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ON THE BRAUER GROUP AND QUOTIENT SINGUIARITIES

BY

TIMOTHY J. FORD

Let k be an algebraically closed field with characteristic 0. Let B(.) denote
the Brauer group functor as defined in [AG]. Let A be a regular local ring
which is a k-algebra essentially of finite type. Let G be a finite group of
k-automorphisms of A. Suppose no height 1 prime of A ramifies over AG.
Let P be a prime ideal of height > 2 in A and let R be the local ring
(A)e. Set S =A (R)A R. Then G acts on S and S= R. So S is a finite
R-module and no height 1 prime of S ramifies over R. If K K(A) denotes
the quotient field, we have the following inclusion relations:

A
_

S
_

K(A)

AG C R c K

Therefore S is a localization of A in the field of fractions K(A) hence is a
regular domain. Since S is finite over R and R is local, S is a semilocal ring.
We say that the ring R has quotient singularities if S is a local ring. The
maximal ideals of S correspond to the prime ideals of A lying over P, so we
see that R has quotient singularities if and only if there is a unique prime
ideal Q of A lying over P.

In this short note, we investigate the kernel B(K/R) of the natural map
z:B(R)--, B(K). If R is regular, it is known that B(K/R)= (0) [AG,
Theorem 7.2, p. 388]. For this reason we are primarily interested in the
situation where R actually has singularities. This study was motivated by
similar questions about the Brauer group and rational singularities on sur-
faces that were answered in Section 1 of [FS]. Theorem 1 below can also be
considered an attempt to correct Theorem 12 of [DF] which is false; a
counterexample is given in [DFM]. The example is a normal algebraic surface
X with isolated rational singular point P such that ker - is finite and
non-trivial.
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THEOREM 1. IfR is a local ring with quotient singularities and quotient field
K, the natural map B(R) - B(K) is injective.

Proof Let (/, rh) be the strict henselization of (R, m), where rn is the
maximal ideal of R JR1]. Then k(rh)=//rh is the algebraic closure of
k(m) =R/m. Let (Rh, mh) be the henselization of R. By our hypotheses on
R, S is a local ri.ng. Therefore, by [F, Corollary 9.3, p. 40], CI(S) Pic(S) 0.
Set { S (R)R R and Sh S Rh. Since S is finite over R, Sh is finite over
Rh and { is finite over/. Thus Sh is the henselization of S and { is the strict
henselization of S. Since S is regular, Sh and { are regular and by [F,
Corollary 9.3, p. 40], CI(Sh) -0 and CI()= 0. Let M, Mh, be the
maximal ideals of s, sh, respectively. Then S/M--ShIMh is a finite
extension field of k(m) and /]k --- k(rh). Also G acts on Sh and such
that (sh) Rh and =/. Since R c_ Rh cc_ t are faithfully flat extensions
of local rings, there are embeddings of divisor class groups Cl(R) c_ Cl(Rh) c_
Cl(/) [F, Corollary 6.11, p. 35]. From Corollary 1.8 of [CGO] (or [G] if R has
a unique singular point) we find that the kernel B(K/R) of the map
B(R) B(K) embeds in the quotient CI(/)/CI(R). Thus it suffices to prove"

LEMMA 2. In the above context, CI(R) CI(/).

Proof By Theorem 16.1 of [F, p. 82] there are natural isomorphisms

Cl(R) HI(G, S*), CI(Rh) Hi(G, sh*), CI(/) --- Hi(G, *).Let /z(q) be the group of roots of unity in q. Then/z() --- Q/Z since k is
algebraically closed of characteristic 0. Consider the sequence

1 --)/z() --) * --) V --) 1 (1)

where V is defined to be the quotient *//z(). Then (1) is split exact since
tz() is divisible. If a *, then for every integer >_ 1, x a splits over
/r hence splits over by the henselian property. Thus * is a divisible
abelian group. Consequently V is a uniquely divisible abelian group. So
multiplication by is an automorphism on Hi(G, V). But G is finite and
Hi(G, V) is annihilated by IGI. So Hi(G, V)= 1 and (1) gives H(G,/z())--- Hi(G, *). Since is a domain,/x(S) (Sh) =/z(). So Hi(G,/x())
HI(G,/.(S)). The sequence 1-/x(S)- S* is split exact since /z(S) is
divisible. Thus Hi(G,/z(S)) H(G, S*) is injective. Consider the diagram

CI(/) Hi(G, *) Hi(G,/x(,)) Hi(G,/z(S))

11-1 1-11
el(R) HI(G, S*)

(2)
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Since G acts trivially on /z(S), HI(G,/z(S))---Hom(G,/x(S)) [R2, p. 280]
which is finite since G is finite. Hence all groups in (2) are finite and CI(R)
Cl(k). m

Example 3. Let k be an algebraically closed field of characteristic 0. Let
R be a regular local ring essentially of finite type over k having residue field
k. Let f, g be local equations for a divisor on Spec R with normal crossings.
Let

S R((fg) 1/n) and T R(f1/n, gl/n).

Let X Spec T. Then S Ta where G (tr) and tr is defined by

fl/n fl/n, gl/n -lgl/n

for a primitive nth root of 1’. The map X X Spec S is unramified at all
height 1 primes. Thus S has quotient singularities. If L is the quotient field
of S, we have B(L/S) 0 by Theorem 1.
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