o' = o, 50 g(v) € a. Indeed, g(v) belongs to every o in A, N A,. Now,

ANA, = (0€EQ| <u,y >Ca & W),

and <u,v> is the intersection of the elements of A, N A, considered as sub-
spaces of V. Thus g(v) € <u,v>, and so g(v) = au + bv, where aq,b € F, and
a+0. Replacing & by ht(..,, we may assume k|, = 1|,, and ks, = 1|4,

Since h€& T, there is a y€E W — (<u>U<v>) such that k|, # 1],
Suppose

YyeW—-<uv>.
Using the pairs (4,y) and (v,y) as we did with (¥,v), we obtain
hla, = tys|a, Where g(¥) € <u,y>N<vy> = <y>.

Thus 4|, = 1], a contradiction. Thus y € <u,v> — (<u> U <v>). We
note that u,y and any element in W — <u,y> are linearly independent. There-
fore h|s, = 1], here as well. We have a contradiction. Hence Q = T.
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We define H to be C;(T). Then H <Ns(T). Observe that Ng(T') satisfies
the conditions for N in Lemma 2.1. Thus, if H* # 1, then (Ns(7)%)" € H>.
But then H does not centralize T. Hence H € K. As T*“ is regular and
abelian, HY« = T"* for all w € QW,k - 1).

For the following lemma, we will need another well-known result from
number theory:

Let a,b,x and y be positive integers, with x # 2. There is a prime which
divides a* — b* and, for every y < x, does not divide a” — b, with the single
exception 2° — 1 [1].

LemMma 2.5. () K' = 1.
(i) Q = H.
(iii) Ifk > 2and P is any Sylow p-subgroup of G normaliz-
ing T, then P € Ng(T).

Proof. Let Q be defined as in Lemma 2.4. For all w € Q(W,k — 1), we
have shown Q% = T¥~, Thus Q is an elementary abelian p-group. We note
that Ng(T) satisfies the conditions for N in Lemma 2.1, and K << Ng(T). Sup-
pose that (i) does not hold. By Lemma 2.1 (ii), KT contains PSL(n — 1,q) as a
composition factor.

Now suppose K% has PSL(n— 1,q) as a composition factor also. Since
PSL(n— 1,q) is simple, so does each K**. As K C Ny(T), we must have
TY< <K', Since T~ is regular and abelian, it is its own centralizer in K"
Thus K*</T"« is isomorphic to a subgroup of GL(n — k)r,p), where ¢ = p". If
we assume (n,q) # (7,2) or (4,4), there is a prime dividing ¢"* — 1 and not
dividing p' — 1 for i < r(n—1). That is, this prime divides |PSL(n— 1,q9)|
but not |K*“|, a contradiction. For the two exceptional cases mentioned
above, a higher power of 3 divides | PSL(n — 1,q)| than |K*“|, also a contra-
diction. Hence K* cannot have PSL(n — 1,q) as a composition factor.

We conclude K& # 1. As (Ns,(T)T)’ is primitive, so is No(T)". Thus K, is
transitive on I'. Since |I'| < ©/2 and G is primitive, we must have 4, € G by
13.5 of [11], a contradiction. Hence (i) holds.

As H C K, we immediately obtain Q = H, so (ii) holds.

If kK > 2, then H = T and (iii) follows.

Section 3.

If P is a Sylow p-subgroup of G,, we define W, to be the 1-dimensional sub-
space fixed by all elements of P. We let T* be the group generated by all pro-
jective transvections fixing W,, so that T*is a contragredient of T.. If n = 2k,
a graph automorphism maps 7 to T*.

LemMa 3.1. Let k > 2. Let P be a Sylow p-subgroup of G containing T
and T*. Suppose g is an element of G such that T* C P. If n #+ 2k, then
T¢ = T, and if n = 2k, then T¢ = T or T*.
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Proof. Suppose T # T¢ = U, where gisin G, and Tand Uin P. By Lem-
ma 2.1 of [8], we may assume that 7 and U normalize each other. In par-
ticular, U € Ng(T). By Lemma 2.5 (iii), we know U € Ng (7).

