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THE NUMBER OF ELEMENTS REQUIRED TO
DETERMINE (p, 1)-SUMMING NORMS

G.J.O. JAMESON

Introduction

A basic problem concerning the various summing norms of operators is to
estimate the number of elements needed to determine the value of the norm
(up to a constant multiple), either in terms of the rank of the operator or in
terms of the dimension of its domain. As well as being of interest in their
own right, such estimates play a vital part in evaluating ratios between
different summing norms.
A good summary appears in [10], Chapter 4. The most satisfactory results

concern the norm ’e: if the rank of T is n, then n elements are enough to
give (1/g-),n-2(T) (this, the prototype of all theorems of this type, was
originally proved in [9], with 2 instead of V), and the exact value can be
found using 1/2n(n + 1) elements in the real case, or rt 2 elements in the
complex case. For other p, one finds that 4 elements will give at least
1/27rp(T), and when p 1, the number of elements needed is of this order.
More recently, Szarek [8] has shown that for operators on an n-dimensional
space, 7r can be estimated using n log n elements, and this result has been
extended to other p by Johnson and Schechtman [6].
For the mixed summing norms rrp, 2, K6nig [7] showed that there is a

constant C such that

7rp,2(T ) < Cp/( p- 2) "-’(n)

for operators of rank n. In [8] it was shown that Cp/(P 2) can be replaced
by a constant independent of p, and in [2] the constant was improved to V.
By applying some fairly deep theorems, these results can be applied to derive
corresponding ones for rr,, 1, where p > 2 [10, Proposition 24.9], but with
intervening constants Cp that tend to infinity as p --* 2.

In this note we show by the easiest of arguments (simply discarding some
of the elements) that the number of elements required for rr,, is not more
than cp(a/)p*, where a 7rl(T) fl--"/7"p,l(T) and Cp grows large when
p --, 1. This converts the problem into estimating a/ft. For the case p 2, a
result from [4] shows that a/ is of the order of (n log n)1/2 for operators of
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rank n, so that n log n elements are enough to determine ,n-2,1(T) for such
operators. It remains an open question (one which has been circulated
informally for some years) whether the log n factor is really needed in these
statements. In the case p > 2, we show that a//3 is of the order nl/p*,
thereby obtaining a new, simpler proof of the result mentioned above.

Preliminaries

For a finite sequence of elements of a normed linear space, write

],ZI(X1,...,Xn)--sup(
i=1

If(xi)l" fX*, Ilfll _< 1}.
Note that/x is reduced when we pass to a subset. For any operator T, define

77"(n) [ T) sup Txillpp,l\
i=1

/1(XI,’’’, Xn) ’
in which all sequences of length n are considered. This is the quantity
obtained by restricting the number of elements to n in the definition of rp, 1.

Obviously,

.fp(kn) kl/p’rr(n) T).,1 (T) < p,l(

Before proceeding to our theorems on the relationship between 7/’p, and
rrb, a, we mention some special cases where the answer is simple.

(1) If T maps on or into a Hilbert space, then w’p,l(T) IITII for p > 2, so
one element is enough to determine ,5,1(T). Similarly (up to a constant) for
any space with the Orlicz property.

(2) For operators on ln, the exact value of ,n-p,l(T) can be found using
elements with disjoint support, hence not more than n elements (see e.g., [5],
14.4).

(3) For operators into l, we have again "rrp, l(T)--rr,(T). To see this,
take a finite sequence (xi) at which rp, l(T) is nearly attained, and for each j
combine together the elements x for which IlTxil] is attained at coord-
inate j.

The theorems

Our basic result applies to any 1-summing operator, whether or not of
finite rank. It estimates the required number of elements in terms of the ratio
between 7rl(T)(= a) and %,1(T)( =/3). By way of motivation, consider the



(p, 1)-SUMMING NORMS 253

special situation where ,n-p,l(T) is determined by elements Xl,..., XN with
the norms Txi]l all equal. This means that/Za(xl,..., XN) 1 and Txill
N-1/P for each i. Since EiU=lllTxill < a, we have necessarily N1-1/ < a,
or N <_ (ol/[3)p/(p-1).

THEOREM 1. Let T be any 1-summing operator, p > 1. Let rl(T)= a,
rp, I(T) ft. Then there exists

0 )P*k<_% - +1

such that

"tr..l,,T ) > 1- - /3 > -/3

where p* p/(p 1) and

Cp 1/(p- 1) (hence cp < 1 forp > 2).

In particular, when p 2 we have k < (a/fl)2 + 1 and "/7"2,1(T) >_ (/-/2)/3.

