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THE DESCRIPTIVE COMPLEXITY OF HELSON SETS

ETIENNE MATHERON

Introduction

A closed subset E of the circle group T is called a Helson set if every
continuous complex-valued function on E can be extended to a function on T
with absolutely convergent Fourier series. We denote by ’ the class of
Helson subsets of T.

In this paper we are interested in the descriptive properties of. We shall
need the following definitions: a subset of a compact metric space is called a

G set if it is the union of countably many G sets and an F set if its
complement is G. In the sequel we follow the notations of [17]. Thus, the
symbols H, 3, H respectively means G, G, F. However, we some-
times use G instead of II.

Let T) be the space of all compact subsets of T equipped with its
(metric, compact) Hausdorff topology. One natural question (at least for
some people) is to find the exact Borel class of as a subset of (T) (this is
what "descriptive properties" meant). It is easy to check (Section 1) that is

Z3. In this paper we show that is a true Z3 set (that is, Z3 but not 1-13).
We do this in two ways. First (Section 2)we prove that even inside the
countable sets is true Z. Then (Section 3)we get the same conclusion for
perfect Helson sets. In fact, our result is slightly more general: we show that
for any M set E, the perfect Helson sets contained in E form a true Z
subset of T(E)= {F T); F

___
E} (the definition of an M set will be

given in Section 3). The proof also yields that some other natural classes of
thin sets, like the WTP, U’ or Uo’ sets, are true 3 within any Mo set.

1. Definitions, upper bound for the complexity

Let M(T) be the space of Borel, complex measures on T with its natural
norm II/ and PM be the space of all distributions on T with bounded
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THE DESCRIPTIVE COMPLEXITY OF HELSON SETS 609

Fourier coefficients. The norm of an element S PM is defined by IlSlleM
SUPn g I(n)[. Thus the Fourier transform identifies PM with l(g).
Evidently ZlIM _< P-IleM if/x M(T), and it is well known (see [4] or [5])

that E (T) is a Helson set if and only if there is a constant c > 0 such
that

II[[M c IIIIPM for every/z M(T) supported by E.

From this it is easy to see that is a Z subset of (T). Indeed one can
write

E= qk r p BI(M(T))

supp(/x) E or ]I/XIIM < or :in I/2(n) 1>

(here BI(M(T)) is the unit ball of M(T)with its w* topology and supp(/x) is
the support of the measure
The condition under brackets is clearly 1120 in (/x, E). Since BI(M(T))

oT(T) is compact, is 3"

From now on we write co for the set of natural numbers and 2 for the
Cantor space of all infinite sequences of O’s and l’s with its usual product
topology.
We fix a bijection (p, q) (p, q ) from 0)

2 onto co and denote the inverse
map by n ((n)0, (n)l). For a 2‘0, we define ap 2 by OZp(q)
a((p, q)). Finally let W be the following subset of 2’:

W {o 2"0, Zip %(q) 1 for infinitely many q’s}

It is well known that W is a true Z3 subset of 2"0. Thus, to show that is not

II it is enough to construct a continuous function q’2o, oT(T) such that:

if a W, then

if a W, then

This is what we shall do in the next two sections.

2. Countable Helson Sets

In this section we show that is true X,3 "inside the countable sets". In
other words, we construct a continuous reduction q such that q(c) is
countable for each a 2"0. The advantage of considering only countable sets
is that several "arithmetic" conditions are known for a countable set to be
Helson.
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In the sequel, T will be identified with the interval [0, 1[ whenever it seems
more appropriate.

DEFINITIONS. (a) A subset A of T is said to be independent if for every
xl,..., xk A the equation E=imix 0 has no non-trivial integer solution.

(b) If k is a positive integer, an arithmetic progression of length k is a set of
the form

{a, a + 1/1,..., a + k/l}

for some a T and some positive integer 1.

The following facts are well known (see [5]):

(1) If E "(T) is countable and is the union of finitely many independent
closed sets, then E is a Helson set.

(2) If E o,((T) contains arbitrarily long arithmetic progressions, then E is not
a Helson set.

Remark. It follows from the work of G. Pisier [18] that one can character-
ize completely the countable Helson sets by means of a very simple arith-
metic property. The two preceding facts are of course immediate conse-
quences of this characterization.

