DISTRIBUTION OF FUNCTIONS IN ABSTRACT H^1

FLORENCE LANCIEN

I. Introduction

Let A be a weak*-Dirichlet algebra i.e. a subalgebra A of $L^{\infty}(\mu)$ where (\mathcal{M}, μ) is a probability space such that: μ is multiplicative on A, A contains the constants and $A + \overline{A}$ is weak*-dense in $L^{\infty}(\mu)$.

The abstract Hardy spaces are defined by the following:

$$\mathcal{H}^p(\mathcal{M})$$
 is the closure of A in $L^p(\mu)$, for $1 \le p < \infty$, $\mathcal{H}^{\infty}(\mathcal{M})$ is the weak*-closure of A in $L^{\infty}(\mu)$.

We also denote by $\mathcal{H}_0^1(\mathcal{M})$ the set of functions in $\mathcal{H}^1(\mathcal{M})$ with $\int_{\mathcal{M}} f d\mu = 0$ and by $\text{Re}\mathcal{H}^1(\mathcal{M})$ the set of real parts of functions in $\mathcal{H}^1(\mathcal{M})$.

These algebras were introduced in [SW], where it was proven that the corresponding abstract Hardy spaces enjoy most of the measure theoretic properties of the original Hardy spaces. Then in [HR] the conjugate function was studied for these weak*-Dirichlet algebras. The conjugation operator is defined for 1 by

$$\mathcal{H}: L^p(\mu) \to L^p(\mu)$$

$$f \mapsto \tilde{f} \text{ such that } f + i\tilde{f} \in \mathcal{H}^p(\mathcal{M}) \text{ and } \int_{\mathcal{M}} \tilde{f} d\mu = 0.$$

This operator is bounded on $L^p(\mu)$, 1 . For <math>p = 1, \mathcal{H} is only bounded from $L^1(\mu)$ into $L^{1,\infty}(\mu)$. So a natural question is to characterize the functions in $L^1(\mu)$ for which \tilde{f} is in $L^1(\mu)$. This is the problem we will investigate here. Note that if $f \geq 0$, Zygmund's theorem (which holds for weak*-Dirichlet algebras, see [HR]) asserts that the condition for \tilde{f} to be in $L^1(\mu)$ is that f is in $L\log_+L$ (i.e., $\int_{\mathcal{M}}|f|\log_+(|f|)\,d\mu < \infty$).

We will first recall the solution of the problem for the classical Hardy spaces. It was solved on \mathbb{T}, \mathbb{R} and \mathbb{R}^n by B. Davis [Da], here is his result for $H^1(\mathbb{R})$. For f a real valued function on \mathbb{R} , let f_{δ} be the signed decreasing function (i.e., non-positive and not increasing on $(-\infty,0)$, non-negative and not increasing on $(0,\infty)$) which has the same distribution as f and let $M(t) = \int_{-t}^t f_{\delta}(u) \, du$.

Received November 2, 1992

¹⁹⁹¹ Mathematics Subject Classification. Primary 46J10; Secondary 43A17.

THEOREM [Da]. A real valued function f in $L^1(\mathbb{R})$ has a rearrangement in $\operatorname{Re} H_0^1(\mathbb{R})$ if and only if

$$\int_0^\infty \frac{\left|M(x)\right|}{x} \, dx < \infty.$$

Davis's original proof of these results uses probabilistic methods, N. Kalton gives a non probabilistic proof for T in [Ka] (Theorem 6.3). His proof is based on a study of the symmetrized Hardy class $H^1_{\text{sym}}(T)$, indeed he shows a characterization of functions in $H^1_0(T)$, which by an equivalence of norms on $H^2_{\text{sym}}(T)$ is equivalent to Davis' condition. We will use the same ideas here. Let's also mention that in [Ka2], N. Kalton gives another proof of Davis' Theorem which is valid for vector-valued H_1 -functions.

