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DISTRIBUTION OF FUNCTIONS IN ABSTRACT H

FLORENCE LANCIEN

I. Introduction

Let A be a weak*-Dirichlet algebra i.e. a subalgebra A of L(/x)where
(/,/z) is a probability space such that:/x is multiplicative on A, A contains
the constants and A + A is weak*-dense in L(/x).
The abstract Hardy spaces are defined by the following:

P() is the closure of A in LV(/x), for 1 < p < 0%
o,(’) is the weak*-closure of A in L=(/x).

We also denote by 01(’) the set of functions in cl(,//) with ffdlz 0
and by Ree’x(,’) the set of real parts of functions in 1(,).
These algebras were introduced in [SW], where it was proven that the

corresponding abstract Hardy spaces enjoy most of the measure theoretic
properties of the original Hardy spaces. Then in [HR] the conjugate function
was studied for these weak*-Dirichlet algebras. The conjugation operator is
defined for 1 < p < by

f fi such that f + if P() and fgfidtx O.

This operator is bounded on LV(/x),l <p < . For p 1, is only
bounded from Ll(/x) into La’=(/x). So a natural question is to characterize
the functions in La(/x) for which f is in Ll(/x). This is the problem we will
investigate here. Note that if f > 0, Zygmund’s theorem (which holds for
weak*-Dirichlet algebras, see [HR]) asserts that the condition for f to be in
LI(/z) is that f is in L log+ L (i.e., flfllog+(lfl)dlx < o).
We will first recall the solution of the problem for the classical Hardy

spaces. It was solved on T, [ and n by B. Davis [Da], here is his result for
HI([). For f a real valued function on , let fa be the signed decreasing
function (i.e., non-positive and not increasing on (-% 0), non-negative and
not increasing on (0; o))which has the same distribution as f and let
M(t) ft__tfa(u) du.
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THEOREM [Da]. A real valued function f in Li(R) has a rearrangement in
Re H0(N) if and only if

,jo IM(X)Ix dx <

Davis’s original proof of these results uses probabilistic methods, N. Kalton
gives a non probabilistic proof for T in [Ka] (Theorem 6.3). His proof is based
on a study of the symmetrized Hardy class Hsym(T), indeed he shows a
characterization of functions in H0(T), which by an equivalence of norms on
Hs2yrn(T) is equivalent to Davis’ condition. We will use the same ideas here.
Let’s also mention that in [Ka2], N. Kalton gives another proof of Davis’
Theorem which is valid for vector-valued Hi-functions.

II. The abstract Hardy space case

Let be a Polish space with a non-atomic probability measure /z. Let
ol(’) be an abstract Hardy space defined from a weak*-Dirichlet algebra
A on /. For f a real valued function in Ll(tz), let f be the signed
decreasing function defined on E which has the same distribution as f and
let M(t) fttf,(u) du

THEOREM 1. Iff belongs to Re 01(/z), then

f IM(t)[t dt < . (*)

We need the following analog of Kalton’s characterization of functions in
Ha(T) (Lemma 7.2. in [Ka]).

PROPOSITION 2. Iff P(/) then

sup ff(loglfl ) CIIflll, (, ,)

is the set of all bounded, 1-Lipschitz functions : with

The proof of this result for /= T in [Ka] uses the analyticity of functions
in Ha(T), with an argument of plurisubharmonicity. In our abstract setting,
we will substitute the following subharmonicity lemma which generalizes
Jensen’s inequality.
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LEMMA 3. If s: C --* is subharmonic on C then for any f in oo(),

Proof ofLemma 3. To prove this lemma, we will use the Riesz decompo-
sition of a subharmonic function [Ri]. This fact can also be found as an
exercise in [Ga, p. 49].

Fact. Let s be a subharmonic function on a domain 11 of C and let

fe {z f; dist(z,Of) > e}.

Then

s(z) loglz wldAs(w) + h(z)

where As is the positive Borel measure corresponding to the weak Laplacian
of s and h is harmonic on f.

