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DEFINING FRACTALS IN A PROBABILITY SPACE

CHAOSHOU DAI AND S. JAMES TAYLOR2

1. Introduction

In [1] Billingsley defined Hausdorff dimension for subsets of a probability
space, and developed relations with entropy and information theory. In [2] he
explored the effect of varying the probability measure in the definition. In
revisiting his work we will sharpen his density theorems so that they give
results for measures as well as dimension (Lemmas 5.1 and 5.2).

In Euclidean space Rd there is no generally accepted definition of a
fractal, even though fractal sets are widely used as models for many physical
phenomena. The idea behind these models is that of self-similarity or
affineness which is based on the linear structure of Rd. These and other
geometrical notions have no obvious meaning in an abstract probability
space. One of us [11] proposed a measure-theoretic definition for subsets
E c Rd: E should be called a fractal if

dim(E) Dim(E), (1.1)

where dim(E) is the familiar Hausdorff dimension and Dim(E) denotes
packing dimension as defined in [10], using efficient packing by disjoint balls
with center in E.
The first objective of this paper is to define packing measure and dimen-

sion in a probability space (f, r,/z). This is done in two stages: In Section 3
we produce a premeasure and obtain the analogue A(E)of the upper
Minkowski index in f, while Section 4 completes the definition of packing
measure and dimension. We can then use (1.1) as the definition of a fractal
set in (f, r,/z) with respect to/. In Section 5 we complete the development
of density arguments relevant to both Hausdorff and packing measures and
use these in Section 6 to provide (Corollary 6.4) a useful criterion for A c f
to be a fractal of dimension c. In Section 7 we use ideas of Cutler [4] to
analyse a measure u on (I, r)with respect to/. This leads to the analogue
for probability spaces of the results obtained in [12] for Rd.
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The Billingsley formulation (which we use) depends critically on a fixed
stochastic process {X, X2,... taking values in a finite or countable state
space S. No information about a subset E c f has any relevance unless it
depends on the values {Xn(to)}. This means that we would lose nothing by
assuming that f is an infinite product of a sequence of copies of S, which
would make a typical point to (Xl, x2,..., xn,...), where each x S.
This idea is developed and used extensively by Cajar [3]. We keep it in mind
and note that it is the reason why so many of our arguments are simpler than
in the Euclidean case. However, we find it more intuitive to build on the
original formulation and notation of Billingsley.

In the final Section 8, we specialise 12 to the unit interval [0, 1] with
Lebesgue measure for /,. Whenever S is a finite set of s elements
0, 1, 2,..., s 1 and the process {X} consists of independent random vari-
ables taking each of these values with probability s-1, the obvious mapping
using expansions to base s provides a connection between the theories of this
paper and the usual definitions in R1. We exploit this connection to show that
certain exceptional sets of paths from the Polya random walk are fractals,
and we can determine their dimension.
We start by collecting useful preliminary ideas and results in Section 2. As

usual, we denote finite positive constants by c, c 1, The values of these
constants may change in different contexts.

2. Preliminaries

We start with a fixed stochastic process {X, n N} on a probability space
(11, -,/z) taking values in a finite or countable state space S. A cylinder set
C (of rank n) is of the form C {to: Xi(to) ki, 1, 2,..., n}, with k S.
For each to0 f there is a unique cylinder set of rank n, denoted by Un(tO0),
which contains to0. Thus

Un( (.O0) {(.0: Si( (,o) gi( tOo) 1,2,..., n}. (2.1)

We assume the process is W--measurable, that is, that -g c -, where is the
class of all cylinder sets. We use sets in g’ for both covering and packing.
Many details of classical proofs are greatly simplified because 4’ is nested;
that is, given C1, C2

,, either C1 q C2 or C c C2 or C2 c C1.
Any function b: [0, 8] --, [0, 1] which is continuous, monotone increasing,

with b(0) 0, is called a measure function. The Billingsley [1] definition of
Hausdorff th-measure follows. For > 0, A c f, define

L(A,ch,8) inf( i p(ix(Ci))" A I,..JCi,Ci . ,](Ci) (

limL(Z b,3)./-,,(A, 4)

(2.2)

(2.3)
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For fixed b,/z, L,(., b) is an outer measure in f. When b(s) s we write

L(A) L(A,s ), (2.4)

and think of Lg as an a-dimensional measure in f. The Hausdorff dimen-
sion of a subset A c II is then given by

dim,(A) inf{a" L(A) 0}.

