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Z,-GRADED ALGEBRAS
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1. Introduction

This paper was inspired by [2]. Recast into the language of Lie superalge-
bras, rather than Lie algebra square roots, one of Mackey’s results reads as
follows. Let L be a Lie superalgebra with even part H and odd part N.
Assume that N is two-dimensional, that H is three-dimensional, and that
N? = H. Then either HN = 0 or L is the unique five-dimensional simple Lie
superalgebra (the first of the orthosymplectic series). In Theorem 1 I exhibit
a generalization. Any field of characteristic # 2 is admissible in Theorem 1.

I stubbornly sought to fit in characteristic 2 as well. But in characteristic 2
the notions of Lie algebra and Lie superalgebra coincide. So it was natural to
make a parallel study for Lie algebras. The result was Theorem 2 in which,
however, characteristic 3 was an unexpected exception.

The final section of the paper contains a number of additional remarks.

2. Lie superalgebras

Note that in all algebras the operation is being written simply as multipli-
cation.

TueoreM 1. Let L = H + N be a Lie superalgebra with even part H and
odd part N. Infinite-dimensionality is permitted and the base field can be any
field of characteristic + 2. Assume that the multiplication N X N — H is the
symmetric tensor product, i.e., is as free as possible. (The mapping is not

assumed to be onto.) Then there exists a unique alternate form ( , ) on N
such that
(D xy.z=(y,2)x+ (x,2)y

forallx,y,z € N.
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Proof. The uniqueness of the form is obvious.

In the case of three odd elements the super-Jacobi-identity has the usual
form xy.z + yz.x + zx.y = 0. For characteristic # 3 this implies xx = 0 for
x odd. For characteristic 3 it is customary to add x2x = 0 to the axioms for a
Lie superalgebra.

We begin the proof by showing that x2z is a scalar multiple of x for all x
and z in N. We just noted that x%x = 0 and so we may assume that x and z
are linearly independent. Complete a basis x, z,w,... of N. Write

2 x2z=px+q@+mw+- -, 2x=sx+z+uw+ -

By the super-Jacobi-identity applied to the triple x2, z, z we have x2z2? =
2z.x%z. By interchanging x and z we get z2x2 = 2x.z%x. Hence z.x%z =
—x.z%x. From this and (2) we get

3) pzx + gzl 4w+ 0 o= —(sx?+ ez +ww + 0.

Our hypothesis asserts that all the products of two basis elements of N
appearing in (3) are linearly independent. Hence all the coefficients except p
and ¢ vanish and furthermore p = —t. The claim that x2z is a scalar
multiple of x has thus been sustained.

We are ready to define the inner product on N. If x and z are linearly
dependent we set (x, z) = 0. When they are linearly independent we set
(x, z) = p/2 where p is the coefficient occurring in x2z = px. The equality
of p and —t observed in the preceding paragraph shows that (x, z) =
—(z, x). Since x%z is linear in z so is (x, z), and then (x, z) = —(z, x)
shows that it is likewise linear in x.

It remains to verify (1). This is done by linearization. In detail,

xyz=((x+ y)? —x%— y?)z/2
=(x+y,z2)(x+y) = (x,2)x = (y,2)y
=(y,2)x+ (x,2)y.

Remarks. (a) The super-Jacobi-identity shows that N2 is closed under
multiplication and that the product on N? is determined by the given data,
i.e., from the form. Thus the algebra N2 + N is uniquely determined by the
form; if N2 = H, L is uniquely determined. The form in turn is character-
ized by an integer (its rank) when N is finite-dimensional and by two cardinal
numbers when N has countable dimension. In the case of uncountable
dimension there are myriads of alternate forms and therefore myriads of
algebras.

(b) At one extreme the form is identically 0, from which N?N =0 =
N2N? follows. At the other extreme the form is nondegenerate and we get a
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member of the family of “extreme” orthosymplectic Lie superalgebras. (These
algebras do not seem to have a name yet; the term “extreme” is meant to
suggest that the algebra is almost entirely an ordinary symplectic Lie algebra.
More precisely, in the usual representation by n by n matrices, the upper left
n —1by n — 1 corner is a symplectic Lie algebra.) In Mackey’s case where
N is two-dimensional, one of the two extremes must hold.

(c) In the general case let R denote the radical of the form, i.. all x € N
with (x, N) = 0. From (1) we see that a product of three elements of N
vanishes if two of the factors lie in R. Furthermore RN? = 0 and RN.N C R.
By the super-Jacobi-identity

RN.RN c (RN.R)N + (RN.N)R c R?,
RN.N2c (RN.N)N CRN.

Assume H = N2 Let I =R + RN. We see that I is an ideal in L and
I? C R?, I® = 0. The quotient L/I is a Lie superalgebra of the type occur-
ring in Theorem 1, and for it the attached alternate form is nondegenerate.
In sum, very little is lost in assuming the form to be nondegenerate.

