ON THE BRAUER GROUP AND QUOTIENT SINGULARITIES

BY $T_{IMOTHY} J. Ford^1$

Let k be an algebraically closed field with characteristic 0. Let $B(\cdot)$ denote the Brauer group functor as defined in [AG]. Let A be a regular local ring which is a k-algebra essentially of finite type. Let G be a finite group of k-automorphisms of A. Suppose no height 1 prime of A ramifies over A^G . Let P be a prime ideal of height ≥ 2 in A^G and let R be the local ring $(A^G)_P$. Set $S = A \otimes_{A^G} R$. Then G acts on S and $S^G = R$. So S is a finite R-module and no height 1 prime of S ramifies over R. If $K = K(A^G)$ denotes the quotient field, we have the following inclusion relations:

Therefore S is a localization of A in the field of fractions K(A) hence is a regular domain. Since S is finite over R and R is local, S is a semilocal ring. We say that the ring R has quotient singularities if S is a local ring. The maximal ideals of S correspond to the prime ideals of A lying over P, so we see that R has quotient singularities if and only if there is a unique prime ideal Q of A lying over P.

In this short note, we investigate the kernel B(K/R) of the natural map $\tau: B(R) \to B(K)$. If R is regular, it is known that B(K/R) = (0) [AG, Theorem 7.2, p. 388]. For this reason we are primarily interested in the situation where R actually has singularities. This study was motivated by similar questions about the Brauer group and rational singularities on surfaces that were answered in Section 1 of [FS]. Theorem 1 below can also be considered an attempt to correct Theorem 12 of [DF] which is false; a counterexample is given in [DFM]. The example is a normal algebraic surface X with isolated rational singular point P such that $\ker \tau$ is finite and non-trivial.

Received November 1, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 13A20; Secondary 16A16.

¹Supported in part by a grant from the National Science Foundation.

THEOREM 1. If R is a local ring with quotient singularities and quotient field K, the natural map $B(R) \to B(K)$ is injective.

Proof. Let (\tilde{R}, \tilde{m}) be the strict henselization of (R, m), where m is the maximal ideal of R [R1]. Then $k(\tilde{m}) = \tilde{R}/\tilde{m}$ is the algebraic closure of k(m) = R/m. Let (R^h, m^h) be the henselization of R. By our hypotheses on R, S is a local ring. Therefore, by [F, Corollary 9.3, p. 40], Cl(S) = Pic(S) = 0. Set $\tilde{S} = S \otimes_R \tilde{R}$ and $S^h = S \otimes_R R^h$. Since S is finite over R, S^h is finite over R^h and \tilde{S} is finite over \tilde{R} . Thus S^h is the henselization of S and \tilde{S} is the strict henselization of S. Since S is regular, S^h and \tilde{S} are regular and by [F, Corollary 9.3, p. 40], $Cl(S^h) = 0$ and $Cl(\tilde{S}) = 0$. Let M, M^h, \tilde{M} be the maximal ideals of S, S^h, \tilde{S} respectively. Then $S/M \cong S^h/M^h$ is a finite extension field of k(m) and $\tilde{S}/\tilde{M} \cong k(\tilde{m})$. Also G acts on S^h and \tilde{S} such that $(S^h)^G = R^h$ and $\tilde{S}^G = \tilde{R}$. Since $R \subseteq R^h \subseteq \tilde{R}$ are faithfully flat extensions of local rings, there are embeddings of divisor class groups $Cl(R) \subseteq Cl(R^h) \subseteq Cl(\tilde{R})$ [F, Corollary 6.11, p. 35]. From Corollary 1.8 of [CGO] (or [G] if R has a unique singular point) we find that the kernel B(K/R) of the map $B(R) \to B(K)$ embeds in the quotient $Cl(\tilde{R})/Cl(R)$. Thus it suffices to prove:

LEMMA 2. In the above context, $Cl(R) = Cl(\tilde{R})$.

