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TRACE IDEAL CRITERIA FOR OPERATORS
OF HANKEL TYPE

FRANK BEATROUS AND SONG-YING LI

In this paper we obtain trace ideal criteria for commutators of multiplica-
tion operators with integral operators having kernels of a critical homogene-
ity. The prototype for the class of operators considered is the Hankel
operator associated with the Bergman projection. Specifically, let D be a
domain in Cn, and let P be the orthogonal projection of L2(D) onto its
holomorphic subspace A2(D). When f is a function on D, the Hankel
operator with symbol f is defined formally by

where [Mr, P] is the commutator defined by

and My is the multiplication operator defined by Myg fg.
Trace ideal criteria for Hankel operators with conjugate holomorphic

symbols have been obtained in various settings by several authors [2], [8], [12],
[14], [19]. For general symbols, trace ideal criteria for the commutators
[My, P], and hence also for Hy, were first obtained in the unit ball by K. Zhu
[21], and later in bounded symmetric domains by D. Zheng [20]. More
recently, D. Luecking [15] has given a direct characterization of the symbol
classes for trace ideals of Hankel operators in the unit disk, without the
mediation of the commutator operators that was used in earlier work. (Of
course, the distinction between Hy and [My, P] evaporates when the symbol
f is conjugate holomorphic, as in the case of classical Hankel operators.)

The purpose of this paper is to extend the results of [21] and [20] to a
general class of operators which are loosely modeled on the operators Hy. As
special cases, we will obtain trace ideal criteria for Hankel operators on
strictly pseudoconvex domains in C and on finite type domains in C2 (see
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724 FRANK BEATROUS AND SONG-YING LI

Corollaries 4.3 and 4.8). In our work here, we view the commutator operator
[Mr, P], rather than Hf, as the fundamental object of interest. In fact,
sufficient trace ideal criteria will be obtained for commutators of Mf with a
more general class of integral operators, requiring only that the kernel have
the same homogeneity as the Bergman kernel. We do not require the integral
operator to be a projection, nor do we impose any analyticity condition on
the kernel. In fact, our sufficiency results use only real variable techniques,
and we have found it convenient to give an axiomatic treatment, using the
same general framework we have used previously in [4] (see also [1], [10], [17])
to establish boundedness and compactness criteria. Specifically, we work with
kernels defined on sets which are bounded by a space of homogeneous type,
and homogeneity of the kernel is expressed in terms of the homogeneous
structure on the boundary. A detailed description of this setup is given in
Section 1, along with a formulation of a sufficient condition for the commuta-
tor to be in the trace ideal p(L2) when p >_ 2 (Theorem 1.5). Sections 2 and
3 are devoted to the proof of this result. In Section 4, using an idea of J.
Burbea [7], we show that, under mild regularity assumptions, our sufficient
conditions are also necessary when the integral operator is the Bergman
projection.

1. Preliminaries

We begin by defining a homogeneous structure. Let X be a locally
compact Hausdorff space. A homogeneous structure on X consists of a
positive, regular Borel measure tx on X, and a family {B(x, r): x X, r > 0}
of basic open subsets of X such that for some constants c > 1 and K > 1 we
have:

(1) x B(x, r) for every x X and every r > 0;
(2) If x X and 0 < r < r2, then B(x, ra) c B(x, r2);
(3) If B(xl, r1) C3 B(x2, r2) :/= Q and rl > r2, then B(xl, cry)

_
B(x2, r2);

(4) X t3 r> oB(x, r) for some (and hence every) x X;
(5) 0 < infx x Ix(B(x, 1)) < supx x Ix(B(x, 1)) < w.
(6) Ix(B(x, cr)) < KIx(B(x, r)) for all x X and all r > 0.

The constants c and K are called the homogeneous structure constants. For
the remainder of this section, we work with some fixed homogeneous
structure on the space X.

Let ) X x (0, ), and for any z (x, s) , write z* x and 6(z) s.
The Carleson region C(z) is defined by

C(z) =C(x,s) =B(x,s) x (0, s).
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Let /x0 be the measure on X defined by

dtxo( X, S ) dtx( x) ds

and for any real number/3, define

dtz(z) #o(C(z)) - d/xo(Z).

For any x, y X, let

p(x, y) inf{s > O" y B(x,s) and x B(y,s)}.

Then p is a quasimetric on X. For any two points z (x, s) and w (y, t)
in J, let

r(z,w) r((x,s),(y,t)) s + + p(x, y).

From the defining properties of homogeneous structures, one easily checks
that r(z, w) is comparable with

rl(z,w ) r((x,s),(y,t)) inf{ o- > s’C(x, r)
_
C(w)}.

Let

C(z,w) =C(z*,r(z,w)).

The kernel of a homogeneous structure is the function on X X defined by

o,’f(Z W)

From the defining properties of a homogeneous structure, one checks that

1 1
(z,w) tzo(C(z,,r(z,w))) tzo(C(w,,r(z,w))) Y{(w,z).

The following estimate for the growth of the measure of Carleson regions
is a special case of Lemma 1.2 of [4].

