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RESTRICTION THEOREMS RELATED TO ATOMS

DASHAN FAN

Introduction

Let ]n be n-dimensional real Euclidean space and let Sn- be the unit sphere in
n. Suppose that dcr dcr (x’) is the element of Lebesgue measure on Sn- so that
the measure of Sn- is 1. If d/z pdcr is a measure with smooth density , then
from [9] or 10] we know that the Fouriertransform ofd/z satisfies d/2() O (I1 -)
as I1 , for some e > 0. It turns out that if the density p is merely in Lp (dcr),
for some p > 1, then there is still an average decrease of d/2 at infinity along any ray
emanating from the origin. More precisely, suppose that is in Le(dcr), then

(*) e-1 Idfz(p)12dp < A(RII)-,
where e < (1 p-l)/2, and A is a positive constant independent of RI (see [10]).
The estimate (.) has the following application.

Let f2(x)lxl -n be a homogeneous function of degree-n, with f2 6 LP(Sn-1),
for some p > 1, and fo_, (x’)dcr (x’) 0. Let r --+ b(r) be a bounded function
on (0, cx). We consider the distribution K P.V.b(Ixl)g2 (x)Ixl- and study the
boundedness ofthe operator Tf which is defined by Tf f K. This operator was
studied extensively and its boundedness properties were established in R. Fefferman
[7], Namazi [8], Duoandikoetxea and Rubio de Francia [4] and Chen ]. In his new
significant book [9], by using (.), E. M. Stein gives an alternative proof to conclude
that, under the restriction n > 2, the mapping f --+ f K extends to a bounded
operator in L2 (/I"). Meanwhile, he points out that the condition b L (0, cxz) can
be replaced by a weaker condition (see pages 372-373 in [10]; also see [4]):

(1) R- Ib(p)12dp <_ A for all R > 0.

In this paper, we shall study d pdcr where the density p is an atom. As an
application, we will prove that if f2(x’) is merely in the Hardy space HI(s-1) with
mean zero property and if, for some p > 1, the radial function b(lxl) satisfies

(1’) R-1 f
g

[b(p)[ p dp < A for all R > O,
Jo
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then the operator Tf f, K, with K P.V.b(lxl)ff2(x’)lxl -n, extendsto abounded
operator in L2(lln), for n > 1. Clearly, our result significantly improves the above
mentioned L2 boundedness property. It also improves the result in our previous paper
[5]. The proofs in this paper are modifications of those in [5].

Recall that the Poisson kernel on Sn-1 is defined by

ery’(X’) (1 r2)/Iry X’ n,

where 0 < r < and x’, y’ Sn-1. For any f S’(sn-1), we define the radial
maximal function P+f (x’) by

P+f (x’) o<rSuP<l n-!
f (y’) Px’(Y’) da (Y’)

where S’(Sn-l) is the space of Schwartz distributions on Sn-1

The Hardy space H (Sn-l) is the linear space of distribution f S’ (Sn- 1) with
the finite norm Ilfllnsn-) IIP+flILSn-) < CX. The Hardy space HI(sn-l)
was studied in [2] (see also [3]). In particular, a well-known result is L 1(S-1)

_
HI(sn-l) D_ Lq(sn-l) for any q > 1. Another important property of HI(sn-l) is
the atomic decomposition of H (S- 1), which will be reviewed in the following:

An exceptional atom is an L function E(x) satisfying E I1 _< 1.
A regular atom is an L function a(x) that satisfies

(i) supp(a) C {x’ 6 Sn 1, Ix’-x0l < p for some x Sn-1 and p > 0},

(ii) a(’) da (’) O,
n-i

(iii) Ila I1 9-n+l.

From [3], we find that any 2 H (S"-) has an atomic decomposition fl (’), .jaj (!), where the aj’s are eitherexceptional atoms or regular atoms and I.1 _<
C 211n, s-,).
We have the following restriction theorem for atoms:

THEOREM 1. Let Ik be the interval (2k, 2k+l). Suppose that a (’) is an atom on
Sn- 1. Thenfor any q > 1,

(2) fsn_,a(t)eit(x"’) da(
1/q

<A,

where A is a constant independent ofx Sn-1 and the atom a (x).

Theorem has the following consequence.
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THEOREM 2. Suppose that f2 is a homogeneousfunction ofdegree zero and sat-

isfies the mean zeroproperty fs,- (’)dr(’) O. If b(x) satisfies (1’) for some
p > and f2 is a function in H (Sn-1), n > 1, then the operator Tf f K, with
K P.V. b(Ixl)f(x)lxl -n, is bounded in L2Oln).

