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APPROXIMATE VERSIONS OF CAUCHY’S
FUNCTIONAL EQUATION

J. RaLPH ALEXANDER, CHARLES E. BLAIR AND LEE A. RUBEL!

1. Introduction

Ulam [U, page 63] raised the general problem of when a mathematical
entity which nearly meets certain requirements must be close, in some sense,
to one which does meet the requirements. A particular case is a result of
Hyers [H]: if

|f(x+y) = f(x) = f(y)| <e forall x,y,

then there is a g satisfying Cauchy’s equation with |f(x) — g(x)| < ¢ for all
x. A survey of related results appears in [HR].

In this note, we look at stronger assumptions ((H] did not even assume f
was measurable) that imply f(x) = yx almost everywhere (we will use
Lebesgue measure, denoted by u, throughout). Our main results are:

THEOREM 1. Let f, a, b be measurable functions and let
(1) 8(x,y) =f(x+y)—a(x) —b(y).

If there is a J € R such that, for every ¢ > 0,

(2) ({6, 91 [8(x, ¥) =T | = €})
is finite, then, for some y and B, f(x) = yx + B almost everywhere.

Remarks
1. It is easy to see that, if f=a = b and J = 0, then B = 0.

The referee points out that the case f=a =b and J # 0 is related to
Pexider’s equation f(x +y) = f(x) + f(y) + K.

2. For any p > 0, 8§ € L?(R?) implies that & satisfies (2) with J = 0.

3. It can also be shown that, for some B',v’, a(x) = y'x + B’ almost
everywhere (the same argument applies to b(x) by symmetry): replace f by
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CAUCHY’S FUNCTIONAL EQUATION 279
f'(x) = —a(—x) and let a'(x) = —f(—x), and b'(x) = b(x). Then
(3) (x,y)=f(x+y)—d(x)-b(y)=8(-x—-y,y)

satisfies the hypothesis of Theorem 1 if § does, since the two are related by a
measure-preserving transformation (look at the Jacobian), and the conclusion
follows. Moreover, v = v’ (consider what happens with y fixed) and 8(x, y)
= J almost everywhere.

Tueorem 2. Let f € LY0, al for all a > 0. For x, y > 0, define

(4 8(x,y) =f(x+y) = f(x) = f(y).

Suppose that for almost all x,
.1
(5) Jim 2 ["8(x,y) dy = 0

Then for some vy, f(x) = yx for almost all x > 0.

Notice the absence of absolute value signs in (5).
Elliott [E1] has shown that, for any a > 0, f(x) = yx almost everywhere if
f e L%, z) for all z> 0 and

©  lmz [ y) ~ f(x) = () dedy = 0.

These results each cover certain cases not included in the others. Theorem 1
only assumes the measurability of f. Theorem 2 could be applied to cases in
which /8 is small but [|8] is large. For example, Theorem 2 implies that we
could not have

(7) 8(x,y) = sin((x2 + yz)l/z).

We present proofs of these theorems in the next two sections. In our final
section, we take a more elementary approach which, for the case of continu-
ous functions, gives more information.

We thank Richard Rochberg for suggesting a related question to one of us
(LAR).

2. Proof of Theorem 1

Lemma 3. If D, E C R and each set has finite measure, then for any
LeR, thereisKeRwithK&€Dand K+ L ¢ E.
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Proof. Let N = u(D) + u(E). Let K be any member of [0, N + 1] which
is not a member of D U (E — L), where the minus sign denotes translation.
|

LemMmA 4.  Assume & satisfies the assumptions of Theorem 1. For €,0 > 0
define

(8) A, =(l18(x.y) ~I|> ) and B, , = {xlu(A,.) > o).
Then B, , has finite measure for each &, 6.
Proof. If the measure were not finite, Fubini’s theorem would imply
18(x,y) —J|=¢
on a set of infinite measure. W
LemmMaA 5. Define

(9) A(y,K,L)=8(K+L,y)—8(K,y)
=[f(y+K+L)-f(y+K)|] - [a(K+L)—a(K)].

Forany €,0 > 0 and L € R, there is a K € R such that
(10) w({y!|h(y,K,L)| > €}) < 6.

Proof. Since B, , 4 ,, has finite measure, Lemma 3 implies that there is a
K such that both K and K + L are not members. Thus

(11) w(Ag e pYAgir epn) <0
and, if y is not in the union, |6(K + L,y) — 8(K,y)| <e. ®m
LemMmA 6. For any L, there is a number M, such that

(12) f(y+L)-f(y) =M,

for almost all y.