LEMMA 1.1. Let c and K be the constants of the homogeneous structure, and
let a 1 + log K/log c. Then for any (x, t) ) and any 0 < s < 1, we have

tzo(C(x, st)) > K-2satxo(C(x,t)).

When /3 < 0, this is at odds with the notation of [4].
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The following integrability result for ;(z,. ) is a slight variation on Lemma
1.4 of [41.

LEMMA 1.2.
Then

Let ab < 1 with a > 1 as in Lemma 1.1, and let a + b > 1.

f(z. w) d.(w) < co..0(c(z))--
Proof The case b < 0 is a straightforward consequence of the case b 0,

so we may assume that b > 0. Let c and K be the homogeneous structure
constants, and for each non-negative integer j let Q. C(x, cJs)where
z (x, s). Letting I denote the integral we wish to estimate, we have

where

and

Ij fQj\Qj-1
For (y, t) Q0, Lemma 1.1 gives the estimate

(t)tzo(C(y,t)) > C - .o(C(x.))

so - dt

Clxo(Qo)--bstx(B(x,s))

CIxo(Qo)1--b.
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Similarly, since po(C(x, s + + p(x, y))) tzo(Q) for (y, t) Qj \ Qj-I, we
have

dt

< Cc<l-’-b )tzo(Qo)<’--b ,
and summing over j gives the lemma.

A homogeneous structure is called smooth if each of the functions s
tx(B(x, s)) is differentiable on (0, w), and

os lX( B( x, s) ) -< C tX( B( x’ S)

The most immediate example of a smooth homogeneous structure is R with
the Lebesgue measure and Euclidean balls. Additional examples include
boundaries of bounded strictly pseudoconvex domains in C with the Eu-
clidean surface measure and the Kornyi-Stein pseudo-balls, and boundaries
of bounded finite type domains in C2 with the Euclidean surface measure
and the balls defined in [3]. It is immediate from the definition that the
kernel of a smooth homogeneous structure satisfies

(1) max{Dzi(z w)’Dwi(z’w)} <
r(z,w)

where D denotes differentiation in the half-line direction in 2.
For each z 2, define a positive function K on 2 by

-1

f2( z, .)2 d (z, w) 2.

The following lemma summarizes some elementary properties of the func-
tions Kz-

LEMMA 1.3. (1) K = [%0(C(z))ld,o(C(z W))-2

(2) IDz(w)] < Cz(W)/6(z);
(3) fz d/.to 1.

=2(z, z)-12(z, w)2;

Proof (1) and (2) are immediate from Lemma 1.2, and (3) is trivial.
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For any measurable function f on J, we define

f( z) f/z dpo

for any z J such that the integral converges absolutely.

LEMMA 1.4. Iff LP(2, dt.to) with 1 < p < 0% then fis defined on ), and

 (z)l cllflll,,io(C(z)) -/p.

Proof By Jensen’s Inequality,

I (z) p

flyl ,,z

< Clzo(C(z))-lllfllf,,.
We now turn to the formulation of our main theorem. For 1 < p < , we

define YP to be the space of all functions f LP(), dlxo) such that

where

(2)
1/p

When f is a function on ., the multiplication operator My is defined formally
by

m,g =fg.

When G is a function on X X, the integral operator is defined formally
by

f(z) f2f(w)G(z, w) dtxo(W )

The commutator operator with symbol f and kernel G is defined formally by

For 1 < p < , we let @ denote the usual trace ideal of operators on
L2(, d/x0). (Recall that an operator T on a Hilbert space is in the trace
ideal @ if and only if Irlp (tr(r*r)p/2)1/p < c.)
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THEOREM 1.5. Let G be a measurable function on ) 2 such that
]G(z, w)] <T(z, w) for all (z, w) 2 ., and let f YP with 2 < p <
Then the commutator operator [Mf,.] is in the trace ideal p, and
][mf,]]p < Cllfllw,.

2. Estimates for the smooth part

Trace ideal criteria for commutators will be obtained by splitting the
symbol into a smooth part and a non-smooth remainder, and estimating the
corresponding commutator operators separately. In this section, we will
obtain estimates for the commutators associated with the smooth part of the
symbol. We will prove:

THEOREM 2.1. Let G(z, w) be a measurable function on satisfying
]G(z, w)[ <(z, w), and let f YP with 2 < p < . Then the commutator

[M,] is in p, and ][Mf,G][p <_ C[]fl[yp.

We shall use a result of B. Russo [18] which provides a sufficient condition
for a general integral operator to be in a trace ideal. Russo’s condition may
be formulated as follows.

THEOREM 2.2. Let (X, ag,/.t) be a r-finite measure space, and let k(x, y) be
a measurable function on X X satisfying

I1 11 ,, f fl  x,y)lp’
d(x) dtx( y))

1/1)

and

dlz( x ) dtz( y )
1/p

for some 2 < p < o. Then the associated integral operator , defined on a
dense subspace of L2(/x) by

f(x) ff(y)k(x, y) dtx(y),

is in the trace ideal p, and moreover

(3) 1/214lp < (llkllp’, pllk* lip’, p
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In our case, the operator of interest, namely [Mi,], is an integral
operator with kernel

Gf(z,w) (f(z) f(w))G(z,w).