Whenever dim,(A) > 0, it is easy to see that

dim,(A) sup{a" L(A) > 0}.
Billingsley [1] proved that the index dimg(.) satisfies:

(i) 0 < dimg(A) < 1,/z(A) > 0 = dim,(A)--- 1;
(ii) A c B = dim. (A) < dim,(B);
(iii) dimg(LI i1Ai supi{dimg(Ai)}.

Thus dimg(.) is a g-stable index (see [13)])which compares the size of
subsets of fl of probability zero.

It is worth observing that we can use ’ to introduce a pseudo metric in f.
Given o01,002 , let u0(00) 1 for all to, and

n n(001,002) sup{k N: Uk(001) Uk(002))’
001’ 002) 2-n"

(We allow n +oo in the definition, so that P(001,002) 0 if 001, 002 are not
distinguished by the sets of ’.) The closure of A c fl is then

A (to" p(00, A) 0},
where

p(to, A) inf{ p(to, to’)" to’ A};

then it is easy to check that A = tr(), the sigma field generated by the
cylinder sets. g’ plays the role of Borel sets in the topology generated by the
metric p. The sets of are both open and closed in this topology, and each
C un(00) can be thought of as a closed ball of radius 2- centered at 00.

The condition that has no tz-atoms is equivalent to

/Z(Uk(00)) "-) 0 as k --) (2.6)

for all 00 f. Since any point 000 for which (2.6) is false has positive L
measure for every a, the set of such atoms, if it is not empty, has to be
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treated separately. We say that/z is a-continuous if (2.6) holds for every to,
and we will assume this condition holds throughout the remainder of the
paper.
We are now ready to introduce new set functions and indices.

3. Packing premeasure and the index

We use a definition analogous to that of 4) -P* in Euclidean space, as
given in [10]. Our cylinder sets of rank n correspond to dyadic cubes of side
2 -n. We have already observed that, in the metric p, C C. For /t > 0,
define

P.(A, 4), (S) sup{ ick(tz(Ci))’Ci. disjoint,

[(Ci) < and C Un(to) with to A}.
We can think if P(A, 4), ) as the most efficient packing of A by cylinder sets
of measure less than which touch A. Since we clearly have monontonicity
in , we can define

limP (AP (A (3.2)

and we call the set function P,(., 4)) packing b-premeasure with respect to
/z. In general this set function fails to be countably subadditive, so it is not an
outer measure. We collect the properties of P,(A, ) in a lemma.

LEMMA 3.1. The set function Pg(., dp) defined for all subsets of 12 by (3.2)
satisfies:

(i) A cA2
(ii) Pg(A t2 A2, th) _< Pg(A 1, b) / Pg(A 2, tb), with equality if S is finite

and p(A 1, A2)
(iii) If Ix is e-continuous, P,({too}, b)= 0;
(iv) L,(A, d) <_ P,(A,
(v) For any c f, C -d’, P(A, dp) P(A (3 C, dp) + P,(A \ C, dp);
(vi) P(A, d) P(A,

Proof. All these properties follow easily from the definitions. We give
details only for (iv) and (v).