Proof. Forn=1,2,..., let K, be given by Lemma 5 with e = § = 27",
and let

(13) s, =a(K,+L)—a(K,),
(14) Co = {yIA(y, K,, L)| <277}
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C, is the complement of the set in (10), so we may apply Lemma 3 with D
and E the complements of C, and C,,; to conclude that there is y € C,
such that y' =y + (K, — K,,,.;) € C, ., which implies that
(15) sy = Spial =[A(¥, K,, L) = h(¥', K, 41, L)| < 277",

so s, is a Cauchy sequence. We let M, be its limit. The set of y for which
(12) holds contains

(16) U N (€ +K).
m=1n

D

where the plus sign denotes translation. Since the complement of C, + K,
has measure < 27", the complement of the set in (16) has measure 0. W

Finally, we show that, if f satisfies the conclusion of Lemma 6, then, for
some B, f(x) = M;x + B almost everywhere. We will assume M, > 0 in the
proof. The case M; < 0 follows by considering —f(x). Let

(17) Er=f_1(_°°’r)n[_1’1]’
(18) B = sup{rlu(E,) <1},
(19) g(x) =Mx + B.

Note that w(Ep) < 1.

If f + g almost everywhere, then there is ¢ > 0 with [f(x) — g(x)| > £ on
a set of positive measure. We will show that both f> g and f < g lead to
contradictions. The idea of the argument in both cases is that we begin by
locating a small interval with f bounded away from g in most of the interval.
Then we use (12) to conclude that f must be bounded away from g for most
of [—1, 1], and show that this leads to contradictions with the definition of B.

Case 1 (f too big). Define

(20) T = {xIf(x) > g(x) + &}.

If w(T) > 0, we can find, for any 7 > 0, a sequence I, of intervals with
rational endpoints with T'c U, I, and X,u(I,) < (1 + 7)u(T). For at least
one ¢, (1 + 7)u(l, N T) > u(l,). Since I, can be written as a union of
subintervals (disjoint except for endpoints), we can find arbitrarily small
intervals I with

w(T NI

2 r(1)
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arbitrarily close to 1. In particular, there is a natural number m and an
integer k such that

k k+1 M +e)1
(22) #(T”[E’T])>(m)7n‘-

We require m to be so large that there is a natural number j < m such that

(23) Ml(;;—) <e,
(24) (1_717)+"A71_§-F7§(1+%)51'

(The expression on the left in (24) is monotone decreasing in j/m, and < 1
if j/m=¢/M,.If M, =0, then j = m.)

Let a = g(—j/m) + e. We will show that u(E,) < 1. Since (23) implies
a > 3, this will contradict (18).

If x> —j/m, f(x) > g(x) + ¢ implies f(x) > a, so

(25) {xlf(x)>aandx2 —%}QT(\[—;L—,OO).

It is easy to show that, for any natural number m, M, = (1/m)M,.
Hence, by Lemma 6 with L = 1/m,

(26) xe€T ifandonlyif x +1/meT

for almost every x. This implies that (22) holds for any integer k. If k > —j,
(22) and (25) imply

(27) /.L({xlf(x) <aand x € —’I;—l,k—%—l]})
<|1- M +e )1 _ £
( M, + 2¢ ) m (M, +2e)m

We can write [—j/m, 1] as a union of j + m intervals of length 1/m and use
(27) on each one to obtain

@ {00 samdre |- L)) < AL

(M, +2e)m”’
Now, (28) and (24) together yield

(29) u(f (= a) N [-1,1]) <“([‘1’"7{{]) + fﬁ% <1
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In other words, u(E,) < 1. As previously indicated, & > B, so this contra-
dicts (18).

Case 2 (f too small). The essential ideas are the same as in case 1. This
time, we define

(30) T = {x|f(x) <g(x) — ¢}
k, m, j are chosen so that they satisfy (22), (23), and

M, +¢ j

Define @ = g(j/m) — &. By (23), a < B. We will show that u(E,) > 1, which

implies /.L(EB) > 1, which is inconsistent with the construction of B.
For x <j/m, f(x) < g(x) — ¢ implies f(x) < a, s0O

(32) {xlf(x) <aandxs%} QTO(—OO,L].

m

Just as in case 1, (26) implies (22) holds for any integer k. Hence, if
k + 1 <j,(32) and (22) yield
k k+1 S M, +¢ 1
m’> m M, +2e|m-

Write [—1, j/m] as a union of m + j intervals of length 1/m, use (33) on
each one, and apply (31) to obtain

o M +e \m+j
1’E]})>(Ml+2e) m =1

This establishes that u(E,) > 1, which leads to the desired contradiction.

(33) p,({xlf(x) <eaand x €

(34) p,({xlf(x) <aand x €

3. Proof of Theorem 2

Iterating the equation (4) gives

n—1

(35) f(y +nx) =nf(x) +f(y) + X 8(x,y + kx).
k=0

Integrate equation (35) with respect to y to get

(36) 5 [ £+ me)dy = £() + 52 [FO) dy + 5 [3(x.9) dy.
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If x satisfies (5), then

(37) lim - f f(y + mx) dy = f(x).

To complete the proof, we first show that (37) implies, for any natural
number r, that

(38) f(rw) = rf(w) for almost all w.

Next we show this implies f(x) = yx, for some vy and almost all x.
Let S be the set of x for which (37) holds. We have seen that (5) implies
almost every real number is in S. Hence, almost every x is in
= 1
(39) n;ys.