Since Gf is dominated pointwise by

f( z, w) ( f(z) f(w)),( z, w),

it is clear that [Mf,] ep whenever f satisfies the conditions of Theo-
rem 2.2. Moreover, since f(w, z)--f(z, w), when k =f, the righthand
side of (3) is comparable with Ik"fllp,,p. Thus, we have:

COROLLARY 2.3. Let G be a measurable function on ) x ) satisfying
G(z, w)l < T(z, w), and let f be a measurable function on ) such that

IIf lip’, p < w for some p < 2 < . Then Mr, p with p-norm at most
a constant multiple of IIf lip’, p.

We will need the following variant of Hardy’s Inequality.

LEMMA 2.4. Let g be a non-negative, measurable function on (0, ) such
that g(st) < bs-ag(t) for every > 0 and 0 < s < 1, with a < 1. Then for any
1 <_ p < and any non-negative, measurable function f on (0, ) we have

(So (s)--- g(t) dt <- 1 a (t)Pg(t) dt

Proof Letting I denote the left hand side of the above inequality,
changing variables in the inner integral and applying Minkowski’s Inequality
gives

’: io <’s
-S- g( t) dt

s

Changing variables in the inner integral once again and using the estimate
g(t/s) < bsg(t)when s > 1 gives

_< [
s

and the proof is complete.
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We will apply Lemma 2.4 with g(t) a negative power of /x0(C(x, t))with
xX.

COROLLARY 2.5. Let a > 1 be as in Lemma 1.1, let 1 < p < az, and let b be
a real number with ab < 1. Then there is a constant C, depending on c, K, b,
and p, such that for any non-negative function f on (0, oo) we have

fo (s)7 tzo(C(y,t)) -b dt < C (t)Ptzo(C(y,t)) -b dt.

We next establish some estimates for the functions

LEMMA 2.6. There is a constant C such that for every (x, s) e J,

---f(x,s) <_ Cs- inf If- alK(x s) dto.
aC

Proof For any complex number a we have

3 3 f2 3
esf(X,S ) -(f(x,s) a) (f a)-(x,, dtzo

so (2) of Lemma 1.3 gives the result.

LEMMA 2.7. Let b be a real number with ab < 1, where a > 1 is as in
Lemma 1.1. If f Lq(), dtxo) with 1 <_ q < 0% then for any 1 < p < oo we
have

Proof Since, by Lemma 1.4, f(x,. ) vanishes at infinity, we have

fx[ f[ p dtzb -f( x, t) dt dtz( x, s)

and so Lemma 2.6 gives

f2]j?]P dtzb <_ C (Saf)(x, t) dtZb(X, s),

where $1 f is defined by (2), and the result follows from Lemma 2.4.
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COROLLARY 2.8. Let b be a positive number with ab < 1, and let f YP
with 2(1 -b) < p < w. Then

Proof By Lemma 2.7, it suffices to show that

Slf)
p
dtZb <

where Slf is defined by (2). Letting I(f) denote the left side of the above
inequality, write

I(f) I,(f) + I2(f)

where I1(f) is the integral over X (0, 1] and I2(f) is the integral over
X (1, ). Since ixo(C(x, s))- <_ Cxo(C(x, s))- on X (0, 1], the estimate

I( f ) < Cllfll pyP

is elementary. Moreover

X (1,oo)

so Lemma 1.4 gives

12(f) dla’b+p/2 Cp,bllfll

and the proof is complete.

From the defining properties of a homogeneous structure and (1) of
Lemma 1.3, one easily obtains:

LEMMA 2.9. Let M > 1. If (x, s) X and x’ B(x, Ms), then

LEMMA 2.10. Let a > 1 be as in Lemma 1.1, let b be a real number with
ab < 1, and let 2(1 1/a) < p < . Then there is a constant C Cb, p such
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that for any f YP,

(4) f,f,l (w) I%(z, W)2-b dldbb(W) dlJ,O(Z) Cllfllpyp.

Proof Since the left hand side of (4) increases with b, it suffices to
consider the case 1 p/2 < b < 1/a (so that the hypothesis of Corollary 2.8
is satisfied). Letting a (2 b)/p, we have

Ii(z) fl;(w) ;(z)lPasff(Z, W)2-b db(W)

fxfo -(f(y.r)-f(z))(z.(y.r)) dr .o(C(y.t)) -b dtd.(y)

and Lemma 2.4 gives

Lemma 2.6 and Jensen’s Inequality give

I1(z) < cf(slf)(w)Pff’( z, w) ’p db(W)

< cf(Szf)(w)Py(z w)

where Spf is defined by (2). Integrating with respect to z and applying
Lemma 1.2 gives

(6) f/ll(Z) d/zo(Z) < cIIfllP,

since poe > 1. (Recall that a > 1.)
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To complete the proof, we must estimate fi12. The estimate (1) gives

(7) 112 d

dtxo( z) dtXb( W)

(WM) \C(wM

I’(M) + I2(M)

for any M > 0, where X X x (o-, ) and wM (w*, M6(w)). Combining
the estimates (5), (6), and (7) gives

(8) f2 I(z) d/zo(Z) _< CIIfll,, + Ii(M) + 12(M).

