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Introduction

In this paper, we deal with the inverse spectral problem of the Hessian (the
so called Jacobi operator) of the energy of a harmonic map.
The spectral geometry of the Laplace-Beltrami operator has developed

greatly during the last twenty years [3]. It is well-known [2], [20], [24] that if
the spectrum Spec(A) of the Laplace-Beltrami operator A of a compact
Riemannian manifold (M, g) coincides with the one of the standard sphere
(Sn, can), n < 7, then (M, g) is isometric to (S",can). Since the Laplace-
Beltrami operator of (M, g) can be regarded as the Jacobi operator of a
constant map of (M, g) into a circle, it is reasonable to investigate the spectral
geometry for the Jacobi operator of a harmonic map.

In fact, since the Jacobi operator J, of a harmonic map q is a second order
elliptic differential operator acting on the space of sections of the induced
bundle of the tangent bundle of the target manifold, the spectrum Spec(J,) of
J, becomes a discrete set of the eigenvalues with finite multiplicities. Directly
applying Gilkey’s results [11], [12] about the asymptotic expansion of the trace
of the heat kernel of a certain differential operator of a vector bundle to our
case, we can determine some geometric spectral invariants of the Jacobi
operator (2, 3). Using these results, we obtain a series of geometric results
distinguishing typical harmonic maps, i.e., (0) constant maps, (1) geodesics, (2)
isometric minimal immersions, (3) holomorphic maps between Kaehler mani-
folds, and (4) Riemannian submersions all of whose fibers are minimal.
The analogue of spectral geometry for minimal submanifolds has been

studied by H. Donnelly [7], and T. Hasegawa [15].
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1. Preliminaries

In this section we summarize briefly some of Gilkey’s results in [11], [12]
concerning the asymptotic expansion of the trace of the heat kernel for a
certain elliptic differential operator acting on the space of sections of a vector
bundle (see also the paper [7] [15] by Donnelly and Hasegawa).

Let E M be a real smooth vector bundle of fiber dimension r over a
compact connected Riemannian manifold M of dimension m. Assume that E
has a connection

f; r(e (R)

which is compatible with the inner product ( ) on each fiber of E, i.e.,

for s, s’ e I’(E) and a vector field X on M. We consider the following second
order elliptic differential operator D; F(E) F(E) of the form

D= V* L,

where L is an endomorphism of E and X*(r is the rough Laplacian acting on
F(E) which is given by

V*Vs Y’ Vvve s,
j--1

r(e).

Here { e2; j 1,..., m } is a local orthonormal frame field on (M, g) and V
is the Levi-Civita connection of (M, g). Since D is self-adjoint and elliptic and
M is compact, D has a discrete spectrum of eigenvalues with finite multiplici-
ties, denoted by

{ L }Spec(O) ,l __< X2 < < < ’ O0

Then the trace Z(t) Y’-jI exp(-tXj) of the heat kernel for the operator D
has the asymptotic expansion

Z(t) (4’t)-"/E{a0(D) + a(O)t + ag_(D)t 2 +... }
ast oo.
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Moreover we have"

THEOREM 1.1 [11], [12], [7], [15]. Under the above situation, we have

ao(D ) rVol(M, g),

al (D ) -g + r( L ) vg,

a2(D ) 5zg2 211Pgll 2 + 211Rgll 2 ) Vg

1 fM{ R 2 Tr(L) + 180 Tr(L2) } vg,+ 3--6-6 3011 II + 60Zg

where Rg, tag, rg, are the curvature tensor, the Ricci tensor and the scalar
curvature o.f ( M, g), respectively, and vg is the volume element of (M, g). The
operator Rv is the curvature tensor of the connection V on E,

R (s) -[’x,7 ]s+rX, r Y IX, y]S

for s I’(E) and vector fields X, Y on M. The norm II II is that induced from
( ) and g.

2. The spectral invariants of the Jacobi operator

In this section, we apply Gilkey’s results to the Jacobi operator J, of a
harmonic map q,. First let us recall the second variation formula of the energy
for a harmonic map.