THEOREM 1. There is a continuous map q:2‘0 -’(T) such that q(cr) is
countable for each cr 2 and:

if ce W, q(ce) is a finite union of closed independent sets;
if a

_
W, q(a) contains arbitrarily long arithmetic progressions.

COROLLARY. There is no II subset of"(T) containing the countable Helson
sets and contained in . In particular 2i is a true , set.

In the proof of Theorem I we will need the following Lemma. Recall that a
class _,T) is said to be hereditary if any (closed) subset of an element of

still belongs to .
LEMMA 1. Let Dr be the class of independent compact subsets of T. Then"
(a) Dr is G8, hereditary, and dense in ’(T);
(b) ifE Dr, the set {F o,T); E t3 F Dr} is a dense G8 of d(T).

Proof Part (a) is easy and implies that is G by continuity of the map
(E, F) E t3 F. To prove the density in part (b) it is clearly enough to show
that given a non empty open set V there exists a point x V such that
E U {x} . So let us fix E , V

_
T open, and consider the subset A of
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T defined by

k

x A Vm 0 Vm,..., m not all 0 Vx,..., x E

_
mix mx

i=1

(m, ml,..., m are integers).

Since E is independent, A contains all the rational numbers, hence A is
dense in T. Moreover A is clearly Ga (because E is closed). So, by Baire
category theorem, we can find an irrational x in A f3 V. Then E U {x} is
independent by definition of A. This proves (b). 3

It follows from (b) (by Baire’s theorem again) that given independent sets
F1,..., F and a non empty open set V

_
T there is a point x V such that

{x} u F is independent for 1,..., k.
We now turn to the proof of Theorem 1. Let us first fix some notations.

Let 2 < be the set of all finite sequences of O’s and l’s; for any integer n,
2 -< is the set of sequences of length _<_ n. If s 2 < ,o, Is is the length of s,

sin is the restriction of s to {0,..., n 1} (for n < Isl), and for s, 2 < ,
s _-< means that is an extension of s (that is, Isl _< Itl and tiisl s). If
s 2 < , s =/= , we denote by s’ the sequence Siisl_ 1.

Since " is Ga and hereditary, we can choose a decreasing sequence
(ffn)n> of open, hereditary subsets of T) such that ’= fq n>_ ’- The
open sets ’ are obtained as follows: write ff 0 n>_ 7/, where the 7/

are open with 7/+1
_
7/n. Then let

ff {K7/;L 7/ for everyL_K}.

ff is obviously hereditary and it is easy to check that it is also open. Finally,
since ff is hereditary one has ff c c 7/ for all n hence ff f’l, >_

Finally, we fix a point x T such that {Xo} " (that is, an irrational xo).
Now we shall construct for each s 2 < a closed subset E(s)of T. If

s , E(s)will be written as

E( S) U Em( s)
m-o

where the Em(s) are pairwise disjoint and satisfy the following requirements"

(1) Em(s) Iom(S) U U I(mm)o(S)

where the If(s) are pairwise disjoint non trivial closed intervals of center

x’(s) and of length < 2 -ILI.
(2) Em(s) ]Xo, Xo -- 2-m 1"
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(3) If t s then If"(s) ___/.m(t) (m < Itl).
(4) If Isl n + 1, m < n and (m) < (n) then x’(s) x’i(s’).
(5) If Is n + 1 and p is any (nonnegative)integer, then for every j < p,

Xo} U {x/(s),m < n, ( m)o

{X} U ( u
m<n
(m)o=p

p} is independent,

(6) If Isl n + 1 and s(n) 0, then

{Xo(S),..., Xn)o(s)} is an arithmetic progression,

x?(s) =x?(s’)ifm < n, j < ( m)o.

(7) If Isl n + 1 and s(n) 1 and if we let A {m < n; (m) > (n)o},
then

{Xo} u ( U
mA
j<(m)o

i?( s)

We first let E() T and now describe the inductive step.
Assume the sets Em(t) have been constructed for each 2-<n and let s

be a sequence of length n + 1. We distinguish two cases.