Since the kernel J is bounded on , with bound depending on r, it
follows from Lemma 2.8 that I 2 is finite. Moreover, since 6(w)/r(z, w) <
1/M when z )\ C(y, Mt), it follows that I2(M) is less than or equal to
half the left hand side of (8) when M is sufficiently large, independent of
Thus, if M is sufficiently large, the left hand side of (8) is at most a constant
multiple of Ilfll + II(M), where the constant does not depend on
Letting o- - 0 gives

I < C(llfll,,, + 11)
where I denotes the left hand side of (4). We will complete the proof by
showing that 1 < Cllfll,,. Since %(z, w) < Clxo(C(w))-, we have

(WM)

For the inner integral, writing w (y, t), we have

(WM)

f(x, or) do- dio(X,S)
(WM)

+ 2v+lfc If(w) f(xMt)lp

d o(X,S)
(Wg)

Jl(W) +
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For the integrand of J2, we have the estimate

If(w) f(x, Mt)lp

K(x, Mt) dlzo

so it follows from Lemma 2.9 that

and therefore

Sz(w) < Ctzo(C(WM))(Szf)(w) p
< Clxo(C(w))(Szf)(w) p.

Integrating both sides over gives

f2J2(w) d/x2(w) < cIIfll pyP,

and it remains to estimate fJ1. By Hardy’s Inequality,

Jl(W) Jl(y,t) < C --ff-f(x,s)Psp dsdlx(X)
(y, Mt)

so by Lemma 2.6, we have

Jl(w) Cfc f f(X’s) lK(x s)dido
(wM)

<-- cfc (S2f) p dlzo
(WM)

Integrating over 3 and using the fact that (z,w) io(C(w))-1 when
z C(WM) gives

fJ1 dtz2 <- cfS(s2f)(z)P(z,w)2 dlzo(w) dtzo(Z)
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Finally, applying Fubini’s Theorem and Lemma 1.2 gives

and the proof is complete.

We now turn to the proof of Theorem 2.1. By Corollary 2.3, it suffices to
prove that ]ldf^l]p,,p CIIfllrp. In the case 2 <p < , applying H61der’s
Inequality with the pair of conjugate exponents p/p’ and (p 1)/(p 2),
we obtain

Choosing a < 2/p, the second integral on the right can be estimated by
Lemma 1.2 to obtain

fxl/() -/(z) I’(, w)’ o(,))’’- Co(C(z))- fsl/() -/() I%(,) o().

On the other hand, this last inequality holds trivially if p 2, so it is in fact
valid for 2 < p < and a < 2/p. Choosing a so that 2- ap is small and
positive, integrating both sides, and applying Lemma 2.10, we obtain

which completes the proof of Theorem 2.1.

3. Estimates for the remainder

In this section we complete the proof of Theorem 1.5 by showing that for
p > 2 the commutator operator with symbol f- f is in the trace ideal p
whenever f YP. In fact, we prove a somewhat stronger result.
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THEOREM 3.1. Let G be a measurable function on f[ ) satisfying
IG(z, w)] <g/(z, w) for all z, w X. Then for any f YP with 2 < p < % the
operator My_fJ is in the trace ideal p, and IMy_;lp <_ CIIfllv,,.

Before proceeding, let us note that, since p is closed under the adjoint
operation, it follows that, under the conditions of the theorem, the operator
Mf_, is also in p, with norm at most a constant multiple of Ilfllv. Thus,
we have"

COROLLARY 3.2. Let G and f be as above. Then the commutator operator
[Mf,G] is in @, and ][Mf,]lp < cIIfllv,.

Theorem 1.5 is an immediate consequence of Theorem 2.1 and Corollary
3.2.
The proof of Theorem 3.1 requires an interpolation result for a new scale

of function spaces, which we now introduce. For any measurable function f
on J, we define

w Kz(w ) dtxo(W )
1/2

and for 1 < p < we define/_, p to be the space of measurable functions on
X such that T(f) LP(dtXl) with

In order to establish the basic proper,ties of the spaces /,P, we introduce
some machinery. For any z (x, s) X and any 0 < e < 1, let

(z) {(y, t) 2"y B(x, es) and Is tl < es}.

The following properties of the "balls" ’(z) are immediate.

LEMMA 3.3. For any fixed 0 < e < 1 we have:
(1) Kw( ) = Kz( ) uniformly for z, f[ and w (z).
(2) 7z(w, w) oW(z, z) uniformly for z f( and w (z).
(3) (w, ) (z, ) uniformly for z, X and w ,(z).
(4) tZo((z)) -- (z, z)-.
(5) There is a constant M and a sequence {zj} in X such that the family

{’(z) covers 2, and no point ofX is covered more than M times.

The relevant properties of the spaces L p are summarized in the next
result.
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LEMMA 3.4. Let a be as in Lemma 1.1.
(1) p is a (possibly trivial) Banach space.for 1 < p <
(2) For 2 < p < , we have LP(dlxl) c L p, and the embedding is continu-

ous.
(3) [P’ p2 for 1 < P < P2 < 0% and the embedding is continuous.
(4) For p > 2(1 i/a)., every bounded, measurable, compactly supported

function on ) is in L P.
(5) For p > 2(1 l/a), the .simple functions with compact support on

form a dense subspace ofL P.