Since £k > 2, T is its own centralizer, and consequently [T,U] # 1. As
[T,UIC TNU,wemusthave TN U # 1.Lett € (TN U)*. Then tis a trans-
vection with (¢! — 1)V = <w> C W for some w € W+,

Since T is the sole Sylow p-subgroup of K, it follows that U Q K. Hence
sup(U)NT # @. As U = T¢, clearly U has exponent p. Since the Sylow
p-subgroups of G,/S, are cyclic and U € G,, we see that U contains a sub-
group Y of index at most p in U such that Y = S, N U. Both T"and U have or-
bits of length g"* > p, hence sup (Y) NT # @ also. As Y € N;(T), each
g € Y — T acts non-trivially on W = fix(7T). Then

3.1 fix(<t,g>)")| = [fix(g|r] = [,

since g fixes a subspace of W of codimension at least one.

Case (i). As Y normalizes 7, Y leaves W invariant. Hence (¢ — 1)V €& W for
g€ Y. Suppose (g— 1)V #= (t— 1)V for some t€(TNU)* and g€ Y- T.
Let

£ =dim((f- DV+(g—-DV).

Then { = 2, and <t,g> is a subgroup of U of order p*. Each element of A
which is fixed by <t,g> either contains (t — 1)V + (g — 1)V or contains
(¢t — 1)V and no vectors of W moved by g. Since g moves at least one vector in
W, we obtain (respectively)

[fix(<t,g>)| < ¢ ;=3 + (3D
3.2)
< ¢ ™G3 + 2D
Then (3.1) and (3.2) give an upper bound for |fix(<z,g> |.

Now, let S be a subgroup of T of order p* having two nontrivial elements
with distinct supports. Then |fix(S)| = ¢»*[;-3] + [*;']. Thus
[fix<r,g>]| < [fix(S)].
Butas U = T¢, U and T are permutation isomorphic. We have a contradic-
tion.

Case (ii). It remains to consider the case that

-1V =(g-1)Vforallt€(TNU)*and g€ Y.

Set W, = (¢t—1)V. Then dim W, = ¢ = 1. Consequently g is a transvection
on V. Furthermore, each ¢ in T has the form ¢ = ¢, : v—v + f(v)w where
wEW and fEHom(V,F,), f(w) = 0. So TNU C <t,,|wEW,>.

On the other hand, Y consists of transvections of the form t., wWhere
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f€ Hom(V,F,), f(w,) = 0and <w,> = W,. Since |Y| = g"'/p, we must
have W, = W,. Also, as |U/Y| < p and U is abelian, U cannot contain a
field automorphism. Thus U = Y = <{, |f(w,) = 0> = T* as required.
In addition, n = 2k since T and T * are permutation isomorphic.

If we inspect the proof of Lemma 3.1 for the case k = 2, we obtain

@ T*CH,
(i) n = 4and T*C T*H,
or
(ili) 7 > 4and |fix<g,t>| < [F?] +¢"2 < |A]|,
where (iii) leads to a contradiction.

In the next lemma, we deal with the k = 2 case, which means using H in
place of T. Our analog to T*is H* = Cg(T*).

We note that Ns(H) satisfies the conditions for Lemmas 2.1-2.3. We define
L to be the kernel of the homomorphism Ng(H)—Ng(H)?. Using the first
paragraph of the proof of Lemma 2.4 and the proof of Lemma 2.5 (i) and (ii),
we find that L™ = 1 and H is the Sylow p-subgroup of L.

LeEMMA 3.2. Assume k = 2. Let P be a Sylow p-subgroup of G containing
H and H*, and let H* € P for some g€ G. If n #+ 4, then H®* = H, and if
n = 4, then H* = H or H*.

Proof. Let U = H¢ C P for some g€ G, and assume U # H. By Lemma
2.1 of [8], we may assume [H,U] € HN U, and in particular, U € Ns(H).

Since H is Sylow in Ng(H)r, we must have sup(U) N T' # @. This means

=4 and T* C T*H. Thus U C T*H, and sup(U) = sup(T* as
|sup(U)| = |sup(H)I-

Clearly |UT| = g2, so UN H has index g* in U and H. Since UN H fixes
an H-orbit ¢, in A for some w€ Q(W,1), we have UNH = ‘H,,. We know
that N; (T) normalizes H. If HDT, then |H!*'| = q* for each
w’ EQ(W 1) — {w}. But this means that U has an ofblt of length g3 a
contradiction as U and H are permutation isomorphic. Therefore H = T, and
soU=T*= H*

Section 4

We define 6, = {(o,8)|a,BE Q@ and dim(aNB) = k—i+ 1}, where
1 < i < k+ 1. These 6, form the orbits of S,, G, and G, on @ x Q.