Case 1. s(n) 0. We first define Em(s) for m < n, (m) 4: (n)o. So (if
there is any) fix p o with p (n)o and such that Ap {m < n; (m)o p}
is non empty. Let also j be an integer < p.
By induction hypothesis, the set {xo} u {x(s’), m Ap} is independent,

hence belongs to ". Since /.n is open, we can choose intervals If"(s),
m Ap with center x’(s’) and length < 2-n, such that {xo} u
(Y m AJ?(S)) ,n. Then (1),..., (5) and one half of (6) are satisfied for
m CAp.
Now we define Em(s) for those m < n with (m) (n)o. Let A {m < n;

(m) (n)o}. If j < (n)o, the set F. {xo} U {x?(s’); rn A} is indepen-
dent. Thus, by Lemma 1, we can choose x(s)]xo, x + 2-n[ such that
{Xo(S)} Fj is independent for all j < (n)o. Next let p be a positive integer
such that [x,n,(s), X(S) + (n)o/p] ]Xo, Xo + 2 and let x(s) xno(s) +
j / p f o r
j < (n)o. Then obviously {x(s)} u F. is independent for each j. So, letting
x(s) x(s’) if rn A, we just take for If(s) some sufficiently small
interval around x’(s) to ensure (1),..., (6).
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Case 2. s(n) 1. By (5)we have no freedom in the choice of Em(s) if
(m) < (n)o, and we argue as in case 1.
Now let A {m < n; (m) > (n)o} and X {I(s’); m A, j < (re)o}.

Using Lemma 1, we find a set F J such that x F and F c I :/: for all
I X. Choosing one point x in each I n F and putting some small interval
around it, we get the sets E"(s) for m A and j < (m)o. If the intervals are
well chosen, conditions (1),..., (7) are then satisfied for m 4: n.

Finally we define E"(s). Actually (in case s(n)= 1) En(s) is not really
essential in the proof: we define it only because it is more convenient to have
n blocks at the n’-th step. Nevertheless En(s) is easily constructed using
Lemma 1 once more.

This concludes the inductive step.
Now we first claim that for each a 2 the sets E(aln) converge in ’(T)

to some countable (closed) set E(a), and that the map a E(a) is
continuous. To see this, observe that by (1) and (3) the sequence
(Em(z[n))n> converges to some finite set Em(o)(for any m w). By (2),
Em(o) c_
[xo, x + 2-m] (in fact ]xo, x / 2 ]). Hence

e( (Xo) u ( )n--O

is a countable closed set and clearly E(aln) E(a) as n .
Next we show that the map a E(a) is continuous.
Let V be an open set with E(a) n V 4: . Then E(a) c V 4: {Xo} as well,

so pick x E(a) :q V, x 4= xo. Then x Em(ce) for some m, hence there is
a j < (m) such that x f3, > ,,Ijm(al,). If n is big enough, say n > N, then
Ijm(al)

__
V. Thus, If /[U O[u one has

N v n
nm

by (3), and so E(/3) c V 4= .
On the other hand, if E(a) c_ V, then for large m and all /3 2‘0 one has

em( [3) C_ [Xo,X / 2-m] C__ V.

The diameter condition in (1) now implies that E(/3) c_ V if /[n a[n and
n is big enough. This shows that the map a E(a) is continuous.

It remains to check that this map satisfies the conclusion of Theorem 1. So
we fix a 2‘0 and, of course, distinguish two cases.

Case 1. apo is infinite for some Po o9. We have to show that E(a) is a
finite union of independent closed sets. First we note that for any p co and
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each j < p the set

(m)o=p

is (closed and) independent. Indeed, by (3), (5) and the fact that the ,n are
hereditary, every finite subset of Ep is independent.
Now if Cpo is infinite, then (3) and (7) imply that Ep {xo} U

(U (m)o> poEm(o)) is independent. Then we are done since E(c)= Epo t3

(U ._< p< oE,).

Case 2. ap is finite for every p. Let Po be a non negative integer. We show
that E(a) contains an arithmetic progression of length Po + 1.
Choose q’o such that a((p,q))=0 for p <po and q>q’o (such a q’o

exists by our hypothesis). Then pick qo (> q’o) so large that (Po, qo) >
Max{< p, q >, p < Po, q < q’o} and let n < Po, qo>.
By the choice of q’o a(no)= 0, hence by (6) En(alno+ 1) contains an

arithmetic progression of length Po + 1.
o( ) x;(aI ) forLet j be an integer < Po. We claim that x.

each n >n Indeed ifn>n n < p,q ) then:

Either p > Po and then x;o(ain+) x;o(ain) by (4);
Or else p <_ Po in which case q > q’o by the choice of qo.