Proof The proof of (1) is straightforward, and will be omitted.
The case p w of (2) is trivial. On the other hand, for f LP(dI) with

2 < p < % Jensen’s Inequality gives

T(f)(z) p
<_ fill%

so Fubini’s Theorem and Lemmas 1.3 and 1.2 give

dlx( z)
dtxo(W )

< cflf(w)lp d o(W)
LP(dlXl)tzo(C(w) ) tlfl[

and (2) is proved.
For (3), let f P,. By Lemma 3.3, for any fixed 0 < e < 1 we have

1 f T(f)P’(z) dlxo(W )T(f)P(z) /Xo(N,(z) )

_< cf T(f)p,(w) do(W)
-< CIIfll pc,,,

.o(C(w))

which establishes (3)when P2 o. When pl < P2 < 0% we have

Ilfll p2 fT(f) p2

2 d/x1

_<IIT(f)IIP2-PlfT(f) p’
dMl --Ilfll P2-pl[_, Ilfll [_,p,pl

and from the case P2 0% we obtain Ilfll/,,2 CIIfll/2,,, so (3) is proved.
To prove (4), it suffices to show that. every point in X has a neighborhood

whose characteristic function is in L p. For fixed 0 < e < 1, if f is the
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characteristic function of ’(Zo),

o(C())/
T(f)(z) < C,o lo(C(z,r(z, Zo)) )

and by Lemma 1.2,

Ilfll, < C fZo
[J60( C( z) ) p/2-1

tzo(C(z, r(Z, Zo)))
p dl(z)

<_ c,o,.o(C(o))-/

if (p/2 1)a < 1, and (4) is proved.
Finally, we prove (5). Let f Lp and let e > 0 be arbitrary. Fix x0 X,

and let z0 (x0, 1). Since T(f) LP(dtZl), by the Monotone Convergence
Theorem, there is an M > 1 such that

(9)

where

Then

QM

T(f) v dt*l < 8P

B(xo, M) [1/M, M].

el f(w)12 do(W)
< cfl f(w) 2

dtzl(w ),0(C(0, w)) 0

2CT(f)(zo < w.

It follows that there is a simple function g with compact support in ) such
that Igl < Ifl pointwise and

f2 f(w) g(w)12 dtz(w) < 6
,0(c(z0, w))

where 6 is a small positive number to be chosen below. From the defining
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properties of homogeneous structures, for any z QM we have

T(f- g)(z) 2 < cfyclf(w ) g(w)l2

dlzo( W)
<- CM l.lf(w) g(w) w))
< CM6,

where CM is a constant depending only on z0 and M. Integrating over QM
gives

fQMT(f g)P dtz <_ (CM)P/2t.lCl(QM),

so choosing 6 sufficiently small gives

(10) fo T( f g) p dtz, < ep.
M

On the other hand, since ]g] _< ]f], Minkowski’s Inequality gives

so (9) gives

T(f -g) < T(f) + T(g) < 2T(f),

f% dtz,T( f g)P < (2e) p.
QM

Combining this with (10) gives

and the lemma is proved.

We next show that the spaces L p interpolate properly by the complex
method when p > 2. For a compatible pair of Banach spaces (’0, ’1), and
for 0 < 0 < 1, we denote by [’0, ’1 ]0 the usual complex method interpolat-
ing space.

LEMMA 3.5. Let 0 < 0 < 1 and 1/p (1 0)/2. Then Lp C [2,
with a continuous embedding.

Proof First, note that since, by Lemma 3.4, L2 C Lz, we have [2, oz]0 C
L. For any f E we denote by ]f]o the [L2, Lm]0 norm of f (which may, of



TRACE IDEAL CRITERIA 741

course, be infinite). By (5) of Lemma 3.4, it suffices to prove that for any
simple function f with compact support in X and ]]f]]L,, 1 we have
]rio < C, where C is a constant independent of f. We first note that, with f
as above, T(f) is a bounded, positive function on X. Thus, for any , C,
the function

Ga(z) T(f)(z)Pl-)/l-)-’ f(z)

is a bounded function with compact support on ), and so, by (3) and (5) of
Lemma 3.4, G, L2 C w, and the map ,t G, is a holomorphic mapping
from C into L. One easily checks that ]]G,]]/; < ClC-Re , where C and q2
are positive constants depending on f, so the map h G is bounded (in L
norm) in a neighborhood of the strip ’= {0 < Re , < 1}. Letting

A2--0F, e G,,

it follows that the map Fz is holomorphic and bounded in a neighbor-
hood of 5, and that ]]F,]]/; 0 as ]Im ,1--* w in 5. Since Fo GO f, the
lemma will be proved by showing that ]]Fitl]/;2 and ]]Fl+itl]/; are both
bounded uniformly in R by a constant independent of f. (Recall that

A2--0]]fl]/;, 1.) Moreover, since e is bounded on each of the lines {Re , 0}
and {Re , 1}, it suffices to bound []Gitllz;2 and ]]GI+it]]/;. But

