THE DESCRIPTIVE COMPLEXITY OF HELSON SETS

ETIENNE MATHERON

Introduction

A closed subset E of the circle group T is called a *Helson set* if every continuous complex-valued function on E can be extended to a function on T with absolutely convergent Fourier series. We denote by $\mathscr H$ the class of Helson subsets of T.

In this paper we are interested in the descriptive properties of \mathscr{H} . We shall need the following definitions: a subset of a compact metric space is called a $\mathbf{G}_{\delta\sigma}$ set if it is the union of countably many \mathbf{G}_{δ} sets and an $\mathbf{F}_{\sigma\delta}$ set if its complement is $\mathbf{G}_{\delta\sigma}$. In the sequel we follow the notations of [17]. Thus, the symbols $\mathbf{\Pi}_2^0$, $\mathbf{\Sigma}_3^0$, $\mathbf{\Pi}_3^0$ respectively means \mathbf{G}_{δ} , $\mathbf{G}_{\delta\sigma}$, $\mathbf{F}_{\sigma\delta}$. However, we sometimes use \mathbf{G}_{δ} instead of $\mathbf{\Pi}_2^0$.

Let $\mathcal{H}(T)$ be the space of all compact subsets of T equipped with its (metric, compact) Hausdorff topology. One natural question (at least for some people) is to find the exact Borel class of \mathcal{H} as a subset of $\mathcal{H}(T)$ (this is what "descriptive properties" meant). It is easy to check (Section 1) that \mathcal{H} is Σ_3^0 . In this paper we show that \mathcal{H} is a true Σ_3^0 set (that is, Σ_3^0 but not Π_3^0). We do this in two ways. First (Section 2) we prove that even inside the countable sets \mathcal{H} is true Σ_3^0 . Then (Section 3) we get the same conclusion for perfect Helson sets. In fact, our result is slightly more general: we show that for any M_o set E, the perfect Helson sets contained in E form a true Σ_3^0 subset of $\mathcal{H}(E) = \{F \in \mathcal{H}(T); F \subseteq E\}$ (the definition of an M_o set will be given in Section 3). The proof also yields that some other natural classes of thin sets, like the WTP, U' or U'_o sets, are true Σ_3^0 within any M_o set.

1. Definitions, upper bound for the complexity

Let M(T) be the space of Borel, complex measures on T with its natural norm $\| \ \|_{M}$ and PM be the space of all distributions on T with bounded

Received July 20, 1993.

¹⁹⁹¹ Mathematics Subject Classification. Primary 43A46, O4A15, 26A21.

Fourier coefficients. The norm of an element $S \in \mathbf{PM}$ is defined by $||S||_{PM} = \sup_{n \in \mathbb{Z}} |\hat{S}(n)|$. Thus the Fourier transform identifies \mathbf{PM} with $l^{\infty}(\mathbb{Z})$.

Evidently $\|\mu\|_M \le \|\mu\|_{PM}$ if $\mu \in \mathbf{M}(\mathbf{T})$, and it is well known (see [4] or [5]) that $E \in \mathcal{R}(\mathbf{T})$ is a Helson set if and only if there is a constant $c \ge 0$ such that

$$\|\mu\|_{M} \le c \|\mu\|_{PM}$$
 for every $\mu \in \mathbf{M}(\mathbf{T})$ supported by E .

From this it is easy to see that \mathcal{H} is a Σ_3^0 subset of $\mathcal{H}(T)$. Indeed one can write

$$E \in \mathcal{H} \Leftrightarrow \exists k \in \mathbb{N} \quad \forall \mu \in \mathbf{B}_1(\mathbf{M}(\mathbf{T}))$$

$$\left(\sup(\mu) \subseteq E \text{ or } \|\mu\|_M \le \frac{1}{2} \text{ or } \exists n \mid \hat{\mu}(n) \mid > \frac{1}{k} \right)$$

(here $B_1(M(T))$ is the unit ball of M(T) with its w^* topology and supp(μ) is the support of the measure μ).

The condition under brackets is clearly Π_2^0 in (μ, E) . Since $\mathbf{B}_1(\mathbf{M}(\mathbf{T})) \times \mathcal{K}(\mathbf{T})$ is compact, \mathcal{K} is Σ_3^0 .

From now on we write ω for the set of natural numbers and 2^{ω} for the Cantor space of all infinite sequences of 0's and 1's with its usual product topology.

We fix a bijection $(p,q) \mapsto \langle p,q \rangle$ from ω^2 onto ω and denote the inverse map by $n \mapsto ((n)_0,(n)_1)$. For $\alpha \in \mathbf{2}^{\omega}$, we define $\alpha_p \in \mathbf{2}^{\omega}$ by $\alpha_p(q) = \alpha(\langle p,q \rangle)$. Finally let **W** be the following subset of $\mathbf{2}^{\omega}$:

$$\mathbf{W} = \{ \alpha \in \mathbf{2}^{\omega}, \exists p \ \alpha_{p}(q) = 1 \text{ for infinitely many } q \text{ 's} \}$$

It is well known that **W** is a true Σ_3^0 subset of 2^{ω} . Thus, to show that \mathcal{H} is not Π_3^0 it is enough to construct a continuous function $\varphi: 2^{\omega} \to \mathcal{H}(T)$ such that:

if
$$\alpha \in \mathbf{W}$$
, then $\varphi(\alpha) \in \mathcal{X}$; if $\alpha \notin \mathbf{W}$, then $\varphi(\alpha) \notin \mathcal{X}$.

This is what we shall do in the next two sections.

2. Countable Helson Sets

In this section we show that \mathcal{H} is true Σ_3^0 "inside the countable sets". In other words, we construct a continuous reduction φ such that $\varphi(\alpha)$ is countable for each $\alpha \in 2^{\omega}$. The advantage of considering only countable sets is that several "arithmetic" conditions are known for a countable set to be Helson.

In the sequel, **T** will be identified with the interval [0, 1[whenever it seems more appropriate.

DEFINITIONS. (a) A subset A of T is said to be *independent* if for every $x_1, \ldots, x_k \in A$ the equation $\sum_{i=1}^k m_i x_i = 0$ has no non-trivial integer solution. (b) If k is a positive integer, an *arithmetic progression of length* k is a set of the form

$${a, a + 1/l, ..., a + k/l}$$

for some $a \in \mathbf{T}$ and some positive integer l.

The following facts are well known (see [5]):

- (1) If $E \in \mathcal{R}(\mathbf{T})$ is countable and is the union of finitely many independent closed sets, then E is a Helson set.
- (2) If $E \in \mathcal{K}(\mathbf{T})$ contains arbitrarily long arithmetic progressions, then E is not a Helson set.

Remark. It follows from the work of G. Pisier [18] that one can characterize completely the countable Helson sets by means of a very simple arithmetic property. The two preceding facts are of course immediate consequences of this characterization.

THEOREM 1. There is a continuous map $\varphi: 2^{\omega} \to \mathcal{R}(T)$ such that $\varphi(\alpha)$ is countable for each $\alpha \in 2^{\omega}$ and:

if $\alpha \in \mathbf{W}$, $\varphi(\alpha)$ is a finite union of closed independent sets;

if $\alpha \notin \mathbf{W}$, $\varphi(\alpha)$ contains arbitrarily long arithmetic progressions.

COROLLARY. There is no Π_3^0 subset of $\mathcal{R}(\mathbf{T})$ containing the countable Helson sets and contained in \mathcal{H} . In particular \mathcal{H} is a true Σ_3^0 set.