by the choice of q’o and x;o( ain + ) x;( aIn) by (6).
Then a(n) 0

In any case the claim follows by induction. Condition (1) now implies that
Eno(a) is an arithmetic progression of length Po + 1 (the one already
contained in En(aino+)). This concludes case 2 and the proof of Theor-
eml. []

Remark. A closed set E
_
T is called a set of analyticity if the only

functions operating on the algebra A(E) (the restrictions to E of absolutely
convergent Fourier series) are the analytic functions. The still open di-

chotomy conjecture (see [4], [5], [6]) asserts that any closed subset of T is

either a Helson set or a set of analyticity (the two cases are of course
exclusive). It is known (see [5]) that if E ’(T) contains arbitrarily long
arithmetic progressions, then E is a set of analyticity. Thus Theo-
rem 1 shows that the class s of sets of analyticity in T cannot be Z in
,g(T). In other words, if the dichotomy conjecture is not true, this is not

because is "too simple". It can be shown that s’ is a II (coanalytic) set
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but it does not seem obvious that it should be Borel. This is rather surprising,
since if the dichotomy conjecture is true, then the Borel class of must be
very small (II).

3. Perfect Helson sets

The preceding result is not really satisfactory because it says nothing about
perfect Helson sets. In this section, we show that the latter also form a true
2; subset of ’(T).

First we must introduce some other classes of sets.
If S PM we let R(S) limn-, ];(n)].
For E oY’(T) define

VIo(E) inf
IIlleM

VI2(E) inf IIIIPM
R(S)VIi(E) inf IISIIPM
R(S)VI(E) inf IISIIM

, /z M+(E), /x 4: 0)
, /z M(E), :/: 0)
,S N(E) S 4: 0)
,S PM(E),S 4:0)

(here N(E) denotes the w* closure of M(E) in PM; the other notations are
self-explanatory).
Then E is called a U/set if vii(E) > 0 and a U’ set if vi(E) > 0. Evidently

U’
_

U[
_
U

___
U, and it is well known that vii(E) > 0 for all Helson sets,

that is,

_
U (see [4], [5]). On the other hand, there are Helson sets which

are not sets of uniqueness, hence with vi(E)- 0: this is a deep result, due
independently to R. Kaufman and T.W. K6rner ([8], [12]). We should also
add that vi(E) 0 for countable sets (which may fail to be Helson): this is a
consequence of the fact that pseudomeasures with countable support are
almost periodic (Loomis [15]).
E is said to be without true pseudomeasures (WTP) if every pseudomeasure

supported by E is actually a measure. Equivalently E is WTP if and only if it
is a Helson set and a set of synthesis. In particular, WTP

___
n U’.

Finally, E is said to be a Kronecker set if the characters of T are uniformly
dense in

U(E) {f C(E); If(x)[ Vx E}.

We shall use the following results about Kronecker sets.
(1) Finite unions of Kronecker sets are WTP. This is a consequence of two

celebrated results of N. Varopoulos" Kronecker sets are WTP, and Helson
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sets (as well as WTP sets) are closed under finite unions. Proofs of these
results can be found in [4], [13] and [19].

(2) For any perfect set P c T, the class of Kronecker subsets of P is G
hereditary and dense in -’(P) (see [7] or [10] p. 337).

It is easy to check as we did for, that U’, U, U and WTP are 0 subsets
of ’(T) (on the other hand, because of the complexity of the notion of
spectral synthesis, it seems reasonable to think that U; is not even Borel, see
[11]). We shall prove below that they are all true sets. This will follow
from a somewhat more general result whose statement unfortunately re-
quires still more definitions.
A measure /_t M(T) is said to be a Rajchman measure if (n) - 0 as

In] --+ oo. For E o(T), we denote by P(E) the set of all probability mea-
sures on E and by (E) the set of probability Rajchman measures sup-
ported by E (also letting o@ =oq’(T)). P(E)will always be equipped with the
w* topology induced by M(E).
A closed set E c_ T is said to be an M set if it supports a non zero

Rajchman measure. By a result of Kechris and Louveau [10, p. 274] also
obtained independently by Debs and Saint-Raymond [3] E is an Mo set if
and only if it cannot be covered by countably many U sets. E is said to be an

MPo set if for every open set V such that E C V 4= the set E n V is in Mo.
It is equivalent to say (if E ) that E is the support of a Rajchman
probability measure, or that .q’(E) is dense in P(E) (see [2], Lemma 8.3).
The following remark will be useful later: if E is Mop, then the set

"(E) (E); supp(/.t) E}

is dense in P(E). To see this take /2o o’ such that supp(/.t) E. Then if
/.t q’(E) and a is any positive number,

1
/.t 1 + a (/.t + a/.to)

is in o@’(E). Since /, /, as a--+ 0 we are done by density of .q’(E) in
P(E).
We can now state our main result.