Proof. By Theorem 16.1 of [F, p. 82] there are natural isomorphisms

$$\operatorname{Cl}(R)\cong\operatorname{H}^1(G,S^*),\ \operatorname{Cl}(R^h)\cong\operatorname{H}^1(G,S^{h^*}),\ \operatorname{Cl}(\tilde{R})\cong\operatorname{H}^1(G,\tilde{S}^*).$$

Let $\mu(\tilde{S})$ be the group of roots of unity in \tilde{S} . Then $\mu(\tilde{S}) \cong \mathbb{Q}/\mathbb{Z}$ since k is algebraically closed of characteristic 0. Consider the sequence

$$1 \to \mu(\tilde{S}) \to \tilde{S}^* \to V \to 1 \tag{1}$$

where V is defined to be the quotient $\tilde{S}^*/\mu(\tilde{S})$. Then (1) is split exact since $\mu(\tilde{S})$ is divisible. If $\alpha \in \tilde{S}^*$, then for every integer $l \geq 1$, $x^l - \alpha$ splits over \tilde{S}/\tilde{M} hence splits over \tilde{S} by the henselian property. Thus \tilde{S}^* is a divisible abelian group. Consequently V is a uniquely divisible abelian group. So multiplication by l is an automorphism on $H^1(G,V)$. But G is finite and $H^1(G,V)$ is annihilated by |G|. So $H^1(G,V)=1$ and (1) gives $H^1(G,\mu(\tilde{S}))\cong H^1(G,\tilde{S}^*)$. Since \tilde{S} is a domain, $\mu(S)=\mu(S^h)=\mu(\tilde{S})$. So $H^1(G,\mu(\tilde{S}))=H^1(G,\mu(S))$. The sequence $1\to\mu(S)\to S^*$ is split exact since $\mu(S)$ is divisible. Thus $H^1(G,\mu(S))\to H^1(G,S^*)$ is injective. Consider the diagram

$$Cl(\tilde{R}) \xrightarrow{\cong} H^{1}(G, \tilde{S}^{*}) \xleftarrow{\cong} H^{1}(G, \mu(\tilde{S})) = H^{1}(G, \mu(S))$$

$$\uparrow^{1-1} \qquad \qquad \downarrow^{1-1} \downarrow$$

$$Cl(R) \xrightarrow{\cong} \qquad \qquad H^{1}(G, S^{*})$$
(2)

Since G acts trivially on $\mu(S)$, $H^1(G, \mu(S)) = \text{Hom}(G, \mu(S))$ [R2, p. 280] which is finite since G is finite. Hence all groups in (2) are finite and $Cl(R) = Cl(\tilde{R})$.

Example 3. Let k be an algebraically closed field of characteristic 0. Let R be a regular local ring essentially of finite type over k having residue field k. Let f, g be local equations for a divisor on Spec R with normal crossings. Let

$$S = R((fg)^{1/n})$$
 and $T = R(f^{1/n}, g^{1/n}).$

Let $X = \operatorname{Spec} T$. Then $S = T^G$ where $G = \langle \sigma \rangle$ and σ is defined by

$$f^{1/n} \mapsto \zeta f^{1/n}, \quad g^{1/n} \mapsto \zeta^{-1} g^{1/n}$$

for a primitive *n*th root of 1ζ . The map $X \to \overline{X} = \operatorname{Spec} S$ is unramified at all height 1 primes. Thus S has quotient singularities. If L is the quotient field of S, we have $\operatorname{B}(L/S) = 0$ by Theorem 1.

REFERENCES

- [AG] M. Auslander and O. Goldman, *The Brauer group of a commutative ring*, Trans. Amer. Math. Soc., vol. 97 (1960), pp. 367-409.
- [CGO] L. CHILDS, G. GARFINKEL and M. ORZECH, On the Brauer group and factoriality of normal domains, J. Pure Appl. Algebra, vol. 6 (1975), pp. 111-123.
- [DF] F. DEMEYER and T. FORD, On the Brauer group of surfaces, J. Algebra, vol. 86 (1984), pp. 259-271.
- [DFM] F. DEMEYER, T. FORD and R. MIRANDA, Rational singularities and the Brauer group, J. Algebra, to appear.
- [FS] T. FORD and D. SALTMAN, Division algebras over henselian surfaces, Israel Math. Conf. Proc., vol. 1 (1989), pp. 320-336.
- [F] R. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York, 1973.
- [G] A. GROTHENDIECK, "Le groupe de Brauer II" in: Dix Exposés sur la Cohomologie des schémas, North Holland, Amsterdam, 1968.
- [M] J. MILNE, Etale cohomology, Princeton University Press, Princeton 1980.
- [R1] M. RAYNAUD, Anneaux Locaux Henseliens, Lecture Notes in Math., Vol. 169, Springer-Verlag, Berlin 1970.
- [R2] J. ROTMAN, An introduction to homological algebra, Academic Press, Orlando 1979.

FLORIDA ATLANTIC UNIVERSITY BOCA RATON, FLORIDA