Let (M, g) be an m-dimensional compact Riemannian manifold without
boundary and (N, h) an n-dimensional Riemannian manifold. A smooth map
q; (M, g) ---, (N, h) is said to be harmonic if it is a critical point of the energy
E(-) defined by

(2.1) E() f(rk)vg,
1 m

(2.2) e(q) h(q,,e,, q,,e,),
i----1

where q, is the differential of q). Namely, for every vector field V along

d e(,t,t) =o.
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Here qt; M N is a one parameter family of smooth maps with q0 and

d
t,O

for every point x in M.
The second variation formula of the energy E for a harmonic map q is

given by

(23) dE E(dPt) f2(v, Jq,V)og.dt2

Here J is a differential operator (called the Jacobi operator) acting on the
space F(E) of sections of the induced bundle E q-tTN. The operator J is
of the form

m

(2.4) Jq,V= (7" V- _, Rh(**e,, V)**e,, V F(E).

Here is the connection of E q-tTN (cf. [10, p. 4]) which is induced by

xV V.xV,
for V F(E), X a tangent vector of M, and the Levi-Civita connection V h o.f
(N, h). Rh~is the curvature tensor of (N, h) whose sign is the same as Rv.
Note that X7 is compatible with the metric h. Define the endomorphism L for
our E by

m

(2.5) L(V) _, Rh(ck,e,, V),ei, V F(E).
i=1

Then we have by definition,

(2.6) Tr(L) Trg(q)*ph ).

We denote also the spectrum of the Jacobi operator J of the harmonic map q
by

Spec(J,t,) (,x _-< ,2 =< _-< Xj__< ’1’o).
Then the trace Z(t) exp(-t,j) of the heat kernel for the Jacobi operator J,
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has the asymptotic expansion

(2.7) Z(t) (4rt)-m/2(a0(Jq,) + al(J,)t + a2(J,)t2 + }
ast

Moreover we have by Theorem 1.1:

THEOREM 2.1. For a harmonic map oh; (Mm, g) (Nn, h),

ao(Jq, ) nVol(M, g),

a(Jq,) + rs(*Ph)V,

"

+ 3011**Rhll 2 + 60s Trg(**Oh ) + 1801ILII 2 } vg,

where, for tangent vectors X, Y TxM, (dP*Rh)x, Y is the endomorphism of
T,(x)N given by (dp*Rh) x, Y Rhq,.x, q,.Y"

Then we immediately have the following corollaries.

COROLLARY 2.2. Let (M, g) be a compact Riemannian manifold and (N, h),
an Einstein manifold with non-zero Einstein constant, i.e., whose Ricci curvature

Oh satisfies Oh kh for some non-zero constant k. Let ok, ok’ be two harmonic
maps from (M, g) into (N, h ). Assume that

Spec(J,) Spec(J,,).

Then we have E(cb) E(ck’). In particular, if k is a constant map, then so is

COROLLARY 2.3. (i). Let q, q’ be two harmonic maps of compact Rie-
mannian manifolds (M, g), (M’, g’) into Riemannian manifolds (N, h), (N’, h’),
respectively. Assume that Spec(J,) Spec(Jq,,). Then we have dim(M)
dim(M’).

(ii) Moreover let us consider two periodic geodesics

oh, oh’; (SX, can) (N, h)

in an Einstein manifold (N, h) with the non-zero Einstein constant. Assume that
Spec(Jq,) Spec(J,t,,). Then both geodesics ep, q’ have the same length, index,
and nullity.
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Proof. The asymptotic expansion of the trace Z(t) has of the form (2.7), so
we get the first statement. The second follows from Corollary 2.2.

3. The predse spectral invariants

In this section, we assume that the target space (N, h) is either a space form
Nn(c), i.e., a Riemannian manifold of constant curvature c, or a complex
n-dimensional Kaehler manifold of constant holomorphic sectional curvature
c. In these cases, we will calculate the terms al(J,) and a2(J) of the
asymptotic expansion (1.1) for the Jacobi operator J.