THEOREM 2. Let E (T) be a non empty MPo set and let " c_/(E) be Ga
hereditary and dense in :(E). Then there is a continuous map " 2‘0 --+ (T)
such that for each a 2 ‘, q(a) is a perfect subset ofE and:

if a W, then q(a) is a finite union of (perfect) " sets;
if a - W, then q(a) - U.

In particular, there is no II subset " of /(E) such that " c_ U and "contains all the finite unions ofperfect sets.
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Of course this result is interesting only if Uo’.
If ff is the class of Kronecker sets (which is dense in (E) because Mop

sets are perfect)we get the following

COROLLARY 1. Let E be a non empty MPo set (e.g., E T). Then there is
no II set in E) containing the finite unions ofperfect Kronecker subsets ofE
and contained in U.

Since every M set contains a not empty MoP set this implies:

COROLLARY 2. For any M set E, the classes ofperfect WTP, , U’, U, U
sets are true , in E), and U is not II.

Remarks. (1) One cannot hope to get the same result as in Theorem 1 for
the countable Helson subsets of a given M set, because there exist indepen-
dent M sets (they are called Rudin sets, see [4] or [13]) and all countable
independent sets are Helson.

(2) In [14], T. Linton shows that the so-called H-sets (which are not at all
the same as the Helson sets) also from a true Z3 set in :(T). In fact, by.
results of N. Bary [1, Th6orme V], it follows from his proof that the classes
U/ are not H.

(3) It can be shown (see [4]) that every non U; set is a set of analyticity.
Thus it follows from Theorem 2 that is not 0 within any M set.

To make the proof of Theorem 2 more readable it is better to state first
some preliminary results.

LEMMA 2. Let E be a compact mettizable space and G(E) be open and
dense in oTd(E). Also, let W1,..., Wk be non empty open subsets of E and
7;1,.. be open subsets of q,E) such that W i for all < k.

Then there exists non empty open subsets V1,..., V ofE such that

Vi
_
W ( < k )

Vi e ( < k )

i<k

Proof For each < k, choose non empty open subsets of E, say
W/I,_.., W//i with W/ W/] 4: for all j, such that every (compact) subset F
of W/ with F n WU 4: for all j < K belongs to /. Now each W/n W/] is
a non empty open set in E, so by density we can find a set F in if,
F
_
U i_< W/, such that F n W/ W/. 4: for all < k and j < Ki. Then,

since is open, choose an open set V_ u i_< W/ containing F such that
V ’ and let V V c3 W/. rn
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LEMMA 3. Let E be a non empty MPo set and let c_,E) be open and
dense in ’(E). Let be the subset of ’(E) P(E) defined by

(F, ) ef / e A supp(t) F

A F is the closure ofan open set in E.

Then -z is dense in {(F, ) E) P(E); supp() F}.

Proof Let us fix (Fo, i.to) such that supp(/xo) c F and an elementary
neighbourhood o No of (Fo, txo) in T(E) P(E). We may assume that
o {F E); F _c Vo, F C V/4: , 1,..., k} where Vo, V1,..., Vk are
open in E and V G Vo for > 1.
Choose a finite set {xl,..., Xp} c_ F and positive numbers A1,..., )tp such

that E/P=IAi 1 and /x E/P= Ai6x, N ((3 is the Dirac measure at x). By
adding small masses at points of V/ (and normalizing), we can also assume
thatp>kand xi V forl<i<k.
Now choose for each < p an open (in E) neighbourhood W/ of x such

that:

W/__ V/ if < k;
if one takes a point Yi in each W/, then E’__

Next, by density, take F in such that F G Vo and F n W/4= for all i.
Then F _" C ’o. Since ’ c ’o is open, we can find an open set W

_
F

such that W ’ n ’o.__Now W is an Mop set, so the probability Rajchman
measures with support W are dense in P(W). Thus, picking Yi F n W for
1 < < p and approxima__ting E__ li6Yi, we can find a /x ’ such that
p N and supp(/x) W ’ ’o. This proves the lemma.