II. The abstract Hardy space case

Let \mathscr{M} be a Polish space with a non-atomic probability measure μ . Let $\mathscr{H}^1(\mathscr{M})$ be an abstract Hardy space defined from a weak*-Dirichlet algebra A on \mathscr{M} . For f a real valued function in $L^1(\mu)$, let f_{δ} be the signed decreasing function defined on \mathbb{R} which has the same distribution as f and let $M(t) = \int_{-t}^t f_{\delta}(u) du$

THEOREM 1. If f belongs to Re $\mathcal{H}_0^1(\mu)$, then

$$\int_0^\infty \frac{\left|M(t)\right|}{t} \, dt < \infty. \tag{*}$$

We need the following analog of Kalton's characterization of functions in $H^1(T)$ (Lemma 7.2. in [Ka]).

Proposition 2. If $f \in \mathcal{H}_0^1(\mathcal{M})$ then

$$\sup_{\phi \in \mathscr{L}_1^b} \left| \int f \phi(\log|f|) \, d\mu \right| \le C \|f\|_1, \tag{**}$$

where \mathcal{L}_1^b is the set of all bounded, 1-Lipschitz functions $\phi: \mathbb{R} \to \mathbb{R}$ with $\phi(0) = 0$.

The proof of this result for $\mathcal{M} = \mathbf{T}$ in [Ka] uses the analyticity of functions in $H^1(\mathbf{T})$, with an argument of plurisubharmonicity. In our abstract setting, we will substitute the following subharmonicity lemma which generalizes Jensen's inequality.

LEMMA 3. If $s: \mathbb{C} \to \mathbb{R}$ is subharmonic on \mathbb{C} then for any f in $\mathscr{H}^{\infty}(\mathscr{M})$,

$$\int_{\mathscr{M}} s(f(x)) d\mu(x) \ge s \left(\int_{\mathscr{M}} f(x) d\mu(x) \right).$$

Proof of Lemma 3. To prove this lemma, we will use the Riesz decomposition of a subharmonic function [Ri]. This fact can also be found as an exercise in [Ga, p. 49].

Fact. Let s be a subharmonic function on a domain Ω of \mathbb{C} and let

$$\Omega_{\varepsilon} = \{ z \in \Omega; \operatorname{dist}(z, \partial \Omega) > \varepsilon \}.$$

Then

$$s(z) = \frac{1}{2\pi} \int_{\Omega_{\epsilon}} \log|z - w| d\Delta s(w) + h_{\epsilon}(z)$$

where Δs is the positive Borel measure corresponding to the weak Laplacian of s and h_{ε} is harmonic on Ω .

Now let f be in \mathscr{H}^{∞} and $M = ||f||_{\infty}$. We take $\Omega = \{|z| < M + 1\}$ and for some $0 < \varepsilon < 1$ we decompose:

$$s(z) = \frac{1}{2\pi} \int_{\Omega_{\epsilon}} \log|z - w| d\Delta s(w) + h_{\epsilon}(z). \tag{1}$$

Let $\Phi(f) = \int_{\mathscr{M}} s(f(x)) d\mu(x)$, then

$$\Phi(f) = \frac{1}{2\pi} \int_{\mathscr{M}} \int_{\Omega_{\varepsilon}} \log|f(x) - w| d\Delta s(w) \ d\mu(x) + \int_{\mathscr{M}} h_{\varepsilon}(f(x)) \ d\mu(x).$$
(2)

We will now estimate each part of (2).

For the second part, since h_{ε} is harmonic on Ω and f is in \mathscr{H}^{∞} with range included in Ω_{ε} , it is classical by the analytic functional calculus, because of the multiplicity of the measure μ on \mathscr{H}^{∞} , that we have

$$\Phi_2(f) = \int_{\mathscr{M}} h_{\varepsilon}(f(x)) d\mu(x) = h_{\varepsilon} \left(\int_{\mathscr{M}} f(x) d\mu(x) \right). \tag{3}$$