(d) Here are two ways of realizing the algebras under discussion.

(i) Construct the Weyl algebra of the form. This means that we take the
free associative algebra on N and divide it by the relations xy — yx = (x, y)1
to get an algebra W. Since W carries a natural Z,-grading there is a Lie
superalgebra structure on W. Take the subalgebra generated by N.

(ii) Construct a super inner product space M by taking the orthogonal
direct sum of N with a one-dimensional space carrying a nondegenerate
symmetric form. The desired algebra is the set of all linear transformations
on M which are skew relative to the inner product and have finite-dimen-
sional range.

3. Z,-graded ordinary Lie algebras

In Theorem 2 the case where N is one-dimensional is excluded because it
is trivial and because the uniqueness statement fails in that case.

THEOREM 2. Let L = H + N be a Z,-graded Lie algebra over a field of
characteristic + 3. Assume that the multiplication N X N — H is the exterior
product and that the dimension of N exceeds 1. (As in Theorem 1, the mapping

is not assumed to be onto.) Then there exists a unique symmetric form ( , )
such that
(4) xy.z=(y,z)x —(x,z)y forallx,y,z €N.

Proof. The uniqueness statement is again obvious.



88 IRVING KAPLANSKY

The proof resembles the proof of Theorem 1 but there are differences in
detail. A significant obstacle is that the definition of (x, x) depends on the
use of an auxiliary element y, and it is necessary to show that the choice of y
is irrelevant.

The first step is to prove that for x and y linearly independent in N, xy.x
is a linear combination of x and y. Complete x, y to a basis x, y, z,... of N
and write

(5) Xy x=px+qy+rz+ -, yxy=sx+ty-+uz+- -

The Jacobi identity applied to the triple x, y,xy vields y(xy.x) = —x(yx.y).
Apply this to (5). The result is

(6) pyx +ryz+ - = —(txy +uxz + ).

Hence all coefficients in (6) other than p and ¢ vanish, and furthermore
p =t. The coefficients ¢ and s do not appear in (6) and there is no
restriction on them.

We proceed to define the form. If either x or y is 0 we simply define (x, y)
to be 0. If x and y are linearly independent, we define (x, y) to be the
element p above (i.e., the coefficient of x in xy.x), and we note at once that
(x,y) = (y, x) since p = t. For x # 0 we choose y linearly independent of x
and tentatively define (x,x) to be —g, where g is as above (i.e. the
coefficient of y in xy.x). It is urgent to prove that this is independent of the
choice of y.

Say we have
(7 xy.x =px + qy,
(8) xy' x=px+q'y,

where x and y are linearly independent, and x and y’ are also linearly
independent. We have to prove that g = q'. There are two cases.

(I) Assume that x, y and y' are linearly independent. Then x and y + y'
are linearly independent and we write

9) x(y+y)x=p"x+q"(y +y).

The right side of (9) equals the sum of the right sides of (7) and (8). By
equating the coefficients of y we get g = q"; from the coefficients of y’' we
get ¢' = q". Hence g = q'. From the coefficients of x we furthermore find
p" =p +p', thatis

(10) (x,y +y) =(x,y) +(x,¥).

This information will be used below.
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(I) The remaining case is where y' = ax + by. We have

(11) xy'.x = x(ax + by).x = bxy.x = bpx + bqy
=bpx +q(y' —ax) = (bp —aq)x + qy'.

Again g = q'.

In a moment we shall need to know that (rx, rx) = r?(x, x) for any scalar
r. This is immediate from a comparison of the expansions of xy x and
(m)y(rx) = rxy.x.

To complete the definition of the inner product we still need the case of
(y, z) where y and z are linearly dependent but unequal. We write y = ax,
z =bx and set (y, z) = ab(x, x). If ~ is used instead of x we reach the
same result, for y = ar”'rx, z = br”'m and the competing definition of
(y, 2) is abr=2(rx, rx) = ab(x, x).

The form is now well defined and we proceed to the proof that it is
bilinear. Homogeneity with respect to scalars is immediate (cf. the second
last paragraph) and so it suffices to prove additivity. We know that the form
is symmetric; therefore it suffices to prove additivity in just one of the
variables, say the second one. That is, we are to prove (10). We may of course
assume that x is nonzero. In I above we handled the case where x, y, and y’
are linearly independent. At the other extreme, if y and y' are both scalar
multiples of x the truth of (10) is immediate from the definition of the form.
We may therefore assume that one of y and y’, say y, is not a scalar multiple
of x, and that the other is a linear combination of x and y: y' = ax + by.
Further case distinctions are now needed.