COROLLARY. Let El,... E be disjoint non empty MPo sets supporting
probability measures tzl,..., tx. Let be a dense open subset of d(E), where
E U =lEi. Let also 1,..., 7/ be open sets in 4E) such that E i,
i<_k.

Then for any e > 0 and any finite set -_ C(T) there exist probability
Rajchman measures l/ l/k such that"

supp(l/i) i and supp(l/i) is the closure of an open subset of Ei;
l( 1/i, f > ( [Zi, f ) < o for every f ’,
U/- supp( l/i ) "

q9

Proof We first choose continuous functions ql,..., q with
=lon E and qi=0on E;. ifjg:i. We also fix an a>0.
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Since E is an MoP set, we can apply Lemma 3 to approximate
and get a positive Rajchman measure u such that:

vllM k;
(1 a) < fqi du < (1 + a)for < k;
supp(,) is the closure of an open subset of E and belongs to if;
fqifdlx fqifdv[ < e for f ..

Then if we let
small enough.

q9 P/]l q9ill, the measures Pi will work provided a is

LEMMA 4. Let E be a compact metrizable space and c__,E) be Ga. Let
F, Fo, F1, be closed subsets ofE such that"
F --+Fasn
for every N o, F U (U n<_uFn ) ’.

Then F tO (U =o Fn) is the union of two elements of ’.

This is a particular case of (the proof of) Lemma 4.1 in [9].

DEFINITION.
sequence

Let N be an integer > 1. A K-sequence of orderN is a finite

where i .@N, i oN, such that:
i+1(i) I/2j../+(r)-/2}(r)l < 2-Ni-j-1 if Irl < rtj_

ni_+l nv_ );
<(ii) 0 < n nl nN_ n < "".

i+1 (we letor ]rl > nj

The letter "K" stands for Kechris because such sequences are used in [9] (see
also [3] and [10]). As usual, if S and T are K-sequences T -<_ S means that S
is an extension of T. Finally, an infinite K-sequence (of order N) is a

(u coU) such that ;Ip is a K-sequence for every p co.
The following observations are essential in the proof of Lemma 2.1 in [9].

LEMMA 5. (a) If

s=((g,n),...,(p, np)) (p>_l)

is a K-sequence of order N and if we let

s)
j =o J=o
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then

 o(s)  p(s)I1  N

(b) If (( i, i)) is an infinite K-sequence of order N, then for all
j < N- 1 the sequence (ix})i converges oo* to a probability measure Ixj. If
we let

then R(tx) < 3/N.

Proof (b) is an immediate consequence of (a). Indeed, it follows from the
definition of a K-sequence that (/x}) >_ o converges in P(T), and part (a) gives
the desired inequality because /,o =/xo(Eil) is a Rajchman measure.
To prove (a), let us fix r 7/. We can write

bP b[, (
j=o

j=o i=o

Hence

1 N-1 p-1

[/2P(r) /2(r)[ < }+l(r) /2}(r)
j=o i=o

Now properties (i) and (ii) imply that I}+l(r) }(r)l is < 2-Ni-j-1 except
for at most one pair (i, j), and in any case it is bounded by 2. Therefore we
obtain

1 ( N-1 p-1 )/P(r) /2(r)l < 2 + 2-Ni-j-1

j=o i=o

and we are done because the sum in the right-hand side is exactly EVP 2 -k.

We can now turn to the proof of Theorem 2. This proof looks very much
like that of Theorem 1, but is a little more technical. The arithmetic
progressions will be replaced by sets constructed by Kechris in [9], which are
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finite unions of sets in ff whose r/o is arbitrarily small. To be precise,
beginning with a Rajchaman probability measure /x and an integer N > 1,
Kechris constructs an infinite K-sequence of order N, Z ((i, i)) with
o (/z,...,/z), such that for all w, j < N 1,

supp(/x}+ ) supp(
supp(/x}) Z’i (where ’ f’) _/,i, /i open hereditary).

By Lemma 5 the result is then a probability measure

1N-a
j=o

where supp(/xj.) ff and R(v) < 3/N. Thus F supp(,) is a finite union of
ff sets and rio(F) < 3/N.