In the proof of Theorem 1 we will need the following Lemma. Recall that a class $\mathscr{C} \subseteq \mathscr{R}(T)$ is said to be *hereditary* if any (closed) subset of an element of \mathscr{C} still belongs to \mathscr{C} .

LEMMA 1. Let \mathcal{I} be the class of independent compact subsets of T. Then:

- (a) \mathcal{I} is G_{δ} , hereditary, and dense in $\mathcal{K}(T)$;
- (b) if $E \in \mathcal{I}$, the set $\mathcal{I}_E = \{F \in \mathcal{R}(\mathbf{T}); E \cup F \in \mathcal{I}\}\$ is a dense \mathbf{G}_{δ} of $\mathcal{R}(\mathbf{T})$.

Proof. Part (a) is easy and implies that \mathscr{I}_E is G_δ by continuity of the map $(E, F) \mapsto E \cup F$. To prove the density in part (b) it is clearly enough to show that given a non empty open set V there exists a point $x \in V$ such that $E \cup \{x\} \in \mathscr{I}$. So let us fix $E \in \mathscr{I}$, $V \subseteq T$ open, and consider the subset A of

T defined by

$$x \in A \Leftrightarrow \forall m \neq 0 \ \forall m_1, \dots, m_k \text{ not all } 0 \ \forall x_1, \dots, x_k \in E \ \sum_{i=1}^k m_i x_i \neq mx$$

$$(m, m_1, \dots, m_k \text{ are integers}).$$

Since E is independent, A contains all the rational numbers, hence A is dense in T. Moreover A is clearly G_{δ} (because E is closed). So, by Baire category theorem, we can find an irrational x in $A \cap V$. Then $E \cup \{x\}$ is independent by definition of A. This proves (b). \square

It follows from (b) (by Baire's theorem again) that given independent sets F_1, \ldots, F_k and a non empty open set $V \subseteq \mathbf{T}$ there is a point $x \in V$ such that $\{x\} \cup F_i$ is independent for i = 1, ..., k.

We now turn to the proof of Theorem 1. Let us first fix some notations. Let $2^{<\omega}$ be the set of all finite sequences of 0's and 1's; for any integer n, $2^{\leq n}$ is the set of sequences of length $\leq n$. If $s \in 2^{<\omega}$, |s| is the length of s, s_n is the restriction of s to $\{0,\ldots,n-1\}$ (for $n \leq |s|$), and for $s, t \in 2^{<\omega}$, $s \leq t$ means that t is an extension of s (that is, $|s| \leq |t|$ and $t_{|s|} = s$). If $s \in 2^{<\omega}$, $s \neq \emptyset$, we denote by s' the sequence $s_{\lceil |s|-1}$.

Since \mathcal{I} is G_{δ} and hereditary, we can choose a decreasing sequence $(\mathcal{U}^n)_{n\geq o}$ of open, hereditary subsets of $\mathscr{R}(\mathbf{T})$ such that $\mathscr{I}=\bigcap_{n\geq o}\mathscr{U}^n$. The open sets \mathscr{U}^n are obtained as follows: write $\mathscr{G}=\bigcap_{n\geq o}\mathscr{W}^n$, where the \mathscr{W}^n are open with $\mathcal{W}^{n+1} \subset \mathcal{W}^n$. Then let

$$\mathcal{U}^n = \{ K \in \mathcal{W}^n; L \in \mathcal{W}^n \text{ for every } L \subseteq K \}.$$

 \mathcal{U}^n is obviously hereditary and it is easy to check that it is also open. Finally, since \mathscr{G} is hereditary one has $\mathscr{G} \subseteq \mathscr{U}^n \subseteq \mathscr{W}^n$ for all n, hence $\mathscr{G} = \bigcap_{n \geq o} \mathscr{U}^n$. Finally, we fix a point $x_o \in \mathbf{T}$ such that $\{x_o\} \in \mathscr{I}$ (that is, an irrational x_o). Now we shall construct for each $s \in 2^{<\omega}$ a closed subset E(s) of **T**. If $s \neq \emptyset$, E(s) will be written as

$$E(s) = \bigcup_{m=0}^{|s|-1} E^m(s)$$

where the $E^m(s)$ are pairwise disjoint and satisfy the following requirements:

(1)
$$E^m(s) = I_o^m(s) \cup \cdots \cup I_{(m)}^m(s)$$

where the $I_i^m(s)$ are pairwise disjoint non trivial closed intervals of center $x_j^m(s)$ and of length $\leq 2^{-|s|}$. (2) $E^m(s) \subseteq]x_o, x_o + 2^{-m}].$

(2)
$$E^m(s) \subseteq]x_o, x_o + 2^{-m}].$$

- (3) If $t \leq s$ then $I_j^m(s) \subseteq I_j^m(t)$ (m < |t|).
- (4) If |s| = n + 1, m < n and $(m)_o < (n)_o$ then $x_i^m(s) = x_i^m(s')$.
- (5) If |s| = n + 1 and p is any (nonnegative) integer, then for every $j \le p$,

$$\{x_o\} \cup \{x_j^m(s), m \le n, (m)_o = p\}$$
 is independent,

$$\{x_o\} \cup \left(\bigcup_{\substack{m \le n \\ (m)_o = p}} I_j^m(s)\right) \in \mathscr{U}^n.$$

(6) If |s| = n + 1 and s(n) = 0, then

$$\{x_o^n(s), \dots, x_{(n)_o}^n(s)\}$$
 is an arithmetic progression,
 $x_j^m(s) = x_j^m(s')$ if $m < n, j \le (m)_o$.

(7) If |s| = n + 1 and s(n) = 1 and if we let $A = \{m \le n; (m)_o \ge (n)_o\}$, then

$$\{x_o\} \cup \left(\bigcup_{\substack{m \in A \ j \le (m)_o}} I_j^m(s)\right) \in \mathscr{U}^n.$$

We first let $E(\emptyset) = \mathbf{T}$ and now describe the inductive step.

Assume the sets $E^m(t)$ have been constructed for each $t \in 2^{\leq n}$ and let s be a sequence of length n+1. We distinguish two cases.

Case 1. s(n) = 0. We first define $E^m(s)$ for m < n, $(m)_o \ne (n)_o$. So (if there is any) fix $p \in \omega$ with $p \ne (n)_o$ and such that $A_p = \{m < n; (m)_o = p\}$ is non empty. Let also j be an integer $\le p$.

By induction hypothesis, the set $\{x_o\} \cup \{x_j^m(s'), m \in A_p\}$ is independent, hence belongs to \mathcal{U}^n . Since \mathcal{U}^n is open, we can choose intervals $I_j^m(s)$, $m \in A_p$ with center $x_j^m(s')$ and length $\leq 2^{-n}$, such that $\{x_o\} \cup (\bigcup_{m \in A_p} I_j^m(s)) \in \mathcal{U}^n$. Then $(1), \ldots, (5)$ and one half of (6) are satisfied for $m \in A_p$.

Now we define $E^m(s)$ for those $m \le n$ with $(m)_o = (n)_o$. Let $A = \{m < n; (m)_o = (n)_o\}$. If $j \le (n)_o$, the set $F_j = \{x_o\} \cup \{x_j^m(s'); m \in A\}$ is independent. Thus, by Lemma 1, we can choose $x_o^n(s) \in]x_o, x_o + 2^{-n}[$ such that $\{x_o^n(s)\} \cup F_j$ is independent for all $j \le (n)_o$. Next let p be a positive integer such that $[x_o^n(s), x_o^n(s) + (n)_o/p] \subseteq]x_o, x_o + 2^{-n}[$ and let $x_j^n(s) = x_o^n(s) + j$ for $j \le (n)_o$. Then obviously $\{x_j^n(s)\} \cup F_j$ is independent for each j. So, letting $x_j^m(s) = x_j^m(s')$ if $m \in A$, we just take for $I_j^m(s)$ some sufficiently small interval around $x_j^m(s)$ to ensure $(1), \ldots, (6)$.