3.1. First, let (N, h) be the space form Nn(c). The curvature tensor Rh of
N(c) is given (cf. [17]) by Rh,Z -c(h(Z, Y)X- h(Z, X)Y}, for tan-
gent vectors X, Y, Z on N(c). ’herefore we obtain by a direct computation,
that for a harmonic map ok; (M, g) N(c),

(3.1) Tr(L) 2(n- 1)ce(qb),

(3.2) IIR II 2 2c2{4e()2 II*hll 2 },
(3.3) Tr(L2) IILll 2-- c2(4(n 2)e()- / II*hl12),
where II*hll 2 E’..lq*h(ei, ej) 2. Therefore we have:

THEOREM 3.1. Let dp; (Mm, g) N(c) be a harmonic map of a compact
Riemannian manifold (M, g) into a space form Nn(c). Then the coefficients
ao(J,), al(J), and a2(J,) of the asymptotic expansion for the Jacobi operator
J, are given as follows:

(3.4) ao(J) nVol(M, g),
n fsv 2(n- 1)ce(qb),(3.5) al(J) - g

(3.6) + 211  11 +

+2c:3 -t f((3n 7)e(,) + [[,*hll 2 ) og

+(n  )c3

As an application, we obtain:

COROLLARY 3.2. Let , ’ be two harmonic maps from a compact Rie-
mannian manifold (M, g) with constant scalar curvature into the n-dimensional
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space form Nn(c) of non-zero constant sectional curvature c. Suppose that

Then we have

Spec(J) Spec(J).

(3.7) E() E(ff’)
and

(3.8) fM{(3n 7)e()z + I[k*h[[Z}vg

ft{(3n- 7)e(’)z + I[’*hl[ z }

3.2. In this subsection, we assume that (Nz’, h) is the complex n-dimen-
sional Kaehler manifold P"(c) of constant holomorphic sectional curvature c.
The curvature tensor Rh of Pn(c) is given [17, p. 167] by

c.r { h(r, w)z h(r, Z)W + h(r, JW)JZ

-h(Y, JZ)JW + 2h(Z, JW)JY},

where J is the complex structure of P"(c). Then for a harmonic map

we obtain

dR; (Mm, g) ---> pn(c),

(3.9) Tr(L) (n + 1)ce(),

since Ph 2-1(n + 1)ch. Moreover let {e;,..., e’, Je;,..., Je;,} be a local
orthonormal frame field on P"(c). Then since

by a straightforward computation we obtain

(3.10)

(3.11)
II R@ II cZ4-1{4e()z II*hll + (2n + 5)11*11 },
Tr(L9-) cZ8-1{a(n + 2)e() + 511*hll- 311q,*ll },



SPECTRAL GEOMETRY 257

where is the Kaehler form of P"(c), i.e., (X, Y) h(X, JY), for vector
fields X, Y on P"(c). Hence we have:

THEOREM 3.3. Let k be a harmonic map of a compact Riemannian manifold
(Mm, g) into the complex n-dimensional Kaehler manifold of constant holomor-
phic sectional curvature c. Then the coefficients ao( Je), al(J,), and a2(J,) of the
asymptotic expansion for the Jacobi operator J, are

(3.12) ao(J,) EnVoi(M, g),

(3.13) al(J,t,) 3-,f,o, + (n + 1)cE(),

(3.14) aE(J,) n fm{5,d- 2]lpg]l 2 + 2llRgll2}Vg

+24-02/ {(6n + 10)e(,)2 + 8ll**hll 2

M

( n + 7)11,* II ) og

+6-1(n + 1)cfge()vg,
where d# is the Kaehler form of P"(c).

COROLLARY 3.4. Let q, ’ be two harmonic maps of a compact Riemannian

manifold (Mm, g) with constant scalar curvature into the complex n-dimensional
Kaehler manifold pn(c) of non-zero constant holomorphic sectional curvature c.
Assume that

Spec(J,) Spec(J,,).
Then we have

(3.16) E() E(’)
and

(3.16) fM((6n + 10)e(,/,)2 + 81l,h*hll 2- (n + 7)ll,h*OllE} og

f{(6n + 10)e(’)2 + 811’*hll 2- (n + 7)11’*11) og.