(iv) If L,(A, ) 0 there is nothing to prove, so assume L(A, b) > 0, so
that L,(A,d,)=r/ > 0. Since the definition of L,(a,$,) is a lower
bound for all coverings by cylinder sets of measure less than/i we may clearly
omit any covering set which does not intersect A, and for each pair of
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cylinder sets which intersect A we may remove the smaller one (since is
nested). This produces a more efficient covering of A by disjoint cylinder sets
each of which intersects A. Thus the covering is also a packing, and

L(A,dp,8) inf((ix(Ci))" A c I,.JCi,ft(Ci) ( )
inf{ i(([.t(Ci)) A I,.)Ci, C disjoint,

a (’1 C , ft(Ci) < }
_< sup( . (].J,(Ci))" C disjoint, A C Ci :

P(A, b, 6).

The result follows by letting t$ ---> 0.
(v) Now suppose {Ci} and {Di} are any packings of A n C and (A \ C) by

cylinder sets of measure at most . Because a is nested at most one C C
and the remainder are subsets of C. Similarly, at most one D C and the
rest are disjoint from C. Hence, if we leave out at most two sets, each of
measure less than , the combination of {Ci} and {Di} is a packing of A. Thus

P(A, 4), a) > P(A v C, 4), a) + P(A \ C,4, a)

The result now follows by letting t $ 0 and applying (ii).

Remark 3.2. The conditions obtained in Lemma 3.1 include those re-
quired for P(., b) to be pre-measure. However, P is not an outer measure
because (ii) does not extend to a countable union of sets. To see this consider
the rationals {r1, r2,... as a subset E of [0, 1] with /x equal to Lebesgue
measure. If {Xn} are independent random variables taking each of two values
with probability 3, then it is easy to check that, for 0 < a < 1, P, ({rn}) 0,
but P(E) +.

In this remark we have already used the notation when a > 0, 4)(s) s,
Pfl(A) P( A, s’).

The usual arguments now show that, when II is -continuous and 0 < a </3,

P;(A) < e2(A) 0;

P2( 4) > 0 P2( A)

(3.3)

(3.4)
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It follows that, for any A c f, there is a unique index a0 A(A), given by

a0 inf{a" P(A) 0}. (3.5)

By (3.30, if a0 > 0, we also have

.o

Remark 3.3. We use the notation Ag for this index because it is analo-
gous to the upper Minkowski index in Euclidean space for which Tricot [13]
uses A.

LEMMA 3.4. The index Ag(.) has the following properties"
(i) A c B Ag(A) _< Ag(B);
(ii) 0 _< dimg(A) _< Ag(A) _< 1 Ag(f);
(iii) Ag(A t3 B) max{Ag(A), Ag(B)}.

Proof. (i) and (iii) follow from (3.4) and (i), (ii) of Lemma 3.1. Clearly,
pl(f) 1, so (i) and (3.3) now give A,(A)_< 1, and (iv) of Lemma 3.1
ensures dim,(A) _< A,(A).

Note. The example in Remark 3.2 shows that the index A,(.) is stable but
not r-stable.

4. Packing measure and packing dimension

We can apply the method of Munroe (see [7], Theorem 11.3 or [9],
Theorem 4) to the pre-measure P,(., b) to obtain packing measure fi,(., b):

/6,(A, 4’) inf E P,( Ai, dp)" A c tJA
i=1

(4.1)

THEOREM 4.1. The set function 1,( ., d) given by (4.1) has the following
properties:

(i) I,(A, dp) <_ P,(A,
(ii) O i= lAi, ) Ei Ai, ).
(iii) enever p(A, B) > O, and S is finite,

t;,( A t2 B ck ) ( A dp ) + ff ( B dp )
(iv) If J’= (r() is the q-field generated by the cylinder sets, then

is J-regular.
(v) For any sequence of sets An A, t(An, dp) ---> if(A, dp).
(vi) fig(A, 4)) inf{limn P(An, 4)): An ’1’ A}.
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Proof. (i) and (ii) are true whenever the Munroe construction is applied
to a premeasure. (iii) follows from (4.1) and Lemma 3.1(ii). We have been
unable to decide whether Pg(., b) is a metric outer measure whenever the
state space S is countably infinite, so we obtain our measurability conditions
without this assumption. If C ’, (4.1) gives