Let C be the largest subgroup of S, preserving 6,. Chow and Dieudonne
have shown that C = G, if n # 2k and C = G, if n = 2k. Therefore we are
essentially done once we show G C C. In the case where n =2k, we define
G = <G,,G>.Clearlyif G C C, then G C C also. Thus we can replace G by
G when n = 2k throughout this section.
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LEMMA 4.1. Assume k > 2. Let A be an orbit of G on QX Q. Then No«(T')
is transitive on A N (I' x IN).

Proof. Let¢ = (o,08) € A. Assume that U is conjugate to T in G, and that
T and U are subgroups of G;. We wish to show that U is conjugate to T in G;.
There is a g € G, such that TU U* € R C P, where R and P are Sylow p-sub-
groups of G; and G, respectively. By Lemma 3.1, if n # 2k, wehave T = U,
so T is trivially conjugate to U in G;. If n = 2k and T # U?, then there is a
graph automorphism 4 € G, € G such that T = U+, We are done if we can
choose A to be in G;.

We observe that T and U? are in S,. Without loss of generality, we may let
PN S, be lower triangular with respect to the basis {v,,v,,...,v,}, that is,

P(<V1,V¢+1,...,V,,>)g <Vi+1,Vuz,...,Vn>) fori = 1,2,...,"— 1.

Thus U = T*, v, € aN B and a,BE . Clearly there is a graph automor-
phism y taking T to 7. (T’ is described just before Corollary 2.2.) Further-
more, y can be chosen so that it has a “reverse action” on each point of Q of the
form <v,,...,v, >. That is, y maps

VeV > 10 <V oo,V >

where v, = V.-, and 1 < i, < n. Now let s be the image in S, of the involu-
tion of SL(n,q) exchanging v, and — v,.,,for 1 < ¢ < n. Then ys maps T to
T* and fixes all points of @ of the form <v, ,...,v, > .Inparticular, it fixes
two. points v, 6 of this form in I' where dim(y N §) = ¢ for each value of ¢ such
that 1 < ¢ < k. We let y = (v,06). Then there is an x € N5 (T') mapping n to
§. Weset ™t = (ys)*. Then h € G;, and, as T*<IN; (T), we have T = U#,
Thus T is conjugate to U in G, again.

We conclude, by 3.5 of [11], that N&(T') is transitive on AN fix(T) =
ANTxT).

Using Lemma 3.2 in place of Lemma 3.1, we obtain the following result.

CoROLLARY 4.2. Assumek = 2andn # 4. If Aisan orbit of G on QX Q,
then Ng(H) is transitive on AN (" x I).

LemMma 4.3. If (n,k) + (4,2), then G C C.
Proof. Suppose G 9_’ C. Since S, € G, there is an S,-orbit 6, where
i # 2, and a G-orbit A such that
0,U6: € A C OxQ.

Clearly 6, N (I' x ') # @. If (n,i) # 2k, k + 1), then ;N (I" x ") # B also. In
this case, by Lemma 4.1 and Corollary 4.2, 6, and 6, fuse in No(T)™ " if k& > 2,
and in N6(H)™ if k = 2. Observe that both Ng(T") and Ng(H) satisfy the con-
ditions of N in Lemma 2.1. Hence their constituents on I" are contained in
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N (T)F, or, if n = 2k + 1, in (NG (T)"). Thus, we have a contradiction as no
such fusion takes place. Hence A = 0, U 6,., and n = 2k. By hypothesis
(n,k) + (4,2), so we must have k > 2.

We introduce Higman intersection numbers here [6]. Let «,3,y € Q. Recall
that A(a) = {y € Q|dim(aNy) = k—i+ 1}. We define

m', = |Afe) N A(B)|, where B € A().

Let i and r be any numbers except2and k + 1. As A = 6, U 6.1, we must have
mj, = m,,, . In particular, m;, = my,,,

If k > 4, then m;, # 0 and m,,,, = 0, a contradiction.