4. Spectral geometry of a harmonic map

4.1 A counterexample. In this subsection, we construct harmonic maps
with the same spectra for their Jacobi operator.
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Let 4) be a harmonic map of a compact Riemannian manifold (M, g) into a
fiat torus (N, h)= (T’, h). Take n parallel vector fields (X1,..., X.) on

(.T ", h) which are linearly independent at each point of T". Defining elements
X in F((h-XTN) by ix Xi+(x), x M, we have

F((h-1TN) Y’-f/L; f/ C(M), i= 1,..., n
i=1

and the Jacobi operator J+ is of the form

for V f/+i F(O-’TN),
i--1

where A 8d the (positive) Laplacian of the compact Riemannian manifold
(M, g) acting on C(M). Then we get immediately:

PROPOSITION 4.1. For every harmonic map of a compact Riemannian

manifold (M, g) into a flat torus (T, h), the spectrum Spec(J) of the Jacobi
operator J+ is given by Spec(J,) n Spec(A), namely, the eigenvalues of J+
are the eigenvalues of the Laplacian A of (M, g) with multiplicity n.

In particular, let , q be two harmonic maps of compact Riemannian mani-

folds (M, g), (M’, g’) into flat tori (T, h), (T’, h’), respectively. Then Spec(J+)
Spec(J+,) if and only if

dim(T) dim(T’) and Spec(A) Spec(A’),

where A, A’ are the Laplacians for (M, g), ( M’, g’), respectively.

Remark 4.2. By Proposition 4.1, we can never distinguish even a constant
map by the spectrum Spec(J) of the Jacobi operator for a harmonic map into
a flat torus (Compare with Corollary 2.2).

4.2 The homotopy determination by the spectrmn.

PROPOSITION 4.3. Let M2, N2 be compact Riemann surfaces with Kaehler
metrics g, h, respectively. Let dp, thE; M2 --, N2 be holomorphic or anti-holo-
morphic maps. Assume that Spec(J,) Spec(J,2). Then deg()l
Ideg(2)l. In particular, when the genus of N2 is zero, the maps thx, 2 are
homotopic each other.

Proof We use the notation of [9]. We get E(q) +K()=
+Vol(N 2, h)deg((/)) when 4) is holomorphic or anti-holomorphic, because
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K() E’(qb) E"(), E() E’(qb) + E"(qb), and by Corollary 8.12 in
[9]. Therefore the assumption Spec(Jl) Spec(J,2) implies E(x)--E(2)
and then deg(qbl) +__deg(2). When the genus of N2 is zero, qbl and qb2 are
homotopic due to the Hopf degree theorem [13], [14].

COROLLARY 4.4. Let bl, qb2 be two harmonic maps of the standard unit
2-sphere (S2, g) into itself Suppose that Spec(J.,) Spec(J,). Then ck, 2
are homotopic and ckg p,g, 1,2, with fs_ltvg fspvs.

The proof follows from Corollary 3.2, using the facts every harmonic map of
(S2, g) into itself is holomorphic or anti-holomorphic [19, Corollary 2.9] and
hence weakly conformal [19, Theorem 2.8].

5. Isometric minimal immersions into spheres

In this section, we give results distinguishing isometric minimal immersions
into spheres:

THEOREM 5.1. Let (M, g) be a compact Riemannian manifold whose scalar
curvature is constant. Let (N, h) be a non-flat space form, i.e., whose sectional
curvature is non-zero constant. Let q, b’ be two harmonic maps of (M, g) into
( N, h ). Suppose that Spec(J,) Spec(J,,). If ck is an isometric minimal
immersion, then so is ok’. If (M, g) is isometric to ( N, h ), and ck is an isometry
of (M, g) onto itself, then so is q,’.

Remark 5.2. The set of all harmonic maps of constant energy into spheres
is parametrized by Toth and G’Ambra [23]. Their results say the dimension of
the parameter space of constant energy harmonic maps is larger than the one
of the parameter space of isometric minimal immersions.