fi(A, b) inf E P(Ai, t) A C UA
i=1

and applying (v) of Lemma (4.1) gives

inf .Pg(AiC, ch) +Pg(Ai\C,$)’A c LAA
i=1

>_ inf ., P.(Bi, dp)" A I"1 C c tdB + inf{Y’.P.(Bi, )" A \ C c tdBi}
i=1

P (A + \

Using (ii) now shows that C is measurable with respect to the outer measure
/(., b). Hence each set in = tr() is also measurable. Applying Lemma
3.1 (vi) to the definition (4.1), we see that each set A has a cover H g’
with the same P-measure.
The proof of (v) and (vi) is now the same as that of Lemma 5.1(v) and (vii)

in [10], so we omit it.
It is clear that we can use the family of outer measures fi, a > 0 to define

Dim(A) inf(a" P, (A) 0). (4.2)

If Dim(A) co > 0, then

o <. < .o = P;(A)
so that

Dim,(A) sup(a P, (A) +

Tricot [13] used
follows:

to denote the operation on a dimension index defined as

,(A) inf(sup{A,(A,,)}" A UA}.
n

(4.3)

We can prove analogous relations to those holding in the Euclidean case.
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THEOREM 4.2. For each A c f,

0 _< dim(A) _< Dim(A) (A) _< A(A) _< 1.

Proof. Lemma 3.4(ii) already gives us 0 < dim(A) < A.(A) < 1. If A
WA, then

dim(A) sup {dim.( An) _< sup A(An) ),
n n

so that

dim(A) _< z(A) _< A(A).

Now suppose Dim(A) a, and /3 > a. Then fir(A) 0 and Theorem
4.1(vi) ensures there is a sequence of sets An 1’ A such that Pf(A.n) _< 1 for
all n which implies A(An) _</3 for all n, and (4.3) now gives A,(A) _</3.
This gives

,(A) _< Dim(A). (4.4)

In the other direction, suppose z,(A) a and /3 > c. There is a sequence
{An} such that A I.JAn and A(An) < 1/2(a +/3) so that Pf(A) 0 for all
n. For this sequence /(A)= 0 so that fif(A)= 0, and Dim(A)</3.
Together with (4.4) we have

Dim,(A).

5. Density theorems

Billingsley [2] uses a density result for comparing two probability measures
and for computing dim(A). We prefer to obtain more exact theorems for
L(., b) from which the Billingsley theorems can be deduced as corollaries.
We also obtain the corresponding results for ff(., b); these are analogous to
those in [10], but the nested structure of simplifies many arguments. Each
of our density theorems require two preliminary lemmas.
We do not wish to restrict ourselves by the assumption that/z(un(to)) > 0

for all n,to. To avoid ambiguity let us assume that

lim
,(u,(to))

n+:

if to is such that IX(Un(to)) 0 for n > n0.
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LEMMA 5.1. Suppose v is a finite measure on (f, 9-), th is a measure
function, and h > O, and A c9r. Let

v(un(to)) <3,). (5.1)Ax to A" limsUPn.._oo t(/(Un( to) ))

Then

1
L(A, dp) >_ - v( A,)

Note.
to mean

The case 3, 0 is important if v(Ao) > 0; (5.2) is then interpreted

L(Ao,4)) +oo.

Proof Since/z is oVZ-continuous,

12(Un(to)) lim H(6 to)lim sup
n (/(Un(to))) 5,0

where

"(Un(’)) <--sup

For fixed e > 0, put

Clearly Bx+, $ Ax as 6 $0, and we can cover Bx+, by sets C u,,(to)
such that iz(Ci) < 6 and o Bx+,. For any such covering,

11 E l(Ci) >" I)(BA

Now any covering of Ax by sets C with /x(Ci) < 6 is also a covering of
Bx+,, so after letting 6 $ 0,

1
v(A)L.A, >_

h +

and (5.2) follows since e is arbitrary.
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LEMMA 5.2. Suppose v is a finite measure on (l, r), 4) is a measure
function, and 0 < h < + oo. Let

 (Un(OO)) > (5.3)Ax a)" limsUPn._.)oo ((/(Un( (-O) ))

Then

1
L,( Ax, ok) < -v( (5.4)

Note. The case A + in (5.4) is taken to mean that

L(A+oo, d) O.