[Girl [Go[ T(f) p/2-’ If[

and

IGl+i,I IGll Ill
T(f)

so the proof will be finished by establishing the two inequalities

(11) T(f) p/2-1 f I[{, ,( C

and

<C

with constants independent of f.
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Fix e (0, 1), and let {zj.} be the sequence from item 5 of Lemma 3.3.
Appealing to Lemma 3.3, the left hand side of (12) can now be estimated as
follows:

r r ) ()=fr(f)(w) ,.( w) do( W)

< -’. .T(f (w)
,.( w) do( W)

(.)_<c2
j T(f)2(zj) o(@.)f,l 12 Kz,(W) dlxo(W)

_< c E ,(;).o(@)

<_ cE. f(w) do(W)

<_ c/.z(w) d.o(W) c,

so (12) is proved.
To prove (11), we first establish a pointwise estimate. Arguing as above, we

have

2

T(T(f) p/2-’ f (z)

fT(f)(w)p-zlf(w)l2 ,,(w) d.o(W)

< CE T(f)(Zj) p-2 (z.)0(.) If(w)12,%(w) dlxo(W)
j

<_ C_,T(f)(z;)P(z)to(@)

< fz(f)(w)PKz(w ) dlxo(W).
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Finally, integrating with respect to z and applying Fubini’s Theorem gives

< CfT(f)(w)Po(C(w)) dp,o(W) CIIfll p

and the proof is complete.

The following lemma, and its proof, are modeled on an analogous result on
the Bergman kernel in bounded symmetric domains which is proved in [5].

LEMMA 3.6. Let G be a measurable fu. ncti.on on ) such that
G(z, w)l <_ T(z, w) for almost every (z, w) X X. Then Mio is a bounded
operator on L2 wheneverf [d, with operator norm at most a constant multiple
of Ilfllz>.

Proof Fix e (0, 1), and let {zs.} be the sequence in item 5 of Lemma 3.3
and s %(zs)" Let q L2, and let

g(z) f dtxo(W).

It’s clear that

(13) -< g(z)

for almost every z X, and moreover, by Lemma 1.4 of [4], we have
[[gii2 --< Ciifii2. Also, it follows from (3) of Lemma 3.3 that g(w) = g(z) for
w ’,(z), so for w s, we have

g(w) 2 < Cg(zj)2

Cj-j (Zj) 2 d/.0 < Cjj. d/z0,

so

supg -< ( .. ) do.o
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Thus, by (13), we obtain

<- . fjIfl2g2 dtzo

J /Zo("J) .g2 d/zo If d/zo.

But by Lemma 3.3, we have /b0(j.) -1 , kzz) uniformly for z ., so we
obtain

II(M  )  1122 < C E. f,_,g2 diof,_ ifl2kzj 6t"60

<_ CllT(f)ll 2 . f,.l g2 do
_< ClIT(f)Jlgoof.eg 2 d,o

2cllT(f)ll2llgll _< cllr(f)11211q9112

and the lemma is proved.

LEMMA 3.7. Let G be a measurable function, on ) ) such that
G(z, w)l <- ’(z, w) for almost every (z, w) X X. Then for any f L P,
with 2 <_ p < % the operator Mf is in the trace ideal , and
IMflp < Cpllfll,,.

Proof For f 2__ L2(d/xo), since Mfo is the integral operator with
kernel G[(z, w) f(z)G(z, w), the Hilbert Sehmidt criterion gives

IMo122 ff lf(z)12la(z,w)l2 do(W) do(Z)

<_ ff lf(z)12(z,w)2 dido(W) dtzo(Z)

_< cflf(z)12 d/a(z) CIIfl 2"2L

which proves the lemma when p 2.
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To complete the proof, we use an interpolation argument. For 0 < 0 < 1
we have [2,]0 =p, with p 2/(1 0), where is the space of all
bounded operators on L2. The proof of the inclusion [S2, S’]0 cp can be
found on pages 137-138 of [11],2 while the reverse inclusion is an elementary
consequence of the canonical Schmidt representation of a compact operator
(see for example, [11], page 28). On the other hand, Lemma 3.5 asserts that
L p C [L2, L]0 We showed in the preceding paragraph that IMfal2 <
Cl[fll/;2, and Lemma 13 gives IIMfll_ < CIIfll/;, so interpolation gives
IMdalp < Cpllfll,, for 2 < p < .

In view of the preceding lemma, Theorem 3.1 will be established as soon as
we prove"

LEMMA 3.8. Let a be as in Lemma 1.1. Iff YP with 2(1 1/a) < p < ,
then f-f [_,P, and Ill- fll/;p < CIIfllw,.

Proof We have

( w w dlz( z)

dtz( z)

+ 2 p f(Si;(Z) ;( W) I2 Kz( W))pl2 d/Zl(Z).

The first integral on the right is clearly dominated by Ilfll,, and, by Lemma
2.10 with b 0, the second integral on the right is also dominated by IIf[I pyP
so the proof is complete.