For the first part, let

$$\Phi_{1}(f) = \frac{1}{2\pi} \int_{\mathcal{M}} \int_{\Omega_{\epsilon}} \log|f(x) - w| d\Delta s(w) d\mu(x)$$
$$= \frac{1}{2\pi} \int_{\Omega} \int_{\mathcal{M}} \log|f(x) - w| d\mu(x) d\Delta s(w).$$

We now use Jensen's inequality (this very classical fact in the theory of Hardy spaces on T holds in the frame of weak*-Dirichlet algebras, see [SW]):

$$\int_{\mathscr{M}} \log |f| \, d\mu \ge \log \left| \int_{\mathscr{M}} f \, d\mu \right| \quad \text{for } f \text{ in } \mathscr{H}^p(\mathscr{M}).$$

This gives

$$\int_{\mathscr{M}} \log |f(x) - w| d\mu(x) \ge \log \left| \int_{\mathscr{M}} (f(x) - w) d\mu(x) \right| = \log \left| \int_{\mathscr{M}} f d\mu - w \right|.$$

So

$$\Phi_{1}(f) \geq \frac{1}{2\pi} \int_{\Omega_{\epsilon}} \log \left| \int_{\mathscr{M}} f d\mu - w \right| d\Delta s(w). \tag{4}$$

Combining (2), (3) and (4) we get

$$\Phi(f) \geq \frac{1}{2\pi} \int_{\Omega_{\varepsilon}} \log \left| \int_{\mathscr{M}} f d\mu - w \right| d\Delta s(x) + h_{\varepsilon} \left(\int_{\mathscr{M}} f d\mu \right).$$

Now, the right hand side is exactly $s(\int_{\mathscr{M}} f d\mu)$ decomposed as in (1), which proves the lemma. \square

Proof of Proposition 2. The proof is very similar to the proof of Lemma 7.2 from [Ka]. We sketch it here to show the use of Lemma 3, for more details we refer to [Ka].

We first consider $f \in H_0^{\infty}(\mathcal{M})$. Let $\phi \in \mathcal{L}_b^1$. We want to prove that

$$\left| \int_{\mathscr{M}} f\phi(\log|f|) \, d\mu \right| \le C \|f\|_1. \tag{5}$$

In fact we will prove it for a function ψ such that:

 $(6) |\phi(t) - \psi(t)| < C',$

(7) $s(z) = \lambda |z| - (\text{Re } z)\psi(\log|z|)$, s(0) = 0 is subharmonic on \mathbb{C} , for some $\lambda > 0$.

The construction of such a function ψ is the same as in [Ka] and is omited. Now since s is subharmonic on \mathbb{C} , by the generalized Jensen's inequality (Lemma 3), we obtain

$$\Phi(f) = \int_{\mathscr{M}} s(f(x)) d\mu(x) \ge s\left(\int_{\mathscr{M}} f d\mu\right) = s(0) = 0;$$

i.e.,

$$\operatorname{Re}\left(\int_{\mathscr{M}} f\psi(\log|f|) d\mu\right) \leq \lambda \int_{\mathscr{M}} |f| d\mu.$$

Multiplying f by a constant of modulus 1 gives

$$\left| \int_{\mathcal{M}} f \psi(\log |f|) \, d\mu \right| \leq C \|f\|_1;$$

then by (6) the same inequality holds with ϕ instead of ψ , which gives (5). Now for f in \mathcal{H}_0^1 , we take (f_n) in \mathcal{H}_0^{∞} such that $||f_n - f||_1 \to 0$. \square

Proof of Theorem 1. Once Proposition 2 is proven, Theorem 1 follows from Kalton's results about the symmetrized Hardy class, which are valid in our setting since in [Ka], $H^1_{\text{sym}}(\mathscr{M})$ was defined for a Polish space \mathscr{M} with a non atomic probability measure μ . In fact Lemma 6.1 and Proposition 7.1 in [Ka] give exactly the equivalence of (*) and (**). \square

III. Examples

III.1. Algebras of "analytic" functions on groups with ordered dual. Let G be a compact abelian group, μ its Haar measure, Γ its dual with P a total order on Γ . The algebra of analytic-type functions on G is

$$A = \{ f \in \mathscr{C}(G), \hat{f}(\xi) = 0, \text{ for } \xi \notin P \},$$

where \hat{f} is the Fourier transformation of f. Then the measure μ is uniquely representing a multiplicative linear functional on A (see [Ru]). In particular A is a weak*-Dirichlet algebra in $L^{\infty}(G, \mu)$ (see [SW]).