Proof
write

By the assumption, we have qb*h g and n >_ m _> 2. We can also

(5.1) qb’*h =/g + t,

where/x is a smooth function on M and is a trace-less symmetric 2-tensor
field on M. Then we get

(5.2) e(qb) m/2 and [[qb*hl[ 2-- m,

and

(5.3) e(qb’) 1/2Trg(’*h)= 2

Ilqb’*hll 2--/2llgll2 / Iltll 2-- mp2 + Iltll 2.
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Assume that Spec(J,)= Spec(J,,). Then, by (3.7), (3.8), (5.2) and (5.3), we
obtain

(5.4) ftvg Vol(M, g)

and

where d := (3n 7)(m/2)2 + m (which is positive since n >= rn >_ 2). We
claim that (5.4) and (5.5) imply that # 1 and 0. In fact, let ( Pk}0 be a
complete orthonormal basis of the L2-space of real valued functions on M
with respect to the inner product (fl, f2) fuflf2og, with Po Vol(M, g)-/2.
Let

-t E akPk
k=O

be the Fourier expansion of # relative to (Pk)o. Then (5.4), (5.5) imply

a0 P0-1, d E a + fM[I tll 2Og d Vol(M, g),
k-0

respectively. These equalities yield ak 0 for k 1, 2,..., and fMil tll 2Vg O.
Therefore we obtain ’*h g.

COROLLARY 5.3. Assume that (M2, g) is the 2-sphere of constant curvature.
Then every full harmonic map of (M2, g) into the standard sphere (S2, h ),
with the same spectrum of the Jacobi operator as a full isometric minimal
immersion dp of (ME, g) into (SEn, h) coincides with tk up to an isometry of
(S2n, h).

The proof follows immediately from Theorem 5.1 and Calabi’s rigidity
theorem of full isometric minimal immersions of 2-sphere into spheres (cf. [5],
[6]).

6. Isometric minimal immersions into complex projective spaces

In this section we first state some results of characterizing holomorphic
isometric immersions into complex projective spaces by the spectra of the
Jacobi operator. Secondly, we characterize both holomorphic and totally real
immersions.
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THEOREM 6.1. Let (MTM, g) be a compact Kaehler manifold whose scalar
curvature is constant, and (N, h) be a complex n-dimensional Kaehler manifold
with non-zero constant holomorphic sectional curvature. Let q, q’ be holomorphic
or anti-holomorphic weakly conformal maps of (M2m, g) into (N, h). Suppose
that Spec(J,t,) Spec(J,,). If q is an isometric immersion or an isometry, then
so is

Here a map q of (M, g) into (N, h) is said to be weakly conformal ifq*h ttg
where # is a (not necessarily positive) smooth function on M.

COROLLARY 6.2. Let q, q’ be two harmonic maps of the standard 2-sphere
(S2, can) into the complex n-dimensional projective space (Pn(c), h) with the
Fubini-Study metric h. Suppose that Spec(J,) Spec(J,,). If q is a holomor-
phic isometric immersion, then k’ rk up to an isometry of (pn(c), h).

Proof of Theorem 6.1. Since q, q/are holomorphic or anti-holomorphic, we
have II,/’*11 II’/’*hll and II,/"*11 II,/,’*hll. Therefore by Corollary 3.4, the
assumption Spec(J,) Spec(J,,) yields

(6.1) E(q) E(O’)
and

(6.2) fM{(6n + 10)e(O)2 + (1 n)llck*hll-}vs

fM{ (6n + 10)e(q/)9- + (1 n)llq/*hll 2 } vg.

Moreover since q/h g and q/*h ttg, where # is a smooth function on M,
we have

(6.3) e(q,) m and IIq,*hll 2= 2m,

(6.4) e(q/) m# and IIq,’*hll 2-- 2m/x2.

Here m is the complex dimension of M. Therefore by (6.1)-(6.4), we obtain

fMVg Vol(M, g) and fMEVg Vol(M, g),

which yields tt 1 by the same method as in the proof of Theorem 5.1.