4. Hankel operators

We now turn our attention to Hankel operators on domains in C in the
sense of [5]. Let D be a bounded domain in Cn. The Bergman space on D is
the subspace of L2(D) consisting of all holomorphic L2 functions on D. It
follows immediately from subharmonicity of Ill 2 that A2(D) is a closed
subspace of L2(D), and that for any z D, the point evaluation f f(z) is
a continuous linear functional on A2(D). By the Riesz Lemma, for each

2The theorem in [11] is stated with the space S of all compact operators as the right end
point, but the proof works without change for the space . of all bounded operators.
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z D there is a unique K A2(D) such that

(14) f(z) (f, K ) fDf(W)Kz(w ) dw

for every f A2(D). The function K(z, w)= Kw(Z) is the Bergman kernel
function for D. Letting P" LZ(D) AZ(D) denote the orthogonal projection,
it follows that

(5) Pf(z) (Pf, K) (f,K) ff(w)K(z,w) dw

for any z D and any f L2(D).
When f is a function on D, the Hankel operator with symbol f is the

operator HT defined formally by

Hf (I- P)MfP [Mf, P]P

where, as in previous sections, Mfg fg. Our purpose in this section is, for
suitable domains D, to characterize those symbols which give rise to Hankel
operators in the trace ideal p for 2 < p < w. When D is the unit ball, or a
more general bounded symmetric domain, this characterization has been
given by K. Zhu [21] and D. Zheng [20].
From (14) we have

]IK]I (K,K) K(z,z),

so the function

K(z,z) 1/2

is a unit vector in A2(D) for each z D, i.e.,

folkz(w) [2 dw 1

for every z D.
We now restrict our attention to domains for which K is bounded for

each fixed z D. This class of domains includes any domain for which the
c)-Neuman problem is globally regular, and in particular includes all finite
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type domains. For f LI(D), the Berezin transform of f is the function

Alternatively, by (15),

f( z) K( z, z) - P(Kf)( z),

so in particular, when f is holomorphic, we have j= f.
We now further specialize to smoothly bounded domains D which are

either strictly pseudoconvex in C or of finite type in C2, and we equip the
0D with the homogeneous structure defined by the Euclidean surface mea-
sure r and the balls determined by the Korfinyi-Stein pseudo-metric in the
strictly pseudoconvex case, or by any of the metrics constructed in [3] in the
finite type case. In order to apply our general trace ideal criterion, we
identify a relative neighborhood of OD in D with a neighborhood of
OD x {0} in OD aD x (0, c). More precisely, let p denote any fixed defin-
ing function for D, and for 6o > 0 sufficiently small, let rr denote the normal
projection of Sa0 on OD, where

{-a < o < o}.

Then for 60 sufficiently small, the map ’So --+ OD defined by

(z)

is a diffeomorphism onto OD (0, 60). Also, letting T denote the kernel of
the homogeneous structure in the sense of Section 1, it follows from the
kernel estimates of [9], [6], [16] that, again for sufficiently small ;0, we have

K(z,() T((z), ( sr ))

for z Sao and Iz srl < 60.
For any function f on D, define a function ,f on O’- by ,f f -1

on OD (0, 60) and ,f 0 on 0D [60, oo). From the comparability of
the Bergman kernel with the homogeneous structure, one easily deduces:

LEMMA 4.1.
pseudoconvex,

Let D be a smooth bounded domain which is either strictly
or of finite type in C2, and let OD be equipped with the
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homogeneous structure described above. Letf L2(D). Then for 2 < p < , we
have

2 2
p/2

K( z, z) dz

We will let YP(D)) denote the space of all functions in L2(D) such that
the right hand side of the above inequality is finite, and we shall denote the
pth root of the right hand side by
Now let L(z, sr ) be a measurable function on D D such that L(z, " )1 <

CIK(z, )[ for z, " D with [z ’l < 80 and IL(z, )l < C for Iz ’l > 80,
let L denote the integral operator

,f(z) fDf( )L(z,) d.

Our immediate goal is to establish a sufficient condition on f L2(D) for
the commutator [Mf,L] to be in the trace ideal p =p(LZ(D)) with
p >_ 2. Write

L L + L2

where

with X denoting the characteristic function of S0, so that

+

Since L2 is bounded on D D, it is immediate from the Hilbert-Schmidt
criterion that the second term on the right is in S2, and hence in p for
p > 2, so it suffices to consider the operator [Mr, L,]. Using the orthogonal
decomposition

L2(D) L2(Sao) LZ(D \ Sao),

it suffices to view [Mf,L,] as an operator on L2($60 ). Moreover, the map
g g -1 is an isometry of g2(s0) onto LZ(oD (0, 6o), dV), where

dV( , t) oo( x, t) dtdr( ),
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with 1/o) the Jacobian of the map . Thus, [Mf,L,] p if and only if

[Mzo.-,,UL, o((px(i,)-t] @. Appealing to Theorem 1.5, we obtain:

THEOREM 4.2. Let D be a smooth bounded domain in C which is either
strictly pseudoconvex or offinite type with n 2. Let L be a measurablefunction
on D x D such that ]L(z, " )] < ]g(z, sr )], where K(z, ) is the Bergman kernel
function for D. Then for any f YP(D) with 2 < p < , the commutator

[Mf,] is in the trace ideal @(L2(D)), and I[Mf,]lp <_ CIIfllYD), where C
is a constant depending on D and p.