So Theorem 1 holds for $\mathcal{H}^1(G) = \mathcal{H}^1(G, \mu, A)$, the closure of A in $L^1(G, \mu)$. An example of this is the "big disc algebra" on \mathbf{T}^n : $G = \mathbf{T}^n$, $\Gamma = \mathbb{Z}^n$ with a total order on it. Another interesting example is $G = \mathbf{T}^{\mathbb{N}}$ the infinite dimensional torus, and $\Gamma = \mathbb{Z}^{(\mathbb{N})}$ with the lexicographic order. This corresponds to the frame of Hardy martingales (see [Gar]).

III.2. Case of the ergodic Hardy spaces. Another type of weak*-Dirichlet algebra is considered in [We]. We suppose that (\mathcal{M}, μ) is a probability space with $(U_t)_{t \in \mathbb{R}}$ an ergodic flow acting on \mathcal{M} . The ergodic Hilbert transform is given by

$$\mathscr{H}_{e}f(x) = \lim_{\varepsilon \to 0} \int_{\varepsilon < |t| < 1/\varepsilon} \frac{f(U_{t}x)}{\pi t} dt.$$

The ergodic Hardy spaces are defined in the following way: $H_e^{\infty}(\mathcal{M}, \mu)$ is the subspace of $L^{\infty}(\mathcal{M}, \mu)$ consisting of functions of the form $f + i\mathcal{H}_e f, f \in L^{\infty}(\mathcal{M}, \mu)$, and $H_e^p(\mathcal{M}, \mu)$ is the closure in $L^p(\mathcal{M}, \mu)$ of $H_e^{\infty}(\mathcal{M}, \mu) \cap L^p(\mathcal{M}, \mu)$. In [We], it was proven that $H_e^{\infty}(\mathcal{M}, \mu)$ is a weak*-Dirichlet algebra.

So Theorem 1 applies for the ergodic Hardy space $H_e^1(\mathcal{M}, \mu)$,

Aknowledgements. I wish to thank G. Godefroy and N. Kalton for many fruitful discussions and the University of Missouri-Columbia, where this work was completed. I also would like to thank the referee for many valuable suggestions about the redaction of this paper.

REFERENCES

- [Da] B. DAVIS, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211-233.
- [Ga] J. GARNETT, Bounded analytic functions, Academic Press, San Diego, 1981.
- [Gar] D.J.H. GARLING, On martingales with values in a complex Banach space, Math. Proc. Cambridge Philos. Soc. 104, (1988), 399-406.
- [HR] I.I. HIRSCHMAN and R. ROCHBERG, Conjugate function theory in weak* Dirichlet algebra, J. Funct. Anal. 16 (1974), 359-371.
- [Ka] N. Kalton, Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. no. 385, 1988.
- [Ka2] _____, On rearrangements of vector-valued H_1 -functions, Ark. Mat. 26 (1988), 221–229.
- [Ri] F. Riesz, Sur les fonctions sous-harmoniques et leur rapport à la thoéorie du potentiel I, Acta Math. 48, (1926), 329-343.
- [Ru] W. Rudin, Fourier analysis on groups, Tracts in mathematics, No 12, Interscience New York, 1967.
- [SW] T.P. Srinivasan and J.K. Wang, Weak*-Dirichlet algebras, Proc. of an International Symposium held at Tulane University, F.T. Birtel ed., 1965, pp. 216–249.
- [We] G. Weiss, Weak*-Dirichlet algebras induced by the ergodic Hilbert transform, Lecture Notes in Mathematics, vol. 336, Springer-Verlag, New York, 1973, pp. 20-27.

Université Paris

PARIS