This construction plays a key role in the proof below.
Let us fix our notations. E is the given Mop set and we let ’ f"l >_ o fin

where the ’n are open, hereditary subsets of (E) and ffn+l
_ ,, for all n

(see the remarks before the proof of Theorem 1).
The class of perfect subsets of E is G in ’(E), hence it is a Polish

space. Thus we can choose some complete metric 6 on . Of course, 3 is
not the Hausdorff metric (but it defines the same topology on ).

Finally, if s 2 < o,, Is >_ 1, recall that s’ is the sequence S[isl_lo
Now for each s 2 < and m < Ix we construct
a closed set Em(s) Eom(s) t..) U E(mm)o(S) where the En(s) are closed

(but not necessarily disjoint),
an integer pm(s),
a K-sequence Sm(s) of order (m) and of length 1 + pm(s),
a non empty open set V(s)

_
E,

satisfying the following conditions:

(1) diam(V(s)) < 2
(2) r(s)

The Em(s)are pairwise disjoint.
(3) Each_ Eft(s) is the closure of a non empty open subset of E.
(4) V(s)

_
V(s’),

E(s)
_

V(s’) if Is[ n + 1.
(5) If we denote by ((/zom(s),...,/X(mm)o(S)), Bm(s)) the last coordinate of

Sm(s) (i.e., that of index pm(s)) then Ejn(s) supp(/x(s)).
(6) If -<_ s, rn < It[ and j < (m) then

e?(t),
6(E(s), E(t)) < 2 -Itl
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(7) If [sl n + 1 and (m) < (n)o, then

pm(s) 1 + pm(s’),
S(’)

_
sm().

(8) If Is n + 1 and p is any integer, then

( )U :Y() u v() "m<_n
(m)o=p

for any j < p.

(9) If Isl n + 1 and s(n) 0, then

p"() =0,

pm( s) 1 + pm( s,) and Sm( s’) Sm( s) for m < n.

(10) If Is[ n + 1 and s(n) 1, then

pm( s) =0if(m)o > ( n)o,

U U e?() v().
p> (n) (m)o=p

j<p

We first let E()= E. Assume Em(t), sm(t) have been constructed for
[tl < n, m < n, j < (m)o, and let s 2 < be a sequence of length n + 1.
As usual we distinguish two cases.

Case 1. s(n) 0. Let us first modify the Em(s’) for m < n and (m) 4=
(n)o. So fix p 4= (n) such that (m)o =p for at least one m < n and let
Ap {m < n; (m) p}.
We will define pro(S), Sin(S), E;’(s) for m Ap, j < p, and a non empty

open set Vp of diameter less than 2 in such a way that

()
_
(’),

6(Ejm(s), E(t)) < 2 -Itl

pm( s) ] + pm( s,)
sm(st) " Sin(s)

G - V(s’)

mAp

for each s’

for every j _< p.
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We begin with j 0. Take a non empty open set V such that V c_ V(s’)
and with diameter less than 2-n-1 By (2) and (3).the sets Eom(s’), m Ap
are pairwise disjoint_Mop sets, disjoint from V, and ’n is dense in
(UmA,E(S’)) L) V). Moreover, by (5), Eom(s’) supp(/Xom(S’)) (the nota-
tion is thai of (5)).

Let km(s’) be the last integer occurring in Sm(s’) (that is, km(s’)
nm)o(S’)). Then, since all the sets involved are perfect, it follows at once from
the corollary to Lemma 3 that one can choose probability Rajchman mea-
sures txmo(s), m Ap and a non empty open set Vp, such that Eom(s)=
supp(/Xom(S)) is the closure of an open set and

/2om(s) approximates "closely"/2’(s’) on {r Y; [r[ < km(s’)},
Vp, and Eom(s) satisfy the conditions above (with Vp, in place of Vp).

Since /xom(S) and /xom(s’) are Rajchman measures, we can choose for each
m Ap an integer lm(s)such that [^m(s)(r)llx and [^m(s’)(r)l/x are "small" for
Irl >_ Im(S). Then Iom(s)(r) t2’(s’)(r)l will be small as well for Irl >_ lm(S).
At this point, we have constructed for m Ap the first "coordinate" of
Sm(s)(pm(s)), namely (/x’(s), lm(S)), the sets E’(s) and an auxiliary open
set Vp, o. By repeated applications of Lemma 3 we can now get the K-se-
quence Sm(s), the sets Em(s), j < p and open sets Vp, Vp,