Proof of Corollary 6.2. Since q is a holomorphic map of (S2, can) into
Pn(c), Index(q})= 0 [8], [9]. The assumption Spec(J)= Spec(J,) yields
Index(q/) 0. Hence ’ is also holomorphic or anti-holomorphic [25], [9, p.
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60]. Moreover, since every harmonic map of (S-,can) into P"(c) is weakly
conformal [19, Theorem 2.8], due to Theorem 6.1, ’ is either a holomorphic
(or anti-holomorphic) isometric immersion, or a holomorphic (or anti-holo-
morphic) isometry. Then there exists an isometry p of (P"(c), h) such that
t9 g,’ is a holomorphic isometric immersion. Then and t9 ,’ can be
expressed as Jx 1 and p if’= j_ fig_, where the ffi (i 1,2) axe full
holomorphic isometric immersions of (S-, can) into P",(c), n <= n, and j,

1, 2, are the inclusions of P",(c). Due to Calabi’s rigidity theorem [4, p. 18,
Theorem 9], we obtain nl n and x up to an isometry of enx(c). We
obtain the conclusion.

Next we show:

THEOREM 6.3. Let , ’ be isometric minimal immersions of a compact
Riemannian manifold (M, g) into the complex projective space ( P"( c), h) with
the Fubini-Study metric h. Assume that Spec(J) Spec(J,).

(i) If tk is totally real, then so is

(ii) If k is holomorphic with respect to a complex structure ofM making g a
Kaehler metric, then q’ is holomorphic with respect to a suitable complex
structure of M.

Here the immersion is totally real if h(k.X, Jk.Y)= 0 for all vector
fields X, Y on M.
To prove Theorem 6.3, we need the following lemma.

LEMMA 6.4. Let (N, h, J) be a hermitian manifold with the Kaehlerform
Let k be an isometric immersion of a compact Riemannian manifold (M, g) into
( N, h ). Then we have the inequality

0 Z fMIl*ll2og Z dim(M)Vol(M, g).

Moreover:
(i) The equality

fMIl’#* II 20 0

holds if and only if the immersion e#; (M, g) (N, h, J) is totally real.
(ii) The equality

dim(M)Vol( M, g)

holds if and only if there exists a complex structure on M for which k is
holomorphic.
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Proof of Theorem 6.3. Since q and q/are isometric immersions, we obtain

e(qb) e(qb’) dim(M)/2 and IIb*hll 2= IIb’*hll 2= dim(M).

Then, by Corollary 3.4, the condition Spec(J) Spec(J) yields the equality

Therefore by Lemma 6.4, we have Theorem 6.3.

Proof of Lemma 6.4.
to prove

To prove the inequality in Lemma 6.4, we only have

0 II* II 2 < dim(M),

at each point of M. We take an orthonormal basis { ei; 1,..., rn } of the
tangent space TxM, x M, dim(M) m. Then we get

where P is the orthogonal projection of T,(x)N onto ck,TxM with respect to h.
Since { qb,ej; j 1,..., rn } is an orthonormal basis of ck,TxM, we obtain the
inequality

m

0 < II* II 2 < E h (J,ey, Jck,ej) m.

If fMII* II 2% 0, we get

Ilqb* II 2 0 PJck,e O, j 1,..., rn

*, h (qb, X, Jqb,Y) 0 for all vector fields X, Y on M

** q is totally real.

If fMIIq,*l12% dim(M)Vol(M, g), we get

II q’* II 2 dim(M) , PJ,,e J,,e, j 1,..., m,

** Jck,TxM c ck,TxM at each point x in M,
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which holds if and only if there is a complex structure on M with respect to
which qb is holomorphic.

7. Harmonic morphisms and harmonic Riemannian submersions

In this section, we study spectral characterization of harmonic Riemannian
submersions among the set of all harmonic morphisms.
A smooth map q of M into N is a harmonic morphism (cf. [10], [16]) if for

every harmonic function , on an open subset U in N, , q is a harmonic
function on q-l(U). Then Fuglede [10] and Ishihara [16] showed that:

THEOREM 7.1 [10], [16]. (i) If dim(M)< dim(N), every harmonic mor-
phism is constant.