Suppose k = 4. We take any point & in Q. Let { € Ax(8) and 7 € A,..().
Then

mi/, = ID,+Z|D',Z and m,::ﬂ;, = |D+E‘D’5,

where D’,Z,D and E are 2-dimensional subspaces of 6 N ¢,V — (6+¢), 6 and
7, respectively. Since n = 8, we have m;, > mj,,,, another contradiction.
Suppose k = 3. Let 6 = <v,,v;,vs>, and let

= <Vi,Vy, Vs > € Ay0) and 7 = <V, Vs,V > € Awii(0).
Thus
A0 NAE) 2 U =,
where
® = (<u,x, > | UESNE = <y, 1>, X, €EQ—(8+ )],
= (U, Uy y> U ES— U, EL -8,y EQ—(6+),

and
As(8) N As(n) c (<Y1, Y2, x> |y1 €6,,€1,xEQ-(6UnU O,
where 0 = {<y,+ay,>|a € F}. Then
m; > GG = G + @ - EDXAD - ED > B1PA - 260 - (@ - 1) = my,, 5.

We have another contradiction. Hence G € C.

Lemma 4.4. If (n,k) = (4,2), then G C C.

Proof. Since S, is a rank 3 permutation group, if G ¢ C, then G is
doubly-transitive. Let o = <v,,1,>,8 = <v,,»,> and y = <v;,v,>.
Since G is 2-transitive, G, and G,, have orbits of the same lengths on Q. Now
we compare the size of (S, ).,-orbits and (S,)s,-orbits on Q. We find that either
(i) G is triply-transitive or (ii) ¢ = 2 and the one-point stabilizer of G is a rank
3 permutation group with subdegrees 1,9 and 24.

Case (i). G is triply-transitive. By a proof analogous to the one in Lemma
4.1 (with G acting on © x @ x Q this time), we can show that Ng(H) is triply-
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transitive on fix(H) = I'. But No(H)™ € N (T)", which is not triply-transi-
tive, and we have a contradiction.

Case (ii). Here ¢ = 2 and G;, has orbits of lengths 9 and 24. We let
8 = <, v;>. Since Ng (T)" is not triply-transitive, if we list our (S,),,-orbits
and compare sizes, then we find that 6 belongs to the orbit of length 24. As
|G| = |B°||v%]||8°| | Gays| , We see that 16 divides |G : Ggys|.

We are assuming that G, € G by the remark preceding Lemma 4.1. In the
proof of Lemma 4.1, we found an element ys of G, that fixes 8,y and é. Clear-
ly, as this ys maps T to T*, it maps fix(7T) to fix(7*), and so does not fix all
points in I'. Also (y5)* € N«(T), so | ys| = 2'b, where b and ¢ are positive in-
tegers, with b odd. Let g = (¥s)® so g is a 2-element. Then g> € N4(T), and as
b is odd, g does not fix I' also. Since g fixes 3, v and 6, this means g€
(G, - G)N(Gsys— Gr). As G, S G and 16| |G : Gg,s|,we have
32| |G : G:|. If we let P be a Sylow p-subgroup of G, as H C Gr, we see that
32|H|||P|.

Now we choose our P to contain H and H*. If we consider the proof of
Lemma 4.1 again, we note that P contains a subgroup X of index 2 normaliz-
ing H. In the remark preceding Lemma 3.2, we mentioned that H is Sylow in L
and L C Gr. But, as No(H)*=PGL(3,2), we see that | X| |8|H|. We have
another contradiction. Hence G € C.

Conclusion

THEOREM. Suppose 1 = k < n and (nk) + 2,1). If n #+ 2k, then
GC G,0orAa S G. If n = 2k, then GCS G, or A € G.

Proof. The proof is by induction on n. As we noted in the introduction,
the case n = 3 is done.

Suppose the theorem holds for all cases (n—1,i), wherel £ i < n— 2 and
n = 4. If we assume Aq 9; G, then, by Lemmas 4.3 and 4.4, we have G € C.
By [2] and [3], it follows that G{_ G,if n # 2kand G C G, if n = 2k. Hence
the theorem holds for (n,k), and we are done.
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