_ _
Vp, p

such that for all j < p,

( )U
mAp

If we let Vp Vp, p then since is hereditary, we do have

( )Vp U U E" ( s ) forallj.
mAp

Treating in the same way all the p 4: (n) such that Ap 4 Q, we get the
K-sequence Sm(s) and the sets E(s), j < (m) for each m < n with
(m) 4: (n)o. Then (3), (5), (6), (7), (8), (9) and one half of (2) are satisfied if
(m) 4: (n)o. We also obtain a non empty open set U disjoint from the E(s)
such that (8) is true with U for all p 4: (n)o.
Now we define Sm(s), Em(s) for m < n and (m) (n)o. We first choose

disjoint non empty sets V, W c_ U. Then Sm(s) and Em(s) are obtained
exactly as before, us__ing (n) + 1 times the corollary to Lemma 3. E"(s) is
constructed inside W and we define

S"(s) (],..., a))

where /x is any probability Rajchman measure such that supp(/z) E"(s); if
m < n, Em(s) is constructed inside Em(s’). As before, we also construct open
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sets V--- V
_
V

_ _
V(m)o

(1),..., (9) are satisfied.
and we let V(s)= V(m)o. Then conditions

Case 2. s(n) 1. We first construct, as in case 1, E(s), Sm(s)for
(m) < (n) (and j < (m)o). Then (7) is true. We also get an auxiliary open
set U disjoint from all the Em(s), (m) < (/7)0, with U

_
V(s’) and diam(U)

< 2 -Isl, such that (8) is satisfied for p < (n)o. Finally, we choose disjoint non
empty open sets V, W

_
V and put E;(s’) W for j < (n)o.

Now let A {m < n; (m) > (n)o}. Using Lemma 2 and properties (3), (6)
for s’ we can find closed sets Eft(s), rn A, j < (m)o and a non empty open
set V(s)

_
V such that:

each Eft(s) is the closure of an open subset of E;
C(s)_ (s),

6(E’(s), E’(t)) < 2 -Ill for every 5 s’;
(S) U (U meA EJn(S)) e ,n.

j<(m)o

Then properties (1), (2), (3), (4), (6), (10) are satisfied, as well as (8) for
p > (n)o because ’" is hereditary.

Finally we define Sm(s) ((/om(S),..., #(mm)o(S)),(1,..., 1)) where the
#(s) are Rajchman probability measures such that supp(#(s)) E’(s).

This concludes the inductive step.

Now if a 20,, it follows from (6) that for every m o and j < (m)o, the
sequence (E(at))> converges in T) to a perfect set E(c). For
rn o we let

Em( ol) U j<(m)oE;n(

By (1) and (4) there is a unique point x(c) in u n V(In) and (4) implies
that E(c)= ([,.Jm0,Em(o))El {x()} is a closed subset of E. Since the
Em(o) are perfect, E(cr) is perfect as well. Furthermore, (1), (4) and (6)
together imply that the map c E(c) is continuous.

It remains to show that the map just defined is the reduction we are
looking for. So we fix c 2 and, for the last time, distinguish two cases.

Case 1. Crp is finite for every p co. Let Po be a non negative integer.
We show that rlo(E,) < 3/(Po + 1). Since Po is arbitrary, this will imply that
E(cr) U. As in the proof of Theorem 1, there is a qo > 0 such that if we
let n ( po, qo) then

> <-po o.
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Using (7) if (n) > Po and (9) if a(n) 0 we deduce that

Sno( cern+a ) >- S(celn ) foreveryn > no.

Thus it follows from Lemma 5 (together with (5)) that lo(En(ce))< 3/
(Po + 1). This concludes case 1 since E(a)

_
E"o(a).

Case 2. Opo is infinite for some Po co. Let fff ___T) be the class of all
finite unions of elements of ft. First we note that for any integer p and each
j<p

Ej’p {x( )} U ( Umto g/( o)) ’f.
(m)o=p

Indeed, for any N co,

(m)o=p

is in ff by (6), (8), the definition of x(a) and the fact that each /n is
hereditary. Thus we can apply Lemma 4.

It follows that for each p co,

(m)o=p

Now if Cpo
set

is infinite, we deduce from (10) (using Lemma 4 again) that the

u ( U
(m)o>Po

Em( oz))
is in y. So

[

\ (m)o>Po

is indeed a finite union of ff sets.
This concludes the proof of Theorem 2. []
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