COROLLARY 4.3. Let D be a smooth bounded domain in C which is either
strictly pseudoconvex or of finite type with n 2. For 2 < p < , the Hankel
operator Hf is in @(LZ(D)) wheneverf YP(D), and [Hr[p < Cllfllr.

We now turn to the converse of Theorem 4.2. The basic tool is the
following identity of Burbea [7].

LEMMA 4.4. Let D be a bounded domain in C, and let K be its Bergman
kernel. Suppose that for each fixed D, the function l/K(., ) is holomor-
phic and bounded in D, and let bz( ) K( , z)/K(z, ). Then for any z D,

Proof We have

(16) (Hy(k), bH(kz)) (Hy(k)H].(k), b)

and the first factor on the right can be written

(17)
H(k)H}(k) (I P)(fkz)(I P)(fk)

We will calculate the inner roduct of each term on the right with b. For the
first term, since kZ)z -]kz] we immediately obtain

(18) (IfiZkz2, b)
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For the second term on the right of (17), we have

(a9)

and similarly

(20) (fkzP(fkz) bz) P(fkz)II2
2"

For the last term on the right of (17), the reproducing proper of the
Bergman kernel gives

( P( fkz)P(fkz), bz) ( P( fkz)P(ikz)K; 1, Kz)
P(fk)(z)P(?kz)(Z)K(z,z)-’
P(fK)(z)P(fKz)(z)K(z,z) -2.

But direct calculation gives P(fKz)(Z) K(z, z)f(z), so we obtain

(21) (P(fkz)P(ikz),bz) =hz)hz) =lhz)l.
The identities (17)-(21) give

z

Finally notin that, by the thagorean Theorem, ]H0]] =]0-
]]P(0)]] completes the proof.
We next give an alternative description of Y(D).

LMMA 4.5. For any f LZ(D) and 0 < p e have

,i,,i +(f(iim zii ii(z)l ) K(z,z)z

with the usual limiting interpretation when p .
ProoJ The inner integral in the definition of the Y(O) norm is

zl
Z Z 12=/li(c)llz(C)l c- /( )fi(c)lz(C)l c +lh )

llizll -If()
and the result follows.
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LEMMA 4.6. Let T be a positive, compact operator on L2(D) with range
contained in A2(D). Then

tr T f(TKz,K) dz f(r,)K(z,z) z,

and, for any 1 < p < %

f(Tk,kz)PK(z,z) dz <_ f(TPkz,k) tr Tp.

Proof Write

where {qs.} is an orthonormal basis for A2(D). Then

K E qj(z)P,

and

TK _, Aiq]( z ) q)]

so by Parseval’s Identity.

Integrating both sides and appealing to the Monotone Convergence Theorem
to exchange the sum and the integral gives the first assertion.
For the second assertion, Jensen’s Inequality gives

and integrating both sides completes the proof.
Lemma 4.4 now gives:

THEOREM 4.7. Let D be a bounded domain in C with Bergman kernel K,
and suppose that for each fixed D, the function 1/K(., ) is holomorphic
and bounded in D. Let f L2(D).
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(1) If 2 < p < , and if Hf ad H? are both in p, then f YP(D), and

ilfll 2 2 2

(2) /f 0 < p < 2 and iff YP(D), then Hf and Hf are both in p, and

Proof From Lemma 4.4 and the Schwarz Inequality,

from which the case p is immediate. For 2 < p < , Lemma 4.5 and
Minkowski’s Inequality give

(22) K( z, z) z)/

/ (fllHkllP2g(z,z)dz)
2/p

But by Lemma 4.6,

fllI4kll’K( z, z) dz + f<I4I4k, k>/2K( z, z) dz

p< tr(HHi)p/2 IHf[p,

and similarly

fllnykllK( z, z) dz <_ Inylpp,

so (1) follows from (22).
For (2), we again use Lemma 4.4 and the Schwarz Inequality to obtain
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Thus for 0 < p < 2, by Lemma 4.6,

1

1
,kz) p/2 + (HHfkz,kz)P/Z)K(z,z) dz

1 )p/2
1

+

and the proof is complete.
Combining this result with Theorem 3.1 gives the following corollary,

which extends work of K. H. Zhu [21] in the unit Ball and D. Zheng [20] in
the case of bounded symmetric domains.

COROLLARY 4.8. Let D be either a finite type domain in C or a strictly
pseudoconvex domain in C such that the Bergman kernel ofD is non-vanishing
on D x D, and let 2 <_ p < . Then f YP(D) if and only if Hf and Hi both
in p, and moreover [[f[[v;() = [Hf[p -b [Hf[p.

We note in passing that with some additional work, one can drop the
condition that K is non-vanishing in the strictly pseudoconvex case. The
argument is a refinement of the one given above and relies on the asymptotic
expansion for the Bergman kernel. We do not know whether the non-vanish-
ing of the Bergman kernel is essential in the finite type case.
We conclude by noting that, in view of the identity

[Me, He-
Theorem 4.7 can also be formulated in terms of the commutator operator
[Mr, P].

COROLLARY 4.9. Let D and f be as in Theorem 4.7.
(1) If 2 < p < oz, and if [MT, P] is in p, then f YP(D), and

(2) If 0 < p < 2 and iff YP(D), then [Mr, P] , and

< 2llfllv.
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