Proof If A 0 there is noting to prove. Assume 0 < A < +, since the
A + case will follow if we can show (5.4) for each finite A. Let 6 > 0,
0 < e < 1. Then, for each o Aa, there are arbitrarily large integers n
n(o) such that, for C u(o),

1
(C) < , b(/x(C)) _<

A(1 e) v(C). (5.5)

The collection of such C covers Ax, so we can find (since is nested) a
countable disjoint subcollection {Ci}, each of which satisfies (5.5), which
covers Aa. For this covering,

1 1
L,(Ax, dp, ) < E(ld’(Ci))i A(1 e) i /(1 )

First let $ 0 and then e $ 0 to give (5.4).

THEOREM 5.3. Suppose v is a probability measure on (1, r), 4) is any
measure function, and A -. Then

v(A) ,oinfcA { liminfn._.
dP(v(Un( ) ) ) ) < L (

n( OO ) )
dp )

< sup [ lim inf
oA n ((](Un((’O)))l)(Un(O.))) }. (5.6)
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Proof. Note that condition (5.1) is equivalent to

>
1 )1)( Un( to ) )

If we replace 1/A by

inf (lim inf
ooA n-,oo V(Un(tO))

the left inequality in (5.6) follows from (5.2). A similar argument using (5.4)
establishes the right inequality of (5.6).
We now look for corresponding results for packing measure.

LEMMA 5.4. Suppose v is a finite measure on (f/, r), is a measure
function, and 0 <_ h <_ + oo and A c-. Let

u(un(to)) <h). (5.7)Ax to A" liminfn_oo t(bl,(Un(to)))

Then

1
P,( Ax, 4)) > -v(Ax). (5.8)

Proof. If h + oo there is nothing to prove. Suppose 0 h < + oo and
e > 0, 6 > 0. For each to Ax, we can find arbitrarily large integers n n(to)
such that

1 1,(Un(to) )[d,(Un(to)) < , (]([./,(Un(to)))
_

/ + g (5.9)

If d denotes the collection of all cylinder sets satisfying (5.9) with to Ax,
then we can find a countable disjoint sequence {Ci} of sets from d which
covers Ax. Since this collection is also a packing, we deduce that

11 E v(Ci) > v(Ax)P..( b > .b( ( )).__._,lx,Ci, ,> A + e A + e

This is true for all e > 0, so that

lv(Ax).P,(Ax, 4)) >- " (5.10)
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We can apply (5.10) to any sequence {Bn} of sets in - such that Bn ? Ax, and
use Theorem 4.1(vi) to obtain (5.8).

LEMMA 5.5. Suppose v is a finite Borel measure on (12, -), is a measure
function, and 0 <_ h <_ +. Define

Then

v(u,(to)) > a}. (5.11)to" limn_inf ( [.ll,( Un(to)))

(a).(A,) _< (5.12)

Proofi If A 0 there is nothing to prove; the case A + will follow if
we can prove (5.12) for finite A. Suppose 0 < A < +, 6 > 0, 0 < e < 1. Put
A’ A(1 e) and define

where

,(u(,o)) < a}K(6, to) inf
4)(/x(u,,(to)))

Then, if {Ci} is any packing of B,,s by cylinder sets with (Ci) < , we have

1 1(h(/z(Ci) ) < .,v(Ci) < v(f) (5.13)

If we note that B,, ’ Ax as 6 $ 0 and apply Theorem 4.1(vi) to this sequence,
we get

lv(fl)ff,(A;, 4)) -< lim P,( Bx, , ok) <_ -by (5.13). (5.12) now follows by letting e $ 0.