(A) b # 0, — 1. Equations (7), (8), (9), and (11) are available. We have
(x,y)=p and (x,y) =p' =bp —aq. Note that y +y' =ax + (b + 1y
with b + 1 # 0. The computation (11) can be repeated with y' replaced by
y +y'. and b replaced by b + 1, leading to

(x,y +y) =(b+1)p —ag.
Thus (10) holds.
(B) b =0.Then y' = ax, so that
(x,y) = (x,ax) = —aq.
Also y +y' = ax + y and the computation (11) yields
(x,y+y)=p—aq.

Again (10) holds. (It is to be noted that this is the first time that the minus
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sign inserted in the definition of (x, x) plays a role. It is also needed for
case C.)

(C) b= —1. We have y' =ax —y and (x,y) = —p — aq, again from
(11) with b set equal to —1. Next, y + y’ = ax so that

(x,y+y') = —aq.

This is the final verification of (10).
To summarize, we have established that ( , ) is a symmetric bilinear
form and we have

(12) w.x=(x,y)x = (x,x)y.

This is the case z = x of (4) and our task now is to prove (4) in full. At the
corresponding point in the proof of Theorem 1 it sufficed to linearize. Here
linearization produces two terms that have to be disentangled by the Jacobi
identity, a procedure that produces a factor 3 that makes characteristic 3 an
exception. From (12) we get

(13) (x+2)y(x+2)=(x+z,y)(x+2) —(x+z,x +2)y.

The terms xy.x and zy.z on the left side of (13), when expanded by (12),
cancel with the corresponding portions on the right side. The result is

(14) xy.z+zyx=(x,y)z+ (z,y)x — 2(x,2)y.
Permute cyclically:
(15) zy+y.z=(z,x)y+(y,x)z — 2(z,y)x.

Subtract (15) from (14). The terms zy.x — zx.y on the left can, by the Jacobi
identity, be replaced by xy.z. This places 3xy.z on the left. On the right we
find

3(y,z)x —3(x,z)y.

In short we have precisely (4), multiplied by 3. This completes the proof of
Theorem 2.

With appropriate changes, the remarks after Theorem 1 are applicable.
The Weyl algebra of the alternate form on N gets replaced by the Clifford
algebra of the symmetric form on N, and L is the algebra of linear
transformations skew with respect to the form enlarged by one dimension.
See page 231 of [1] for related material.
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4. Concluding remarks

(a) A generalization. Here is a small generalization of Theorems 1 and 2.
In Theorem 1, after it is found that x2z is always a scalar multiple of x, we
can take this as the hypothesis and reach the conclusion of Theorem 1. The
only change needed in the proof is that one checks that the inner product is
alternate by using z.x2z = —x.z%x once more. Similarly, for Theorem 2 we
can take as our hypothesis the statement that xy.x is a linear combination of
x and y, citing y(xy.x) = —x(yx.y) to get the inner product to be symmetric.

(b) Characteristic 3. 1 have partially determined the facts for characteris-
tic 3; I shall state these results without proof. If the dimension of » is five or
more, Theorem 2 remains valid. For three-dimensional N, I have determined
all the possibilities; none of the algebras is simple. For four-dimensional N I
shall only display one example. In this example the inner product is identi-
cally 0; products (such as xy.x) with a repeated factor vanish; products such
as xy.z are invariant under cyclic permutation. Thus the following equations
suffice to define an algebra:

yzt=x, zt.x= -y, Ixy=2z, xy.z= —t.

This algebra is simple. It is 10-dimensional (the odd part is 4-dimensional
and the even part 6-dimensional). I do not know whether it is new. It is
possible that many simple 10-dimensional Lie algebras of characteristic 3
remain to be discovered in this way.

(c) Other classes of algebras. The problem being studied can be repeated
for any class of algebras. I shall describe (without proof) what happens for
associative algebras and Jordan algebras.

In the associative case, if we put aside the trivial case where N is
one-dimensional, there is total collapse: N3 = 0. The same thing happens for
commutative associative algebras.

For (ordinary) Jordan algebras there is a perfect analogue of Theorem 2:

Let J = H + N be a Z,-graded Jordan algebra over a field of characteris-
tic # 2. Assume that the multiplication N X N — H is the symmetric tensor
product. Then there exists a unique symmetric form ( , ) on N such that

xvz=(y,z2)x+ (x,2)y + 2(x,y)z
for all x,y,z € N.
When we turn to Jordan superalgebras we get a surprise. The expected

result is

xwz=(y,2)x—(x,2)y +2(x,y)z
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with the form alternate. In particular, this would mean that
x.x=(x,y)x, x.y=(x,y)y,

and, for N two-dimensional, xy would act on N as a scalar. But here is a
counterexample, in concrete matrix style. With the usual matrix units, take
A = e, + iey, (where i2= —1), B =e,, + e5,. Then

A(AB — BA) + (AB — BA)A =B, B(AB — BA) + (AB — BA)B = 0.

We have a three-dimensional Jordan superalgebra with A and B spanning
the odd part and AB — BA spanning the even part; AB — BA does not act
as a scalar.
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