Case 2. s(n) = 1. By (5) we have no freedom in the choice of $E^m(s)$ if $(m)_o < (n)_o$, and we argue as in case 1.

Now let $A = \{m < n; (m)_o \ge (n)_o\}$ and $X = \{I_j^m(s'); m \in A, j \le (m)_o\}$. Using Lemma 1, we find a set $F \in \mathcal{F}$ such that $x_o \in F$ and $F \cap I \ne \emptyset$ for all $I \in X$. Choosing one point x_I in each $I \cap F$ and putting some small interval around it, we get the sets $E_j^m(s)$ for $m \in A$ and $j \le (m)_o$. If the intervals are well chosen, conditions $(1), \ldots, (7)$ are then satisfied for $m \ne n$.

Finally we define $E^n(s)$. Actually (in case s(n) = 1) $E^n(s)$ is not really essential in the proof: we define it only because it is more convenient to have n blocks at the n'-th step. Nevertheless $E^n(s)$ is easily constructed using Lemma 1 once more.

This concludes the inductive step.

Now we first claim that for each $\alpha \in 2^{\omega}$ the sets $E(\alpha_{\lceil n \rceil})$ converge in $\mathcal{R}(T)$ to some countable (closed) set $E(\alpha)$, and that the map $\alpha \mapsto E(\alpha)$ is continuous. To see this, observe that by (1) and (3) the sequence $(E^m(\alpha_{\lceil n \rceil}))_{n > m}$ converges to some finite set $E^m(\alpha)$ (for any $m \in \omega$). By (2), $E^m(\alpha) \subseteq$

 $[x_o, x_o + 2^{-m}]$ (in fact $]x_o, x_o + 2^{-m}]$). Hence

$$E(\alpha) = \{x_o\} \cup \left(\bigcup_{n=0}^{\infty} E^m(\alpha)\right)$$

is a countable closed set and clearly $E(\alpha_n) \to E(\alpha)$ as $n \to \infty$.

Next we show that the map $\alpha \to E(\alpha)$ is continuous.

Let V be an open set with $E(\alpha) \cap V \neq \emptyset$. Then $E(\alpha) \cap V \neq \{x_o\}$ as well, so pick $x \in E(\alpha) \cap V$, $x \neq x_o$. Then $x \in E^m(\alpha)$ for some m, hence there is a $j \leq (m)_o$ such that $x \in \bigcap_{n > m} I_j^m(\alpha_{\lceil n \rceil})$. If n is big enough, say $n \geq N$, then $I_j^m(\alpha_{\lceil n \rceil}) \subseteq V$. Thus, If $\beta_{\lceil N \rceil} = \alpha_{\lceil N \rceil}$ one has

$$\bigcap_{n>m} I_j^m(\beta_{\lceil n\rceil}) \subseteq V \cap E(\beta)$$

by (3), and so $E(\beta) \cap V \neq \emptyset$.

On the other hand, if $E(\alpha) \subseteq V$, then for large m and all $\beta \in 2^{\omega}$ one has

$$E^m(\beta) \subseteq [x_o, x_o + 2^{-m}] \subseteq V.$$

The diameter condition in (1) now implies that $E(\beta) \subseteq V$ if $\beta_{\lceil n \rceil} = \alpha_{\lceil n \rceil}$ and n is big enough. This shows that the map $\alpha \mapsto E(\alpha)$ is continuous.

It remains to check that this map satisfies the conclusion of Theorem 1. So we fix $\alpha \in \mathbf{2}^{\omega}$ and, of course, distinguish two cases.

Case 1. α_{p_o} is infinite for some $p_o \in \omega$. We have to show that $E(\alpha)$ is a finite union of independent closed sets. First we note that for any $p \in \omega$ and

each $j \le p$ the set

$$E_{p,j} = \{x_o\} \cup \left(\bigcup_{\substack{m \in \omega \\ (m), =p}} E_j^m(\alpha)\right)$$

is (closed and) independent. Indeed, by (3), (5) and the fact that the \mathcal{U}^n are

hereditary, every finite subset of $E_{p,j}$ is independent. Now if α_{p_o} is infinite, then (3) and (7) imply that $E_{p_o} = \{x_o\} \cup (\bigcup_{(m)_o \geq p_o} E^m(\alpha))$ is independent. Then we are done since $E(\alpha) = E_{p_o} \cup (\bigcup_{j \leq p} e_{p_o} E_{p,j})$.

Case 2. α_p is finite for every p. Let p_o be a non negative integer. We show that $E(\alpha)$ contains an arithmetic progression of length $p_o + 1$.

Choose q'_o such that $\alpha(\langle p,q\rangle)=0$ for $p\leq p_o$ and $q>q'_o$ (such a q'_o exists by our hypothesis). Then pick q_o (> q'_o) so large that $\langle p_o,q_o\rangle$ > Max{ $\langle p,q\rangle$, $p \leq p_o$, $q \leq q_o'$ } and let $n_o = \langle p_o, q_o\rangle$. By the choice of q_o' $\alpha(n_o) = 0$, hence by (6) $E^{n_o}(\alpha_{\lceil n_o + 1 \rceil})$ contains an

arithmetic progression of length $p_o + 1$.

Let j be an integer $\leq p_o$. We claim that $x_j^{n_o}(\alpha_{\lfloor n+1}) = x_j^{n_o}(\alpha_{\lfloor n_o+1})$ for each $n > n_o$. Indeed if $n > n_o$, $n = \langle p, q \rangle$ then:

Either $p > p_o$ and then $x_j^{n_o}(\alpha_{\lfloor n+1}) = x_j^{n_o}(\alpha_{\lfloor n})$ by (4); Or else $p \le p_o$ in which case $q > q_o'$ by the choice of q_o . Then $\alpha(n) = 0$ by the choice of q_o' and $x_j^{n_o}(\alpha_{\lfloor n+1}) = x_j^{n_o}(\alpha_{\lfloor n})$ by (6).

In any case the claim follows by induction. Condition (1) now implies that $E^{n_o}(\alpha)$ is an arithmetic progression of length $p_o + 1$ (the one already contained in $E^{n_o}(\alpha_{n_o+1})$). This concludes case 2 and the proof of Theorem 1. □

Remark. A closed set $E \subseteq \mathbf{T}$ is called a set of analyticity if the only functions operating on the algebra A(E) (the restrictions to E of absolutely convergent Fourier series) are the analytic functions. The still open dichotomy conjecture (see [4], [5], [6]) asserts that any closed subset of T is either a Helson set or a set of analyticity (the two cases are of course exclusive). It is known (see [5]) that if $E \in \mathcal{R}(\mathbf{T})$ contains arbitrarily long arithmetic progressions, then E is a set of analyticity. Thus Theorem 1 shows that the class $\mathscr A$ of sets of analyticity in T cannot be Σ_3^0 in M(T). In other words, if the dichotomy conjecture is not true, this is not because $\mathscr A$ is "too simple". It can be shown that $\mathscr A$ is a Π^1 (coanalytic) set but it does not seem obvious that it should be Borel. This is rather surprising, since if the dichotomy conjecture is true, then the Borel class of \mathscr{A} must be very small (Π_3^0) .