(ii) If dim(M) >= dim(N), a smooth map gO; (M, g) (N, h) is a har-
monic morphism if and only if q is semi-conformal and harmonic.

Here a smooth map q; (M, g) ---, (N, h) is semi-conformal if (i) the differ-
ential

q.x; TxM Tq,(x)N

is surjective at the point x with e(q)(x) 4: O, and (ii) there exists a smooth
function on M such that if e(q)(x) 4: O, the pull back *h satisfies

q*h(X, Y) 2(x)g(X, Y)

for all X, Y Hx, where H is the orthogonal complement of the kernel of the
differential .x with respect to gx, x M. It is known (cf. [10]) that the set
( x M; e(q)(x) : 0) is open and dense in M and the function 2 is given
by

,2 2e(q,)dim(N)-l,

and II*hll 2 dim(N)h4. A smooth map q; (M, g) ---, (N, h) is a Riemann-
ian submersion if it is semi-conformal with , 1, i.e., e()= dim(N)/2,
everywhere M.
Now we prove the following:

THEOREM 7.2. Let (M, g) be a compact Riemannian manifold whose scalar
curvature is constant, and let (N, h) be either the standard n-sphere (S n, can) or
the complex projective space (Pn(c), h) with the Fubini-Study metric h. Let
k, q’ be harmonic morphisms of (M, g) into ( N, h) with Spec(J,) Spec(J,,).
If q is a Riemannian submersion, then so is
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Proof. We only have to show that the function X2 for +’ satisfies 2 1
everywhere M.

Case 1. (N, h) (S",can). In this case, e(’) 2-1n,2, II’*hll 2 nX4,
e() 2-1n, and I[*hl[ 2 n. By Corollary 3.2, the assumption Spec(J,)
Spec(J,,) yields

(1) E ( rk’) E (, )
and

(2)

f {(3n 7)e(,’)z + II,’*hl[ 9- } vg= f {(3n 7)e(,)9 +

Condition (1) is equivalent to fXv, flays and condition (2) is equivalent to
ftX4Vg fvg. Therefore we get )t - 1 everywhere M by the Cauchy-Schwarz
inequality.

Case 2. (N, h) (Pn(c), h). We first show that if is a harmonic
morphism of (M, g) into (Pn(c), h),

I1*11 II*hll on {x M; e(q)(x) 4= 0}

where is the Kaehler form of (P(c), h). In fact, at each point x in M with
e(q)(x) 4= O, we can define a linear transformation J of H into itself such
that Jo. =.of and f2=-I, where I’is the identity and J is the
complex structure of P(c). Then g(fX, fY) g(X, Y), and g(fX, Y) 0,
X, Y Hx. We can choose (e, Jei; 1,..., n } as an orthonormal basis of
(H,, gx). Then we get

n

[[*@112 q*t(ei, ej)- + 2 . q*t(ei, fej) 2
+ rk*d( fei, fej) 2

i,j=l i,j----1 i,j=l

n

E h(go.ei, Jq.ej)2 +
i,j=l

n

+2 E h(q,ei, Jq,fe,) 2

i,j---1

II*hll =.
Now let , ’ be harmonic morphisms of (M, g) into (pn(c), h) with

Spec(J,) Spec(J,,), and assume that is a Riemannian submersion. Then,
by Corollary 3.4, we have

(3) E(q/) E(q)
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and

(4) fM{(6n + 10)e(’)2 + (1 n)[l’*h[[ 2 ) Og

fM((6n + 10)e()2+ (1 n)ll*h[[ 2) og,

together with the above. Then by a similar argument to that in Case 1, we
obtain Theorem 7.2.

Remark 7.3. A non-trivial harmonic morphism is a holomorphic map from
a compact Kaehler manifold into a compact Riemann surface (N, h) with
Hermitian metric h [9, Corollary 8.17].
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