Now let f be in = and M Ilfllo. We take f {Izl < M + 1} and for
some 0 < e < 1 we decompose:

s(z) - loglz wldAs(w) + h(z). (1)

Let (f)= fes(f(x))d/.z(x), then

(f) loglf(x ) -wldzXs(w) d(x) + f,he(f(x)) dlz(x).

(2)

We will now estimate each part of (2).
For the second part, since h is harmonic on f and f is in o with

range included in l)e, it is classical by the analytic functional calculus,
because of the multiplicity of the measure/x on o, that we have
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For the first part, let

a,,(f)

1
2r fa floglf(x) w[dl(x)dAs(w).

We now use Jensen’s inequality (this very classical fact in the theory of Hardy
spaces on T holds in the frame of weak*-Dirichlet algebras, see [SW]):

f)og Ifl d/x > log for f in (.’).

This gives

f)ogIf(x) -wld/x(x) > log f.,(f(x) w) dlx(x) log

So

l(f) > log dAs(w). (4)

Combining (2), (3) and (4)we get

(f) > log dAs(x) + h(f#e, fd).
Now, the right hand side is exactly s(f, fdtx) decomposed as in (1), which
proves the lemma. []

Proof of Proposition 2. The proof is very similar to the proof of Lemma
7.2 from [Ka]. We sketch it here to show the use of Lemma 3, for more
details we refer to [Ka].
We first consider f H(’). Let th b. We want to prove that

f, f(loglfl) d/z CIIfll 1-

In fact we will prove it for a function q such that:

(6) [b(t) ,(t)[< C’,
(7) s(z) h[zl (Re z),(log[z[), s(0) 0 is subharmonic on C, for some

h>O.
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The construction of such a function is the same as in [Ka] and is omited.
Now since s is subharmonic on C, by the generalized Jensen’s inequality
(Lemma 3), we obtain

f.s(f(x)) dlz(x) >_ fdtz) s(0) 0;

Re

Multiplying f by a constant of modulus 1 gives

f., f6(loglfl) < CIIflll;

then by (6) the same inequality holds with 4) instead of q,, which gives (5).
Now for f in o01, we take (f,) in or?’0 such that [[f -fill - 0. rn

Proof of Theorem 1. Once Proposition 2 is proven, Theorem 1 follows
from Kalton’s results about the symmetrized Hardy class, which are valid in
our setting since in [Ka], Hm(E/)was defined for a Polish space Z/with a
non atomic probability measure/x. In fact Lemma 6.1 and Proposition 7.1 in
[Ka] give exactly the equivalence of (,) and (, ,). El

III. Examples

III.1. Algebras of "analytic" functions on groups with ordered dual. Let
G be a compact abelian group,/x its Haar measure, F its dual with P a total
order on F. The algebra of analytic-type functions on G is

A {f g’(G), f(s) 0, for : P},

where f is the Fourier transformation of f. Then the measure/x is uniquely
representing a multiplicative linear functional on A (see [Ru]). In particular
A is a weak*-Dirichlet algebra in L(G,/x)(see [SW]).

So Theorem 1 holds for I(G)- -’I(G, /x, A), the closure of A in
LI(G, tx). An example of this is the "big disc algebra" on Tn: G Tn, F Z
with a total order on it. Another interesting example is G T the infinite
dimensional torus, and F 7/) with the lexicographic order. This corre-
sponds to the frame of Hardy martingales (see [Gar]).
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III.2. Case of the ergodic Hardy spaces. Another type of weak*-
Dirichlet algebra is considered in [We]. We suppose that (/,/z) is a proba-
bility space with (Ut)t an ergodic flow acting on /. The ergodic Hilbert
transform is given by

ef(X) lim /
e-->0 -% < Itl <l/e

f(Utx)
dt.

7rt

The ergodic Hardy spaces are defined in the following way: H(,/z) is the
subspace of L=(/,/z) consisting of functions of the form f +
L=(,/z), and Hf(’,/z) is the closure in LP(/g
LP(,). In [We], it was proven that H(,/z) is a weak*-Dirichlet
algebra.
So Theorem 1 applies for the ergodic Hardy space Hea(/,
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