3. Perfect Helson sets

The preceding result is not really satisfactory because it says nothing about *perfect* Helson sets. In this section, we show that the latter also form a true Σ_3^0 subset of $\mathcal{K}(T)$.

First we must introduce some other classes of sets.

If $S \in \mathbf{PM}$ we let $R(S) = \overline{\lim}_{n \to \infty} |\hat{S}(n)|$.

For $E \in \mathcal{R}(\mathbf{T})$ define

$$\eta_o(E) = \inf \left\{ \frac{R(\mu)}{\|\mu\|_{PM}}, \ \mu \in \mathbf{M}_+(E), \ \mu \neq 0 \right\}$$

$$\eta_2(E) = \inf \left\{ \frac{R(\mu)}{\|\mu\|_{PM}}, \ \mu \in \mathbf{M}(E), \ \mu \neq 0 \right\}$$

$$\eta_1(E) = \inf \left\{ \frac{R(S)}{\|S\|_{PM}}, \ S \in \mathbf{N}(E), \ S \neq 0 \right\}$$

$$\eta(E) = \inf \left\{ \frac{R(S)}{\|S\|_{PM}}, \ S \in \mathbf{PM}(E), \ S \neq 0 \right\}$$

(here N(E) denotes the w^* closure of M(E) in PM; the other notations are self-explanatory).

Then E is called a U_i' set if $\eta_i(E) > 0$ and a U' set if $\eta(E) > 0$. Evidently $U' \subseteq U_1' \subseteq U_2' \subseteq U_o'$, and it is well known that $\eta_1(E) > 0$ for all Helson sets, that is, $\mathscr{H} \subseteq U_1'$ (see [4], [5]). On the other hand, there are Helson sets which are not sets of uniqueness, hence with $\eta(E) = 0$: this is a deep result, due independently to R. Kaufman and T.W. Körner ([8], [12]). We should also add that $\eta(E) = 0$ for countable sets (which may fail to be Helson): this is a consequence of the fact that pseudomeasures with countable support are almost periodic (Loomis [15]).

E is said to be without true pseudomeasures (WTP) if every pseudomeasure supported by E is actually a measure. Equivalently E is WTP if and only if it is a Helson set and a set of synthesis. In particular, $WTP \subseteq \mathcal{H} \cap U'$.

Finally, E is said to be a Kronecker set if the characters of T are uniformly dense in

$$U(E) = \{ f \in C(E); |f(x)| = 1 \ \forall x \in E \}.$$

We shall use the following results about Kronecker sets.

(1) Finite unions of Kronecker sets are WTP. This is a consequence of two celebrated results of N. Varopoulos: Kronecker sets are WTP, and Helson

sets (as well as WTP sets) are closed under finite unions. Proofs of these results can be found in [4], [13] and [19].

(2) For any perfect set $P \subseteq \mathbf{T}$, the class of Kronecker subsets of P is \mathbf{G}_{δ} hereditary and dense in $\mathcal{R}(P)$ (see [7] or [10] p. 337).

It is easy to check as we did for \mathcal{H} , that U', U'_o , U'_2 and WTP are Σ^0_3 subsets of $\mathcal{H}(T)$ (on the other hand, because of the complexity of the notion of spectral synthesis, it seems reasonable to think that U'_1 is not even Borel, see [11]). We shall prove below that they are all true Σ^0_3 sets. This will follow from a somewhat more general result whose statement unfortunately requires still more definitions.

A measure $\mu \in \mathbf{M}(\mathbf{T})$ is said to be a *Rajchman measure* if $\hat{\mu}(n) \to 0$ as $|n| \to \infty$. For $E \in \mathcal{R}(\mathbf{T})$, we denote by $\mathbf{P}(E)$ the set of all probability measures on E and by $\mathcal{R}(E)$ the set of probability Rajchman measures supported by E (also letting $\mathcal{R} = \mathcal{R}(\mathbf{T})$). $\mathbf{P}(E)$ will always be equipped with the w^* topology induced by $\mathbf{M}(E)$.

A closed set $E \subseteq \mathbf{T}$ is said to be an M_o set if it supports a non zero Rajchman measure. By a result of Kechris and Louveau [10, p. 274] also obtained independently by Debs and Saint-Raymond [3] E is an M_o set if and only if it cannot be covered by countably many U_o' sets. E is said to be an M_o^p set if for every open set V such that $E \cap V \neq \emptyset$ the set $\overline{E \cap V}$ is in M_o . It is equivalent to say (if $E \neq \emptyset$) that E is the support of a Rajchman probability measure, or that $\mathcal{R}(E)$ is dense in $\mathbf{P}(E)$ (see [2], Lemma 8.3).

The following remark will be useful later: if E is M_o^p , then the set

$$\mathcal{R}'(E) = \{ \mu \in \mathcal{R}(E); \operatorname{supp}(\mu) = E \}$$

is dense in P(E). To see this take $\mu_o \in \mathcal{R}$ such that supp $(\mu) = E$. Then if $\mu \in \mathcal{R}(E)$ and α is any positive number,

$$\mu_{\alpha} = \frac{1}{1+\alpha} (\mu + \alpha \mu_{o})$$

is in $\mathscr{R}'(E)$. Since $\mu_{\alpha} \to \mu$ as $\alpha \to 0$ we are done by density of $\mathscr{R}(E)$ in $\mathbf{P}(E)$.

We can now state our main result.

THEOREM 2. Let $E \in \mathcal{R}(\mathbf{T})$ be a non empty M_o^p set and let $\mathcal{G} \subseteq \mathcal{R}(E)$ be G_δ hereditary and dense in $\mathcal{R}(E)$. Then there is a continuous map $\varphi : \mathbf{2}^\omega \to \mathcal{R}(\mathbf{T})$ such that for each $\alpha \in \mathbf{2}^\omega$, $\varphi(\alpha)$ is a perfect subset of E and:

if $\alpha \in \mathbf{W}$, then $\varphi(\alpha)$ is a finite union of (perfect) \mathscr{G} sets;

if $\alpha \notin \mathbf{W}$, then $\varphi(\alpha) \notin U'_{o}$.

In particular, there is no Π_3^0 subset \mathscr{A} of $\mathscr{R}(E)$ such that $\mathscr{A} \subseteq U_o'$ and \mathscr{A} contains all the finite unions of perfect \mathscr{G} sets.

Of course this result is interesting only if $\mathscr{G} \subseteq U'_o$.

If \mathscr{G} is the class of Kronecker sets (which is dense in $\mathscr{R}(E)$ because M_o^p sets are perfect) we get the following

COROLLARY 1. Let E be a non empty M_o^p set (e.g., $E = \mathbf{T}$). Then there is no Π_3^0 set in $\mathcal{K}(E)$ containing the finite unions of perfect Kronecker subsets of E and contained in U_o' .

Since every M_o set contains a not empty M_o^p set this implies:

COROLLARY 2. For any M_o set E, the classes of perfect WTP, \mathcal{H} , U', U'_o , U'_2 sets are true Σ_3^0 in $\mathcal{H}(E)$, and U'_1 is not Π_3^0 .

Remarks. (1) One cannot hope to get the same result as in Theorem 1 for the countable Helson subsets of a given M_o set, because there exist independent M_o sets (they are called *Rudin sets*, see [4] or [13]) and all countable independent sets are Helson.

- (2) In [14], T. Linton shows that the so-called *H-sets* (which are not at all the same as the Helson sets) also from a true Σ_3^0 set in $\mathcal{K}(T)$. In fact, by results of N. Bary [1, Théorème V], it follows from his proof that the classes U'_i are not Π_3^0 .
- (3) It can be shown (see [4]) that every non U'_1 set is a set of analyticity. Thus it follows from Theorem 2 that \mathscr{A} is not Σ_0^0 within any M_o set.