Hence, for almost every w, (37) holds for all x € {w,2w,3w,...}. For
such w,

(40) f(rw) = lim —f f(y + nrx) dy

o0 MWF
(k+1)
= n_m proves Z f wf(y + nrw) dy = rf(w).

This completes the proof of (38) for natural numbers r. It follows immedi-
ately that (38) holds for all rational r > 0.

The rest of the proof depends on theorems of Lebesgue about functions
fe L' and their “indefinite integrals” F(x) = [§f(w)dw, which may be
found, for example, in [KF, pp. 313-324]:

1. F(rx) = rf3fGrw) dw.
2. F is continuous.

3. f(x) = F'(x) almost everywhere.

Let y/2 = F(1). For rational r > 0, we can use (38) to obtain

(41) F(r) = rj:f(rw) dw = rfolrf(w) dw = r?y /2.

The continuity of F implies F(x) = yx2/2 for all x, so f(x) = F'(x) = yx
almost everywhere. This completes the proof.
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Theorem 2 can be extended to f € L[—a,a] for all a > 0. Theorem 2
implies that f(x) = yx for almost all x > 0. If x < 0 satisfies (5), then

1 1
(42) 0= ulgx:o;[oa(x,y)dw Jﬂm[_xa(x,y)dy

= lim

lim o [ {0+ ) = F()] = f(0)}dy = vx = £(x)

—X
and the conclusion follows.
4. A different analysis

The result we prove in this section is:

THEOREM 7. Let f, a, b be continuous function and let
(43) 8(x,y) =f(x +y) —a(x) —b(y).

If 6 € LP(R?) for some p = 1, then f(x) = yx + B for some vy, 8 € R.

This follows from Theorem 1, but the method of proof here is more
elementary. When f is not affine, we are able to identify regions in the plane
(unions of infinite strips) on which [|8] is infinite.

Reasoning similar to that given in remark 3 following Theorem 1 can be

used to conclude that a(x) = yx + B8 and b(x) = yx + B”, with 8(x, y) = 0.

LemMmA 8. If we establish Theorem 7 for the case in which a(x) = b(x),
this establishes the result in general.

Proof. Make the replacements

_ 8(x,y) +6(y,x)
- 2

(44) &(x,y) f1(x) =£(x),

a(x)=b(x)= a(x) +5(x) -;b(x) .

&, f',a, b satisfy the assumptions of the theorem if 6, f,a,b do, so our
hypothesis allows us to conclude that f(x) = yx + 8. W

From now on, we will assume a(x) = b(x).
Lemma 9. If, forallc,d,c’,d € R, ¢ +d =’ + d' implies

(45) a(c) +a(d) = a(c') +a(d),
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then for some vy, B, a(x) = yx + B and either f(x) = yx + 2B (i.e., 8(x,y) =
0) or there are ¢ > 0 and numbers K < L with |6(x,y)| > e if K <x +y < L.

Proof. For any numbers x, y, (45) implies a(x) + a(y) = a(x + y) + a(0).
If we define a'(x) = a(x) — a(0), then a' is a continuous solution to Cauchy’s
equation. This implies a’ is linear and a(x) = yx + a(0), for some y. If

f(x) # yx + 2a(0),
continuity implies that there are ¢, K, L with
|£(x) = yx — 2a(0)| > ¢
for K<x<L. m
To complete the proof, the remaining case is treated using

Lemma 10. If there are c,d,c’,d’ withc + d = ¢’ + d' such that (45) does
not hold, then there are e, C > 0 such that if

(46) s(4) = | |8(x, ),

R{UR,UR;UR,
the integral over the union of four rectangles, where

Ri={(x,y)l Ix — ¢l <eand ly| <4}
R, ={(x,y)llx — | <eand |yl <A}
Ry ={(x,y)l lx —d'| <eand |yl <A}
R,={(x,y)l lx —d| <eand |y| <4},
then s(A) > CA for A sufficiently large.
Proof. By continuity, we may assume c, ¢’, d, d’ are all different. Define
(47) h(t)y =a(c+t) +a(d—1t) - [a(c +1) +a(d —1)].

Choose € > 0 so that, for some B > 0, if |£| < &, |h(¢)| > B, and so that the
R, are disjoint.
Let K=c¢' —c=d —d'. Forany y € R,
(48) —-8(c+t,y)+8(c +t,y—K)
+8(d —t,y) —8(d—t,y—K) =h(t).
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If we take absolute values in (48), apply the triangle inequality, and
integrate over |y| < A4 and |f| < g, we get

(49) u(A) = | |8(x,y)| > 4A4Be,

S,US,US;US,

where §; =R,, S5 =R,, and §,,S, are R,, R, shifted downward by K.
Since s(A + K) > u(A) > 4ABe, this gives the desired result for any C <
4Be. ®

This establishes Theorem 7 for the case p = 1. The case p > 1 may be
obtained by Holder’s inequality.
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