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A NOTE ON FUCHSIAN GROUPS

BY

MORRIS NEWMAN

Introduction

The origin of this note was in a query to the author from J. Lehner and M.
Sheingorn, asking for a proof of Theorem 2 below. This theorem follows
directly from Theorem 1 below, which is itself an easy consequence of known
theorems, such as the Frobenius induced representation theorem, but does not
seem to have been noticed previously. In the author’s opinion this theorem is
of genuine interest, since integral matrix groups may be treated arithmetically,
and so may cast light on the more complicated fuchsian groups.

I am indebted to M. Tretkoff for supplying many references to the literature
on theorems of the type of Theorem 2, and for numerous interesting remarks.
In particular paper [6] by P. Scott contains a proof of Theorem 2 for surface
groups, using hyperbolic geometry as the tool; and M. and C. Tretkoff have
given a proof using covering spaces.

I am also indebted to W. Magnus for numerous valuable comments and
suggestions. Most of the necessary background material for this note may be
found in his book on the noneuclidean tessellations [4].

Finally, I am indebted to R. Lyndon for reading a preliminary version of
this note and for suggesting a number of additions and improvements which
have been incorporated into the text.
The theorem of Frobenius referred to above is as follows: Let G, H be

groups such that G D H, (G:H) =/ < o. Let a be a faithful representation
of H of degree n. Then a induces a faithful representation/3 of G of degree
/n, and/3 is integral if a is integral. A convenient reference for this theorem is
Boerner’s book [1 ].
Now suppose that G is a finitely generated fuchsian group. Then as an

abstract group G is generated by elements

El, E2,-.., Es; P1, P2,.--, Pt; A1, BI, A:, B:,..., Ag, Bg.

Any one of s, t, g may be 0, but to avoid degeneracy, it is assumed that
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s + + g > 0. If s > 0, then there are integers m >= 2 such that Ei is of order
m i, 1 =< _< s. These generators are referred to as "elliptic". The P are referred
to as "parabolic", and the A and B as "hyperbolic". The defining relations
for G are

(2)
Ei"’ 1,1 <= <=s,
E1E2 EsP1P2 Pt[A1, B1][A2, B2] [Ag, Bg] 1,

[Ai, Bi] AiBiA-IB-1, 1 <_ <= g.

If s 0, then G is torsion-free. If 0, then G is said to be compact. If > 0,
then the relationship (2) may be eliminated (by eliminating Pt, say) and G
becomes the free product of 2g + t- 1 infinite cyclic groups and s finite
cyclic groups. If s 0 as well, then G is just F2g+ t-1, the free group of rank
2g + 1. If s 0, then G is g, the fundamental group of genus g. G
may always be realized as a discontinuous subgroup of PSL(2, R), provided
that it has positive hyperbolic area. This condition is equivalent to the
requirement that

2g-2+t+
i=1

1-+/-)
The theorems

The theorems we will prove are the following:

THEOREM 1. Let G be a finitely generated fuchsian group. Then G has a

faithful representation as a subgroup of GL(n, Z), where n depends on G.

THEOREM 2. Let G be a fuchsian group, S { a1, a2,..., ak ) a finite subset

of G, , an element of G such that ya ai3/, 1 <= <= k. Then a subgroup H of G
exists such that (G" H) < o, ,[ H, but ai H, 1 <= <= k.

These are the principal results. Some additional remarks will be made in the
next section.

Proofs

As was indicated in the introduction, Fr, g will stand for the free group of
rank r and the fundamental group of genus g, respectively.

LEMMA 1. Suppose that r >= 1, g >_ 2. Then F has a faithful representation
as a subgroup of SL(2, Z), and Ckg has a faithful representation as a subgroup of
SL(8, Z). In addition, cb has a faithful representation as a subgroup of SL(3, Z).
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Proof If r 1, we may choose

111
as a generator of F1. Suppose that r >= 2. It is well known that F occurs as a
subgroup of F2. (This is an easy consequence of the fact that F2 contains
subgroups of any index s => 1, and that the rank of a subgroup of index s is
1 + s, a consequence of the Reidemeister-Schreier algorithm. If F2 is freely
generated by X, Y, then the subgroup consisting of all words in the generators
such that the exponent sum in X is divisible by s, is an example of a normal
subgroup of index s.) Thus it is only necessary to show that F2 has a faithful
representation as a subgroup of SL(2, Z). One such representation (among the
many possible) is obtained by choosing