To make the proof of Theorem 2 more readable it is better to state first some preliminary results.

LEMMA 2. Let E be a compact metrizable space and $\mathscr{U} \subseteq \mathscr{R}(E)$ be open and dense in $\mathscr{R}(E)$. Also, let W_1, \ldots, W_k be non empty open subsets of E and $\mathscr{V}_1, \ldots, \mathscr{V}_k$ be open subsets of $\mathscr{R}(E)$ such that $\overline{W}_i \in \mathscr{V}_i$ for all $i \leq k$. Then there exists non empty open subsets V_1, \ldots, V_k of E such that

$$V_{i} \subseteq W_{i} \quad (i \le k)$$

$$\overline{V}_{i} \in \mathscr{V}_{i} \quad (i \le k)$$

$$\bigcup_{i \le k} \overline{V}_{i} \in \mathscr{U}.$$

Proof. For each $i \leq k$, choose non empty open subsets of E, say W_{i1}, \ldots, W_{iK_i} with $\overline{W}_i \cap W_{ij} \neq \emptyset$ for all j, such that every (compact) subset F of \overline{W}_i with $F \cap W_{ij} \neq \emptyset$ for all $j \leq K_i$ belongs to \mathscr{V}_i . Now each $W_i \cap W_{ij}$ is a non empty open set in E, so by density we can find a set F in \mathscr{U} , $F \subseteq \bigcup_{i \leq k} W_i$, such that $F \cap W_i \cap W_{ij} \neq \emptyset$ for all $i \leq k$ and $j \leq K_i$. Then, since \mathscr{U} is open, choose an open set $V \subseteq \bigcup_{i \leq k} W_i$ containing F such that $\overline{V} \in \mathscr{U}$ and let $V_i = V \cap W_i$. \square

LEMMA 3. Let E be a non empty M_o^p set and let $\mathscr{U} \subseteq \mathscr{R}(E)$ be open and dense in $\mathscr{R}(E)$. Let $\mathscr{R}_{\mathscr{U}}$ be the subset of $\mathscr{R}(E) \times \mathbf{P}(E)$ defined by

$$(F, \mu) \in \mathcal{R}_{\mathcal{U}} \Leftrightarrow \mu \in \mathcal{R} \land \text{supp}(\mu) = F$$

 $\land F \in \mathcal{U} \text{ is the closure of an open set in } E.$

Then $\mathcal{R}_{\mathcal{U}}$ is dense in $\{(F, \mu) \in \mathcal{R}(E) \times \mathbf{P}(E); \operatorname{supp}(\mu) \subseteq F\}$.

Proof. Let us fix (F_o, μ_o) such that $\operatorname{supp}(\mu_o) \subseteq F_o$ and an elementary neighbourhood $\mathscr{U}_o \times N_o$ of (F_o, μ_o) in $\mathscr{R}(E) \times \mathbf{P}(E)$. We may assume that $\mathscr{U}_o = \{F \in \mathscr{R}(E); F \subseteq V_o, F \cap V_i \neq \emptyset, i = 1, \dots, k\}$ where V_o, V_1, \dots, V_k are open in E and $V_i \subseteq V_o$ for $i \geq 1$.

Choose a finite set $\{x_1, \ldots, x_p\} \subseteq F_o$ and positive numbers $\lambda_1, \ldots, \lambda_p$ such that $\sum_{i=1}^p \lambda_i = 1$ and $\mu_1 = \sum_{i=1}^p \lambda_i \delta_{x_i} \in N_o$ (δ_x is the Dirac measure at x). By adding small masses at points of V_i (and normalizing), we can also assume that $p \ge k$ and $x_i \in V_i$ for $1 \le i \le k$.

Now choose for each $i \le p$ an open (in E) neighbourhood W_i of x_i such that:

$$\begin{cases} W_i \subseteq V_i \text{ if } i \leq k; \\ \text{if one takes a point } y_i \text{ in each } W_i, \text{ then } \sum_{i=1}^p \lambda_i \delta_{y_i} \in N_o. \end{cases}$$

Next, by density, take F in $\mathscr U$ such that $F\subseteq V_o$ and $F\cap W_i\neq \emptyset$ for all i. Then $F\in \mathscr U\cap \mathscr U_o$. Since $\mathscr U\cap \mathscr U_o$ is open, we can find an open set $W\supseteq F$ such that $\overline W\in \mathscr U\cap \mathscr U_o$. Now $\overline W$ is an M_o^p set, so the probability Rajchman measures with support $\overline W$ are dense in $\mathbf P(\overline W)$. Thus, picking $y_i\in F\cap W_i$ for $1\le i\le p$ and approximating $\sum_{i=1}^p\lambda_i\delta_{y_i}$, we can find a $\mu\in \mathscr R$ such that $\mu\in N_o$ and supp(μ) = $\overline W\in \mathscr U\cap \mathscr U_o$. This proves the lemma. \square

COROLLARY. Let E_1, \ldots, E_k be disjoint non empty M_o^p sets supporting probability measures μ_1, \ldots, μ_k . Let $\mathscr U$ be a dense open subset of $\mathscr R(E)$, where $E = \bigcup_{i=1}^k E_i$. Let also $\mathscr V_1, \ldots, \mathscr V_k$ be open sets in $\mathscr R(E)$ such that $E_i \in \mathscr V_i$, $i \leq k$.

Then for any $\varepsilon > 0$ and any finite set $\mathscr{F} \subseteq \mathbf{C}(\mathbf{T})$ there exist probability Rajchman measures ν_1, \ldots, ν_k such that:

$$\operatorname{supp}(\nu_i) \in \mathscr{V}_i$$
 and $\operatorname{supp}(\nu_i)$ is the closure of an open subset of E_i ; $|\langle \nu_i, f \rangle - \langle \mu_i, f \rangle| < \varepsilon$ for every $f \in \mathscr{F}$; $\bigcup_{i=1}^k \operatorname{supp}(\nu_i) \in \mathscr{U}$.

Proof. We first choose continuous functions $\varphi_1, \ldots, \varphi_k$ with $\varphi_i \ge 0$, $\varphi_i = 1$ on E_i and $\varphi_i = 0$ on E_j if $j \ne i$. We also fix an $\alpha > 0$.

Since E is an M_0^p set, we can apply Lemma 3 to approximate $\mu = \sum_{i=1}^k \mu_i$ and get a positive Rajchman measure ν such that:

$$\|\nu\|_M = k;$$

 $(1 - \alpha) < \int \varphi_i \, d\nu < (1 + \alpha) \text{ for } i \le k;$
 $\sup (\nu)$ is the closure of an open subset of E and belongs to \mathscr{U} ;
 $|\int \varphi_i f \, d\mu - \int \varphi_i f \, d\nu| < \varepsilon \text{ for } f \in \mathscr{F}.$

Then if we let $\nu_i = \varphi_i \nu / \|\varphi_i \nu\|$, the measures ν_i will work provided α is small enough.

LEMMA 4. Let E be a compact metrizable space and $\mathcal{G} \subseteq \mathcal{R}(E)$ be \mathbf{G}_{δ} . Let F, F_o, F_1, \ldots be closed subsets of E such that:

$$F_n \to F \text{ as } n \to \infty;$$

for every
$$N \in \omega$$
, $F \cup (\bigcup_{n \leq N} F_n) \in \mathcal{G}$.

Then $F \cup (\bigcup_{n=0}^{\infty} F_n)$ is the union of two elements of \mathcal{G} .