THEOREM 5.6. Suppose v is a probability measure on (1", ,.-), b is any
measure function, and A -. Then

v(A) inf lim sup
toga

(.(Un(’))) } < P.(A )l](Un( to) )

N sup / lim sup
eoA u.(,,,))

(5.14)
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Proof. This theorem can be deduced from Lemmas 5.4, 5.5 in the same
way that (5.6) was deduced from Lemmas 5.1, 5.2.

Remark 5.7. The reader will notice the similarities between these density
results and those for Hausdorff and packing measures in Rd. The main
difference is that we have not required a smoothness condition on b and
there are no constants depending on b in (5.6) and (5.14). This follows from
the fact that ’ is nested.

6. Fractai subsets of fl

Tricot [14] introduced the notion of a regularity index for subsets of Rd,
and Taylor [11] suggested that only regular sets should be called fractals. We
use this idea to provide the basis for defining fractals in

DEFINITION 6.1.
if/z(A) 0 and

A subset A c is said to be a fractal with respect to/z

dim(A) Dim(A).

The standard method for finding Hausdorff and packing dimensions of a
subset E c Rd starts with the construction of a measure v concentrated on
E but evenly spread over E. Some version of density theorem is then applied
to v. We now make that method explicit using the ideas of Billingsley [1, 2]
and techniques developed by Cutler [4].

THEOREM 6.2. Suppose A -and there is a finite measure
with ,(A) > 0 and such that

log ,(u,(to)) < cforall to cA (6.1)limn_ooinf log/x(un(to))

and, for each e > O, ,(A) > 0 where

Then

dim(A) c.
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Proof (i) If to A, then

(u()
lim sup

[(u(l-
By Lemma 5.1, this implies that Lc-(A) +0% so that

dimg(A) > dimg(A) > c e.

Since e is arbitrary, it follows that

dim(A) > c. (6.3)

(ii) For 8 > 0, (6.1) implies that, for all to A,

l(Un( to) )lim sup
n-oo [(Un(to))] c+8 +oo,

and an application of Lemma 5.2 gives c+8L, (A) 0, so that dim,(A) < c +
8. Again 8 is arbitrary, so dim,(A)< c which, with (6.3), establishes the
theorem.
Very similar arguments give the next result.

THEOREM 6.3. Suppose A c-and there is a finite measure v on (12, -)
with v(A) > 0 and such that

log V(Un(to))
limn oosup log/z(Un(to) )

< c for all to A, (6.4)

and, for each e > O, v(A) > 0 where

Then

log l)(Un(to)) > C ). (6.5)A to A" limn....oosup log Id,(Un(to))

Dimg(A) c.

Combining these results gives a technique for showing A is a fractal
with respect to/z.

COROLLARY 6.4. Suppose A -,/z(A) 0, and there is a finite measure
on (1, -) with v(A) > 0 and satisfying (6.2) and (6.4). Then A is a fractal
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and

dim.(A) Dim.(A) c.

Remark 6.5. The definition 6.1 really only examines the thickest part of
the set A, and requires dim, to equal Dim, on that part. Stronger conditions
are needed if we want the set to look the same near each of its points. We
could call A a fractal with uniform dimension c if/z(A) 0 and there is
some finite measure v on (f, -) such that v(A) > 0 and

log (tn())lim
log/z(un(to))

c for all to A. (6.6)
n---)

7. Fractal measures in (

The condition (6.6) can be relaxed by allowing the limit to depend on to.

This gives the relevant version of a definition proposed in [12].

DEFINITION 7.1.
respect to/z if

A finite measure u on (12, -) is said to be a fractal with

,(to) lim
log V(Un(to)) exists v a.s.

n--)oo log/x(un(to)) (7.1)

DEFINITION 7.2.
such that

If u is a fractal with respect to/z and there is a constant

(to) a, v a.s., (7.2)

we say that u has exact dimension a; otherwise we say that u is a multifractal
measure.