[1 2] 1

as generators of F2. This result goes back to I.N. Sanov (see [5]).
If g 1, then the matrices

1 1 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 1

are generators of q,1 (the free abelian group of rank 2). Suppose that g >= 2. It
is also well known that qg occurs as a subgroup of q’2- (This depends on the
fact that q2 contains subgroups of any index s => 1, and that the genus of a
subgroup of index s is 1 + s, which is a consequence of the fact that the
hyperbolic area of a subgroup is equal to the hyperbolic area of the group,
multiplied by the index of the subgroup. If q2 is the group generated by
41, B1,A_, B_, with defining relation [At, B][A2, B2] 1, then the subgroup
consisting of all words in the generators such that the exponent sum in A is
divisible by s, is an example of a normal subgroup of index s.) In his book on
the noneuclidean tessellations [4], W. Magnus shows that q2 occurs as a
subgroup of the group generated by B, ABA-1, where

A [ v/l
0

We note that et is a primitive 12th root of unity.
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After a suitable diagonal conjugacy, we may conclude that 2 OCCURS as a
subgroup of the group generated by B, C, where

2(x- 2
1

Now B and C are of determinant 1 and have entries which are integers of the
algebraic number field Q(et). Since Q(et) is of degree 4 over the rational field
Q, this implies that b2 has a faithful representation as a subgroup of SL(8, Z).
This concludes the proof of the lemma.

LEMMA 2. Let G be a finitely generated fuchsian group. Then G contains a
subgroup H offinite index (so that H is also a finitely generated fuchsian group)
with no elements offinite order.

Proof This result is well known" It is the Nielsen-Fenchel-Fox theorem
(see [3]), and may also be derived from a general theorem of Selberg on matrix
groups (see [7]).
The set of values assumed by the index (G" H) has been exactly described in

a recent paper of A.L. Edmonds, J.H. Ewing, and R.S. Kulkarni (see [2]).
We are now in a position to prove Theorem 1. Let H be the subgroup of G

whose existence is guaranteed by Lemma 2. Then H, as a finitely generated
torsion-free fuchsian group, is either a free group of finite rank or a fundamen-
tal group of finite genus, depending on whether or not it is compact. In either
case, Lemma 1 guarantees the existence of a faithful representation of H as a
subgroup of SL(k, Z), where k may be taken as 2, 3, or 8. But then the
Frobenius theorem implies the existence of a faithful representation of G as a
subgroup of GL(n, Z), where n =/,k, and /z (G’H). This concludes the
proof of Theorem 1.
The proof of Theorem 2 is now quite simple. We may replace G by a

subgroup of GL(n, Z). Choose m so that ),ct ai, mod rn, 1 __< =< k (all
sufficiently large integers rn satisfy this condition). Take H as the congruence
subgroup of G consisting of all g G such that g-= ,t mod rn for some
integer (positive, negative, or zero). Since every element of G commutes
modulo rn with ,, and no et commutes modulo rn with ,, it follows that no ct
can belong to G, 1 =< _< k.

In conclusion, we give an explicit construction for the subgroup H of
Lemma 2, in the case when G is not compact. We retain the notation of the
introduction.
Assume that G has parabolic and elliptic elements (so that >__ 1, s >= 1).

Then G has a torsion-free normal subgroup H of index/, mlm2.., ms. The
proof is as follows:

Since G has a parabolic element, G is the free product

G Cm,*Cm,* ,Cm,, F,
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where Cm, (E ) is a cyclic group of order m i, and F is a free group of finite
rank. Define H as the subgroup of G consisting of all words w G such that
the exponent sum of w in the generator E is divisible by m, 1 <_ =< s. Then
H is well defined,

O_riNmi--1
l<i<s

is a left coset decomposition for G modulo H, so that

(G" H) mlm2. m,,

and H is clearly a normal subgroup of G. Furthermore, any element of finite
order must be of the form

AEiA -1 1 < k < m -1 1 < 1 < s, A G

(by the Kurosch subgroup theorem) and none of these belongs to H. Thus H is
torsion-free as well, and the proof is complete.
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