This is a particular case of (the proof of) Lemma 4.1 in [9]. \Box

DEFINITION. Let N be an integer ≥ 1 . A K-sequence of order N is a finite sequence

$$((\overline{\mu}^o, \overline{n}^o), \ldots, (\overline{\mu}^p, \overline{n}^p))$$

where $\overline{\mu}^i \in \mathcal{R}^N$, $\overline{n}^i \in \omega^N$, such that: (i) $|\hat{\mu}_j^{i+1}(r) - \hat{\mu}_j^i(r)| < 2^{-Ni-j-1}$ if $|r| \le n_{j-1}^{i+1}$ or $|r| \ge n_j^{i+1}$ (we let $n_{-1}^{i+1} = n_{N-1}^i$); (ii) $0 < n_o^o = n_1^o = \cdots = n_{N-1}^o < n_o^1 < \cdots$.

The letter "K" stands for Kechris because such sequences are used in [9] (see also [3] and [10]). As usual, if S and T are K-sequences $T \leq S$ means that S is an extension of T. Finally, an infinite K-sequence (of order N) is a $\Sigma \in (\mathscr{R}^N \times \omega^N)^{\omega}$ such that $\Sigma_{[p]}$ is a K-sequence for every $p \in \omega$.

The following observations are essential in the proof of Lemma 2.1 in [9].

LEMMA 5. (a) If

$$S = ((\overline{\mu}^o, \overline{n}^o), \dots, (\overline{\mu}^p, \overline{n}^p)) \quad (p \ge 1)$$

is a K-sequence of order N and if we let

$$\mu^{o}(S) = \frac{1}{N} \left(\sum_{j=o}^{N-1} \mu_{j}^{o} \right), \, \mu^{p}(S) = \frac{1}{N} \left(\sum_{j=o}^{N-1} \mu_{j}^{p} \right),$$

then

$$\|\mu^{o}(S) - \mu^{p}(S)\|_{PM} \leq \frac{3 - 2^{-Np}}{N}.$$

(b) If $\Sigma = ((\overline{\mu}^i, \overline{n}^i))_{i \in \omega}$ is an infinite K-sequence of order N, then for all $j \leq N-1$ the sequence $(\mu^i_j)_{i \in \omega}$ converges ω^* to a probability measure μ_j . If we let

$$\mu = \frac{1}{N} \left(\sum_{j=o}^{N-1} \mu_j \right),\,$$

then $R(\mu) \leq 3/N$.

Proof. (b) is an immediate consequence of (a). Indeed, it follows from the definition of a K-sequence that $(\mu_j^i)_{i\geq o}$ converges in **P(T)**, and part (a) gives the desired inequality because $\mu^o = \mu^o(\Sigma_{1})$ is a Rajchman measure.

To prove (a), let us fix $r \in \mathbb{Z}$. We can write

$$egin{aligned} \mu^p - \mu^o &= rac{1}{N} \sum_{j=o}^{N-1} \left(\, \mu_j^p - \mu_j^o
ight) \ &= rac{1}{N} \sum_{j=o}^{N-1} \sum_{i=o}^{p-1} \left(\, \mu_j^{i+1} - \mu_j^i
ight) \end{aligned}$$

Hence

$$|\hat{\mu}^{p}(r) - \hat{\mu}^{o}(r)| \leq \frac{1}{N} \sum_{i=o}^{N-1} \sum_{j=o}^{p-1} |\hat{\mu}_{j}^{i+1}(r) - \hat{\mu}_{j}^{i}(r)|$$

Now properties (i) and (ii) imply that $|\hat{\mu}_j^{i+1}(r) - \hat{\mu}_j^i(r)|$ is $< 2^{-Ni-j-1}$ except for at most one pair (i, j), and in any case it is bounded by 2. Therefore we obtain

$$|\hat{\mu}^{p}(r) - \hat{\mu}^{o}(r)| \leq \frac{1}{N} \left(2 + \sum_{j=o}^{N-1} \sum_{i=o}^{p-1} 2^{-Ni-j-1}\right)$$

and we are done because the sum in the right-hand side is exactly $\sum_{k=1}^{Np} 2^{-k}$.

We can now turn to the proof of Theorem 2. This proof looks very much like that of Theorem 1, but is a little more technical. The arithmetic progressions will be replaced by sets constructed by Kechris in [9], which are

finite unions of sets in $\mathscr G$ whose η_o is arbitrarily small. To be precise, beginning with a Rajchaman probability measure μ and an integer $N \ge 1$, Kechris constructs an infinite K-sequence of order N, $\Sigma = ((\overline{\mu}^i, \overline{n}^i))_{i \in \omega}$ with $\overline{\mu}^o = (\mu, \dots, \mu)$, such that for all $i \in \omega$, $j \le N - 1$,

$$\begin{split} & \operatorname{supp}\left(\,\mu_{j}^{i+1}\,\right) \subseteq \operatorname{supp}\left(\,\mu_{j}^{i}\,\right), \\ & \operatorname{supp}\left(\,\mu_{i}^{i}\,\right) \in \mathscr{U}^{i} \quad \text{(where } \mathscr{G} = \, \bigcap \mathscr{U}^{i}, \,\mathscr{U}^{i} \text{ open hereditary)}. \end{split}$$

By Lemma 5 the result is then a probability measure

$$\nu = \frac{1}{N} \sum_{i=0}^{N-1} \mu_i$$

where supp(μ_j) $\in \mathcal{G}$ and $R(\nu) \leq 3/N$. Thus $F = \text{supp}(\nu)$ is a finite union of \mathcal{G} sets and $\eta_o(F) \leq 3/N$.

This construction plays a key role in the proof below.

Let us fix our notations. E is the given M_o^p set and we let $\mathscr{G} = \bigcap_{n \geq o} \mathscr{U}^n$ where the \mathscr{U}^n are open, hereditary subsets of $\mathscr{R}(E)$ and $\mathscr{U}^{n+1} \subseteq \mathscr{U}^n$ for all n (see the remarks before the proof of Theorem 1).

The class \mathscr{P} of perfect subsets of E is G_{δ} in $\mathscr{R}(E)$, hence it is a Polish space. Thus we can choose some complete metric δ on \mathscr{P} . Of course, δ is not the Hausdorff metric (but it defines the same topology on \mathscr{P}).

Finally, if $s \in 2^{<\omega}$, $|s| \ge 1$, recall that s' is the sequence $s_{|s|-1}$.

Now for each $s \in 2^{<\omega}$ and m < |x| we construct

a closed set $E^m(s) = E_o^m(s) \cup \cdots \cup E_{(m)_o}^m(s)$ where the $E_j^m(s)$ are closed (but not necessarily disjoint),

an integer $p^m(s)$,

- a K-sequence $S^m(s)$ of order $(m)_o$ and of length $1 + p^m(s)$,
- a non empty open set $V(s) \subseteq E$,

satisfying the following conditions:

- (1) $\operatorname{diam}(V(s)) \leq 2^{-|s|}$.
- (2) $V(s) \cap (\bigcup_{m < |s|} E^m(s)) = \emptyset$; The $E^m(s)$ are pairwise disjoint.
- (3) Each $E_j^m(s)$ is the closure of a non empty open subset of E.
- (4) $\overline{V}(s) \subseteq V(s')$, $E^n(s) \subseteq V(s')$ if |s| = n + 1.
- (5) If we denote by $((\mu_o^m(s), \ldots, \mu_{(m)_o}^m(s)), \bar{n}^m(s))$ the last coordinate of $S^m(s)$ (i.e., that of index $p^m(s)$) then $E_i^m(s) = \text{supp}(\mu_i^m(s))$.
 - (6) If $t \leq s$, m < |t| and $j \leq (m)_o$ then

$$E_j^m(s) \subseteq E_j^m(t),$$

$$\delta(E_j^m(s), E_j^m(t)) < 2^{-|t|}.$$

(7) If |s| = n + 1 and $(m)_o < (n)_o$, then

$$p^{m}(s) = 1 + p^{m}(s'),$$

$$S^{m}(s') \preceq S^{m}(s).$$

(8) If |s| = n + 1 and p is any integer, then

$$\left(\bigcup_{\substack{m \le n \\ (m)_o = p}} E_j^m(s)\right) \cup \overline{V}(s) \in \mathcal{U}^n \text{ for any } j \le p.$$

(9) If |s| = n + 1 and s(n) = 0, then

$$p^{n}(s) = 0,$$

 $p^{m}(s) = 1 + p^{m}(s') \text{ and } S^{m}(s') \leq S^{m}(s) \text{ for } m < n.$

(10) If |s| = n + 1 and s(n) = 1, then

$$p^{m}(s) = 0 \text{ if } (m)_{o} \ge (n)_{o},$$

$$\left(\bigcup_{\substack{p \ge (n)_{o} \ (m)_{o} = p \\ j \le p}} E_{j}^{m}(s)\right) \cup \overline{V}(s) \in \mathscr{U}^{n}.$$

We first let $E(\emptyset) = E$. Assume $E^m(t)$, $S^m(t)$ have been constructed for $|t| \le n$, m < n, $j \le (m)_o$, and let $s \in 2^{<\omega}$ be a sequence of length n+1. As usual we distinguish two cases.

Case 1. s(n) = 0. Let us first modify the $E^m(s')$ for m < n and $(m)_o \ne (n)_o$. So fix $p \ne (n)_o$ such that $(m)_o = p$ for at least one $m \le n$ and let $A_p = \{m < n; (m)_o = p\}$.

We will define $p^m(s)$, $S^m(s)$, $E_j^m(s)$ for $m \in A_p$, $j \le p$, and a non empty open set V_p of diameter less than 2^{-n-1} in such a way that

$$\begin{split} E_j^m(s) &\subseteq E_j^m(s'), \\ \delta\left(E_j^m(s), E_j^m(t)\right) < 2^{-|t|} & \text{ for each } t \leq s' \\ p^m(s) &= 1 + p^m(s') \\ S^m(s') &\leq S^m(s) \\ \overline{V}_p &\subseteq V(s') \\ \overline{V}_p &\cup \left(\bigcup_{m \in A_p} E_j^m(s)\right) \in \mathcal{U}^n & \text{ for every } j \leq p. \end{split}$$

We begin with j=0. Take a non empty open set V such that $\overline{V} \subseteq V(s')$ and with diameter less than 2^{-n-1} . By (2) and (3), the sets $E_o^m(s')$, $m \in A_p$ are pairwise disjoint M_o^p sets, disjoint from \overline{V} , and \mathcal{U}^n is dense in $\mathcal{K}((\bigcup_{m \in A_p} E_o^m(s')) \cup \overline{V})$. Moreover, by (5), $E_o^m(s') = \operatorname{supp}(\mu_o^m(s'))$ (the notation is that of (5)).

Let $k^m(s')$ be the last integer occurring in $S^m(s')$ (that is, $k^m(s') = n^m_{(m)_o}(s')$). Then, since all the sets involved are perfect, it follows at once from the corollary to Lemma 3 that one can choose probability Rajchman measures $\mu^m_o(s)$, $m \in A_p$ and a non empty open set $V_{p,o}$ such that $E^m_o(s) = \sup(\mu^m_o(s))$ is the closure of an open set and

 $\hat{\mu}_o^m(s)$ approximates "closely" $\hat{\mu}_o^m(s')$ on $\{r \in \mathbb{Z}; |r| \le k^m(s')\}$,

 $V_{p,o}$ and $E_o^m(s)$ satisfy the conditions above (with $V_{p,o}$ in place of V_p). Since $\mu_o^m(s)$ and $\mu_o^m(s')$ are Rajchman measures, we can choose for each $m \in A_p$ an integer $l^m(s)$ such that $|\hat{\mu}_o^m(s)(r)|$ and $|\hat{\mu}_o^m(s')(r)|$ are "small" for $|r| \geq l^m(s)$. Then $|\hat{\mu}_o^m(s)(r) - \hat{\mu}_o^m(s')(r)|$ will be small as well for $|r| \geq l^m(s)$. At this point, we have constructed for $m \in A_p$ the first "coordinate" of $S^m(s)(p^m(s))$, namely $(\mu_o^m(s), l^m(s))$, the sets $E_o^m(s)$ and an auxiliary open set $V_{p,o}$. By repeated applications of Lemma 3 we can now get the K-sequence $S^m(s)$, the sets $E_j^m(s)$, $j \leq p$ and open sets $V_{p,o} \supseteq V_{p,1} \supseteq \cdots \supseteq V_{p,p}$ such that for all $j \leq p$,

$$\overline{V}_{p,j} \cup \left(\bigcup_{m \in A_p} E_j^m(s)\right) \in \mathscr{U}^n.$$

If we let $V_p = V_{p, p}$ then since \mathcal{U}^n is hereditary, we do have

$$\overline{V}_p \cup \left(\bigcup_{m \in A_p} E_j^m(s)\right) \in \mathcal{U}^n \text{ for all } j.$$

Treating in the same way all the $p \neq (n)_o$ such that $A_p \neq \emptyset$, we get the K-sequence $S^m(s)$ and the sets $E_j^m(s)$, $j \leq (m)_o$ for each m < n with $(m)_o \neq (n)_o$. Then (3), (5), (6), (7), (8), (9) and one half of (2) are satisfied if $(m)_o \neq (n)_o$. We also obtain a non empty open set U disjoint from the $E_j^m(s)$ such that (8) is true with U for all $p \neq (n)_o$.

Now we define $S^m(s)$, $E^m(s)$ for $m \le n$ and $(m)_o = (n)_o$. We first choose disjoint non empty sets $V, W \subseteq U$. Then $S^m(s)$ and $E^m(s)$ are obtained exactly as before, using $(n)_o + 1$ times the corollary to Lemma 3. $E^n(s)$ is constructed inside \overline{W} and we define

$$S^{n}(s) = ((\mu, ..., \mu), (1, ..., 1))$$

where μ is any probability Rajchman measure such that supp $(\mu) = E^n(s)$; if m < n, $E^m(s)$ is constructed inside $E^m(s')$. As before, we also construct open

sets $V = V_o \supseteq V_1 \supseteq \cdots \supseteq V_{(m)_o}$ and we let $V(s) = V_{(m)_o}$. Then conditions $(1), \ldots, (9)$ are satisfied.

Case 2. s(n) = 1. We first construct, as in case 1, $E_j^m(s)$, $S^m(s)$ for $(m)_o < (n)_o$ (and $j \le (m)_o$). Then (7) is true. We also get an auxiliary open set U disjoint from all the $E^m(s)$, $(m)_o < (n)_o$, with $\overline{U} \subseteq V(s')$ and diam(U) $< 2^{-|s|}$, such that (8) is satisfied for $p < (n)_o$. Finally, we choose disjoint non empty open sets $V, W \subseteq V$ and put $E_j^n(s') = \overline{W}$ for $j \le (n)_o$.