We remark that our proposed definition of a multifractal measure is not
analogous to those appearing in the physics literature. We are requiring a
local regularity condition to be satisfied by u at u a.a. points of fl.
Note that, if u is a fractal with exact dimension a, then Corollary 6.4 tells

us that the set

is a fractal with uniform dimension a. More generally, for any fractal
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measure v we can define its upper dimension by

dim.(u) inf{/3 > 0" 9.(to) </3, u a.s.}.

The results of Section 6 lead immediately to the following:

THEOREM 7.3. Suppose v is a fractal measure with respect to Ix and
dimly =/3, 0 </3 _< 1. Then

dim.(A) Dim.(A) =/3,

where

A {,o’0 _< _<

This means that, if /3 < 1, or at least /x(A)= 0, fractal measures are
concentrated on fractal sets. In general, the converse is false; a uniformity
condition like (6.6) is needed if we are to start with a set and construct a
fractal measure concentrated on it. Otherwise, the thinner parts of the set
(that is subsets of points to where 3,(to) </3’ </3) may cause a problem.

8. The Lebesgue case

It is clear that, just as Billingsley [1] related his definition of Hausdorff
measure and dimension in (f, -,/z) to the classical definitions on the real
line, we can compare our definition of packing measure and dimension to
those defined in [10]. We take f [0, 1], r to be the class of Borel subsets,
and/ to be Lebesgue measure. For a fixed integer s > 2, to f, let

to E Xi(to) S-i (8.1)
i=1

be the nonterminating expansion of to to base s. Then {X1, X2,... becomes
a stochastic process taking values in S {0, 1, 2,..., s 1}, and un(to),
defined by (2.1), becomes a half-open interval of length (or Lebesgue mea-
sure) s -n. If b rn denotes Hausdorff b-measure as defined in Rogers [9],
then a modification of the standard arguments for dyadic covers (correspond-
ing to the case s 2), shows that there is a finite constant c such that, for all
A

ck m(A) <_ L,(A, d)) < cd m(A), (8.2)

so that dim,(A) is identical with the usual definition of Hausdorff dimension.
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In [10] several definitions of b-packing are explored, and the preferred
one, denoted 4) P(A) uses balls with center in the set A. Because u,(o) is
a closed ball of radius 2-n in the p- metric we can interpret P,(., 4)) as
equivalent to 4) -p(’)^in the modified metric. However, it is easy to check
that our definition of P,(., 4)) reduces to b -p*(.) in the Euclidean metric
in the case s 2. For all values of the integer s, its relation to 4) -P and
b q will in general by similar to that of b p*. There will be some sets A
for which fig(A, b) + oo but 4) P(A) < oo, but we can show that there is
a positive constant c such that

cdp -p(A) <_ Pg(A, b) _< 4) q(A). (8.3)

It was proved in [10] that b p and 4) q define the same dimension index;
that is,

Dim(A) inf{a > 0: s" q(A) 0}.

Hence (8.3) implies that our index Dim,(A) is identical with Dim(A) as
defined in [14] or [10].

It follows that our definition of a fractal with respect to/z, given in Sec-
tion 6, is identical with the suggested definition in [11], and the fractal
measures, defined in Section 7, correspond to those defined in [12].

Because of the above connections we can translate any known results
about subsets of [0, 1] to the probability space ([0, 1], ,/z). Eggleston [5, 6]
considered sets obtained by asymptotic conditions on the expansion of a real
number of x in [0, 1] to base s. Now packing dimension had not been defined
at the time of these papers, so Eggleston only considered Hausdorff dimen-
sion. However, an examination of his argument shows that, in calculating an
upper bound for the Hausdorff dimension of

he counted the number Nr(E,,) of intervals of length s which the set E
intersects, and showed that, for all e > 0, whenever r is large,

gr( En) < (st) t+e. (8.4)

Eggleston’s definitions of E, E are given in terms of the sequence X of
(8.1). We will use several distinct cases which arise as translations of the
structures of this paper.
The case s 2 of the following result is due to Tricot [13].
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LEMMA 8.1. /f A c R and Nr(A) denotes the number of intervals of the
form [is -r, (j + 1)s -r) which contain a point ofA, then if

we have

N(A) <s" forr>ro,

A,(A) <a.