Proof. Let e > 0 and let x1,... xN be elements such that

[A,I(X1,... XN) 1

and

N

E IlZxillp (1 -e)p

i=1

Note that E/N=III Zxill a. Let the elements be indexed so that Zx
>_ IITxNII. We simply restrict attention to the first k elements x for a
suitably chosen k. We give the argument for p 2 first, since this case is
simpler as well as being the most important. Assume that N > a2/2, or
there is nothing to prove. Let k be the least integer such that k > a2/2.
Write Ei=lllTxil[ s. Then IITxkll < s/k and FiN=k+lllZxill < a- s. Since
s(a s) < 1/4a 2 and a2 < k/3 2, we have

n

i=k+l

S a2 1 2_< (a- s) _< - _< t
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Hence E’ Zxill 2 8)2,i= > ( and the statement follows.
For other p, we use the inequality sp-a(a s) < (1/p)aP(1 (l/p))-1

From this we have

N

i=k+l

Zx < (0l S) __< k p p 1 -To ensure that this is not greater than P/2p, we take k >_ Cp(a/fl)*,
with Cp as stated. The statement that cp < 1 for p > 2 is equivalent to
(p/(p 1))p-1 _. 2 for p > 2, which follows from the fact that (1 + l/x)x
is an increasing function for x >_ 1.

COROLLARY. Suppose that rI(T) < Cr(1n)(T) for some C, n. Then there
p*exists k < cpC n / l such that

rb, l(T ) >_ 1- - 1/p

%,,(T).

Proof From H61der’s inequality we have at once

7"g(ln)( T) < rl/P*,-(n)( T)p,

hence (a/)P* < CP*n.
It follows from Szarek’s result on 7r and H61der’s inequality again that for

operators on an n-dimensional space, 7rl(T)< C(nlogn)l/ZTrz,(T), and
hence that zr2, I(T) can be estimated by n log n elements for such operators.
We now show that the same applies for all operators of rank n.
The following was proved in [4] (cf. [10], Corollary 21.8): there is a constant

C( < 4) such that for every k and every operator T on 1 of rank n (> 2), we
have

zrz(T) < C(log n)l/2,ff2, l(T).

(The proof in [4] uses -tr’2(T)_< V-zr(zn)(T), so does not apply to other p;
however, the result has been generalized to other p in [1].)

n
LEMMA 1. There is a constant C (< 4) such that for any operator T of rank

7"/’1(T ) _< C(n log n) l/2"l’r2,1( T).

Proof By the well-known premultiplication lemma [10, Proposition 9.7]
or [5, 3.6], for any e > 0, there exist k and an operator A" lk X such that
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IIA II -< 1 and rrl(TA) > (1 e)rrl(T). With C as above, we have

rr2(TA ) _< C(log n) 1/2 rr2,1(TA ) < C(log n) 1/2
7r2, I(T).

Since the rank of TA is not more than n, we have rrl(TA) < nl/2rr2(TA). The
statement follows.

THEOREM 2. There is a constant C (< 6) such that for all n > 3 and all
operators T of rank n, there exists k < n log n such that

(k)7r2,1(r) < Czr2,1(r ).

Proof. By Theorem 1 and Lemma 1, there exists m < 17n log n such that

,/-t-2,1(T) < (2/-)’rr(m)t" T)2,1k

k.) T)Clearly, m < 25k for some integer k < n log n then rr{2,ml)(T) < 7r2, (

LEMMA 2.
of rank n,

There is a constant C such that for all p > 2 and all operators T

rrl(T ) < C(1 + (p- 2)-l/2)nl/p*rrp, l(T).

Proof Let e > 0 and A: l --+ X be as in Lemma 1. Write TA U. Note
that rrp, I(U) < rrp, I(T) and

71"1(0 ) _< nl/22(V ) <_ (2n)l/2,77"(2n)(o).

By H61der’s inequality,

7r(2n)(u) < n1/2-1/p,,,.(n),,p,2(U).

By a simple version of [10], Theorem 21.3, there is a constant C’ such that for
any operator U on l,

7rp,2(O ) _< C’(1 + (p- 2)-l/2),’trp, l(O).

The statement follows, with C C’.
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THEOREM 3. There is a constant C (independent of n and p) such that for
all p > 2 and all operators T of rank n,

rrp, l(T) <_C(1 + 1 ) ’-’(n)

(p 2) 1/2 p,1 (T).

Proof By Theorem 1 and Lemma 2, there exists k < rn such that
(k)zrp, l(T) < 2zrb, l(T), where for some C we have

r < C(1 + (p- 2)-1/2)p*.

(k) T)Recall that rrp(n(T)< rl/prrf),l ( For p > 3, we see that r < 3C. For
2 <p < 3, we’have rl/P<_ C’(p- 2) -1/2 for some suitable C’, since
(p 2)p*/2p > (19 2)1/2. The given statement combines both cases.

Problems and remarks

(1) Perversely, Theorem 1 gives a larger estimate for the number of
elements needed when rp, l(T) becomes smaller relative to 7rl(T). However,
it is clear from the remark preceding the theorem that it represents the limit
of what can be achieved by simply discarding some of the elements. Any
further reduction must involve the more difficult processes of weighting or
grouping them.

(2) Is the log n factor needed in Lemma 1 and Theorem 2? This question
appears to be non-trivial even when restricted to identity operators. It was
shown in [4] that log n cannot be removed from the theorem used in the
proof of Lemma 1.

(3) Is the (p- 2) needed in Lemma 2 and Theorem 3? It seems highly
probable that the answers to (2) and (3) are the same.

(4) The methods and results of this paper are further developed in the
forthcoming paper [3]. In particular, an estimate of the form cln’*/2 (with
c,, - as p 2) is given for the number of elements needed when p < 2,
and the results are extended to the norms rrv, q where 1 < q < p.
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