Now let $A = \{m \le n; (m)_o \ge (n)_o\}$. Using Lemma 2 and properties (3), (6) for s' we can find closed sets $E_j^m(s)$, $m \in A$, $j \le (m)_o$ and a non empty open set $V(s) \subseteq V$ such that:

each $E_i^m(s)$ is the closure of an open subset of E;

 $E_i^m(s) \subseteq E_i^m(s');$

 $\underline{\delta}'(E_i^m(s), E_i^m(t)) < 2^{-|t|}$ for every $t \leq s'$;

 $\overline{V}(s) \cup (\bigcup_{\substack{m \in A \\ j < (m)}}^{j} E_j^m(s)) \in \mathscr{U}^n.$

Then properties (1), (2), (3), (4), (6), (10) are satisfied, as well as (8) for $p \ge (n)_0$ because \mathcal{U}^n is hereditary.

Finally we define $S^m(s) = ((\mu_o^m(s), \dots, \mu_{(m)_o}^m(s)), (1, \dots, 1))$ where the $\mu_i^m(s)$ are Rajchman probability measures such that supp $(\mu_i^m(s)) = E_i^m(s)$.

This concludes the inductive step.

Now if $\alpha \in \mathbf{2}^{\omega}$, it follows from (6) that for every $m \in \omega$ and $j \leq (m)_o$, the sequence $(E_j^m(\alpha_{\lceil n \rceil}))_{n > m}$ converges in $\mathcal{R}(\mathbf{T})$ to a perfect set $E_j^m(\alpha)$. For $m \in \omega$ we let

$$E^{m}(\alpha) = \bigcup_{i \leq (m)_{o}} E_{i}^{m}(\alpha).$$

By (1) and (4) there is a unique point $x(\alpha)$ in $\bigcup_{n \in \omega} \overline{V}(\alpha_{\lceil n})$ and (4) implies that $E(\alpha) = (\bigcup_{m \in \omega} E^m(\alpha)) \cup \{x(\alpha)\}$ is a closed subset of E. Since the $E^m(\alpha)$ are perfect, $E(\alpha)$ is perfect as well. Furthermore, (1), (4) and (6) together imply that the map $\alpha \mapsto E(\alpha)$ is continuous.

It remains to show that the map just defined is the reduction we are looking for. So we fix $\alpha \in 2^{\omega}$ and, for the last time, distinguish two cases.

Case 1. α_p is finite for every $p \in \omega$. Let p_o be a non negative integer. We show that $\eta_o(E_\alpha) \leq 3/(p_o+1)$. Since p_o is arbitrary, this will imply that $E(\alpha) \notin U_o'$. As in the proof of Theorem 1, there is a $q_o > 0$ such that if we let $n_o = \langle p_o, q_o \rangle$ then

$$\forall n > n_o \quad (n)_o \le p_o \Rightarrow \alpha(n) = 0.$$

Using (7) if $(n)_o > p_o$ and (9) if $\alpha(n) = 0$ we deduce that

$$S^{n_o}(\alpha_{[n+1}) \succ S^{n_o}(\alpha_{[n}) \text{ for every } n > n_o.$$

Thus it follows from Lemma 5 (together with (5)) that $\eta_o(E^{n_o}(\alpha)) \le 3/(p_o + 1)$. This concludes case 1 since $E(\alpha) \supseteq E^{n_o}(\alpha)$.

Case 2. α_{p_o} is infinite for some $p_o \in \omega$. Let $\mathscr{G}_f \subseteq \mathscr{R}(T)$ be the class of all finite unions of elements of \mathscr{G} . First we note that for any integer p and each $j \leq p$

$$E_{j,p} = \{x(\alpha)\} \cup \left(\bigcup_{\substack{m \in \omega \\ (m)_{\alpha} = p}} E_j^m(\alpha)\right) \in \mathscr{G}_f.$$

Indeed, for any $N \in \omega$,

$$\{x(\alpha)\} \cup \left(\bigcup_{\substack{m \leq N; \\ (m), =p}} E_j^m(\alpha)\right)$$

is in \mathscr{G} by (6), (8), the definition of $x(\alpha)$ and the fact that each \mathscr{U}^n is hereditary. Thus we can apply Lemma 4.

It follows that for each $p \in \omega$,

$$E_{p} = \left\{ x(\alpha) \right\} \cup \left(\bigcup_{\substack{m \in \omega \\ (m)_{\alpha} = p}} E^{m}(\alpha) \right) \in \mathscr{G}_{f}.$$

Now if α_{p_o} is infinite, we deduce from (10) (using Lemma 4 again) that the set

$$\{x(\alpha)\} \cup \left(\bigcup_{(m)_{\alpha} \geq p_{\alpha}} E^{m}(\alpha)\right)$$

is in \mathcal{G}_f . So

$$E(\alpha) = \{x(\alpha)\} \cup \left(\bigcup_{(m)_o \ge p_o} E^m(\alpha)\right) \cup \left(\bigcup_{p < p_o} E_p\right)$$

is indeed a finite union of \mathcal{G} sets.

This concludes the proof of Theorem 2. \Box

REFERENCES

- 1. N. BARY, Sur l'unicité du développement trigonométrique, Fund. Math 9 (1927), 62-115.
- 2. G. Debs, *Polar \sigma-ideals of compact sets*, Trans. Amer. Math. Soc., to appear.
- 3. _____, J. Saint-Raymond, Ensembles d'unicité et d'unicité au sens large, Ann. Inst. Fourier Grenoble 37 (1987), 217-239.
- C.C. GRAHAM and O.C. McGehee, Essays in commutative harmonic analysis, Grandlehren Math. Wissen, vol. 238, Springer-Verlag, New York, 1979.
- 5. J.P. KAHANE, Séries de Fourier absolument convergentes, Springer-Verlag, New York, 1970.
- 6. Y. KATZNELSON, An introduction to harmonic analysis, Dover, New York, 1976.
- 7. R. KAUFMAN, A functional method for linear sets, Israel J. Math. 5 (1967), 185-187.
- 8. _____, *M sets and distributions*, Asterisque **5** (1973), 225–230.
- A. KECHRIS, Hereditary properties of the class of closed sets of uniqueness for trigonometric series, Israel J. Math. 73 (1991), 189–198.
- A. KECHRIS and A. LOUVEAU, Descriptive set theory and the structure of sets of uniqueness, London Math. Soc. Lecture Note Ser., no. 128, Cambridge University Press, Cambridge, 1987.
- 11. A. KECHRIS, A. LOUVEAU and V. TARDIVEL, *The class of synthesizable pseudomeasures*, Illinois J. Math. **35** (1991), 107–146.
- 12. T. W. KÖRNER, A pseudofunction on a Helson set, Asterisque 5 (1973).
- 13. L.-A. LINDAHL and F. POULSEN, *Thin sets in harmonic analysis*, Marcel Decker, New York, 1971.
- 14. T. Linton, The H-sets in the unit circle are properly $G_{\delta \alpha}$, Real Analysis Exchange, to appear.
- 15. L. LOOMIS, The spectral characterization of a class of almost periodic functions, Ann. Math. 72 (1960), 362–368.
- 16. R. Lyons, A new type of sets of uniqueness, Duke Math. J. 57 (1988), 431-458.
- 17. Y.N. Moschovakis, Descriptive set theory, North Holland, Amsterdam, 1980.
- 18. G. PISIER, Arithmetic characterizations of Sidon sets, Bull. American Math. Soc. (new series) 8 (1983), 87–89.
- N. TH. VAROPOULOS, Sur la réunion de deux ensembles de Helson, Comptes-rendus Acad. Sci. Paris 271 (1970), 251–253.

Universite Paris VI Paris