Proof Consider any packing of A by cylinder sets of rank at least r0. For
> 0, q,(x) x"+,

--dP(Ix(Ci)) < E Nr(A)(s-r)
a+e

r=r

(this ignores the possible overlaps between cylinders of distinct ranks because
all candidates are counted)

< E s-re "-> 0 as ro
r=r

Thus P+’(A) 0, so that

A(A)

for each e > 0.
Since Eggleston’s arguments use (8.4) to cover E, he is actually proving

A(En) < a + e, which implies ,(E) < a + e for each e > 0. This means that
the method by which he obtains the Hausdorff dimension includes a proof
that ,,(E) dim,(E), and his subsets are fractals in the sense of [11]. In the
context of this paper, his subsets of [0, 1] are fractals with respect to
Lebesgue measure.
The reader can easily translate many of the results in [5, 6]; we illustrate by

considering some sample path properties of simple random walk on the
integer lattice. Define independent random variables

+1
Y/(o)

-1

with probability ;
with probability 7,

and put So 0,

n

E
i=1

n 1,2,
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Then (Sn} is called a simple random walk on the integer lattice. The strong
law of large numbers implies that

1
Sn(tO) 0 a.s (8.5)n

so that any subset of

1
S(tO) - O)A= to’-

has measure zero and can be analysed using the methods of this paper. For
all tO, it is clear that

-1 _< nl--sn(tO) < 1,

and, if -1 < c < 0, each of the following has probability zero since it is a
subset of A:

1
S,,(tO) c as nBc= tO’-ff

Dc tO" limsup -n--*

Ec (tO" liminf -S(tO) < c}"
Each of these sets has an easy geometrical interpretation in terms of the
long-term behaviour of the graph {n, S,(tO)} relative to the lines y (c + e)x.

THEOREM 8.2. Each of the subsets Bc, Dc, E of f is a fractal of dimen-
sion a f(c), where

f(c) 1- 3(1 +c)log2(1 +c)-1/2(1-c)log2(1-c).

Proof. Clearly

Bc c Dc c Ec cA, (8.6)

so it is sufficient to show that

dimg(Bc) > f(c), Dimg(Ec) < f(c).
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If tz is the probability measure of the random walk, the mapping

xi= - + -Y
gives a stochastic process {Xi} taking values 0, 1, so that the dyadic expansion
(s 2)

o E Xi(w)2-i

i=1

is a measure preserving isomorphism between (f, 9z-,/) and ([0, 1], ,
with h for Lebesgue measure. Now let N(r, x) be the number of times
occurs in the first r places of the dyadic expansion of x [0, 1]. Be
translates to

Bc= x [0,1] lim N(r s) 1 1
r-- r =+c

The main theorem of [5] asserts that the Hausdorff dimension a dim(B’c)
satisfies

+c
2-"= (1/2+sc) (1/2-c)7-7c

or

)log2(1-- ( + 1/2c)log( + C) + (- C - C),
or

a 1 3(1 + c)log2(1 + c) 1/2(1 c)log2(1 c).

Hence

dim(B’c) dim,(Bc) f(c). (8.7)

Theorem 14 of [6] asserts that dim(E’c) f(c). However, as explained
above this is done by counting the number of dyadic intervals of length 2
which meet subsets Ek with E’c U kE. That is, the proof on pages 78, 79
of [6] actually yields

n(E’c) Dim(E’c) < f(c).

By translation we get

Dim,(E) _< f(c).
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Putting this together with (8.6) and (8.7) we have shown that each of the sets
Bc, Dc, Ec is a fractal with dimension index f(c).
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