As an analogue of formula (,), we have the following:

THEOREM 3. Suppose that dtr dtr (xt) is the Lebesgue measure on Sn- 1. If
dlz q/dtr with a density ap in H I(Sn- 1), then we have

(**) R-l f0’ Id/t)l dt o(1) as RIll .
Proof ofTheorem 1

We first prove Theorem for a regular atom a( ’). Let

Ak {fl t-1 a(’)eit(x’’’) dtr(’) dt
n-I

We will prove the theorem in the two different cases n > 2 and n 2, respectively.
Case n > 2. For a regular atom a(x’)with supp(a)

___
B(x, p)

_
Sn-i, without

loss of generality, we may assume that p is very small. Let 1 (1, 0 0) be the
north pole of S 1. By a rotation we can assume that x’ 1. Let’ (s, 2 n);
then

Ak < A t-llF^(t)l q dt

where

F(s) (1 s2)’-3)/2X(-1,1)(S) fsn_2a(s, (1 $2)1/2yt) dtr(y’),

da(y’) is the Lebesgue measure on Sn-2 and F’(t) is the Fourier transform of F(s).
Now we easily see that ft F(s)ds 0. Furthermore, we can check that, up to
a constant independent of the atom a(’), F is a regular atom on . Since the
computation is tedious but similarto the simplest casesupp(a)

_
B (1, p), we examine

this fact for supp(a)

_
B (1, p) (more details can be found in [6]). For small p, we

may assume

supp(a) c_ {’ (s, 2 n) E Sn-l" (s 1)z + 22 +... +.n2 < p2}.

Clearly this implies supp(F) c__ (1 p2/2, 1) and IlFll <_ Cp-2. Now assume that
the atom F has support (So- r, So / r). If2k+l < r-1, by the cancellation condition
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of F(s), we easily see that

Ak <_ r q-1 dt A 2kr.

Thus, we obtain

(3) A<Ar E 2t<A"
2k+l <r-I 2k+l _<r-;

To estimate A for 2+ r- 1, using H61der’ s inequality, we obtain

(fll )l/2q(f )l/2qAk < -2 dt IF t)l 2q dt

By the Hausdorff-Young inequality, we have

Ak < A 2-/2qllFIILq/:q-l < A r-1/2q2-k/2q

Therefore,

(4) _, a < ar-1/2q _, 2-/2q < a.
2k>l/r 2k> 1/r

This proves the theorem for the case n > 2.
Case n 2. In this case E1 q[’, the one-dimensional torus. As before, we may

assume that supp(a) (-p, p). Let x’ (cosc, sinct). Then for 2k < p-l,

(ik lf_rt
q )l/qA -1 a(O)(eitcs(O-a) 1) dO dt < A(2kp).

Thus ,2 <_ 1/p Ak <_ A.
Next we only prove the case cos cr 5 0 and sin c 5 0, since the estimates for

these two cases, are easier than in the prior case. Also we assume sina > 0. For
1/p < 2k < ,0-2,

(f,, ]q )l/qA t- a (0)e cos0 cos ae sin 0 sin ot dO dt

1/q

f
2’+’ cst [f_.

q
-1 a(O)eit(cs-l)eittanasinO dO dt

d2 cosc

f2’+’ cosa

< -1 a(O)eittanasinO dOIq dtl 1/q

d2 cosa

f2+’ cosot

(fzr+ A
"2kcs

-l+q la(O)(cosO 1)ld0 dt

Bk + Ck.

1/q
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2- r2k+ t-l+q dt)l/q /922kIt is easy to see that Ck _< A/9 (Jo < A

2k+l cosa
-1

d2 cosot

sin ot

sina

f[ a(O)eit tan c(sin0-0)eit tana0 dO

f___ a (O)eit(sin-)eit dO

q 1/q

a (O)eitO dO

q )l/qdt

( f2
TM sina

t- l+q+ A
\d2’ sina

q )
1/q

dt

a (0)(sin 0 0)1 dO[q dt)
1/q

Dk+Ek.

Clearly, Ek <_ Ap22.
If 2 _< (/9 sin t) -1, then Dk can be bounded by

a(O) 1}dO -1 dt _< Ap2i+l sinot.
sin a

If 2 (p sin a)-, then, by H61der’s inequality and Hausdofff-Young’s inequality,
we can find that

Dk [a(t)lqt -1 dt
2 sina

-2 dt la t)[2q dt
kd2 sina

A(sina 2*)-l/2qllal12q/(_l) A(2*sin a)-/p-1/.

This proves that

ak < Ck + E Bk
p-! <2k<_p-2 2k< p-2 p-I <_2k<_p-2

2 <p-2 p <2 p-2
Dk

< A+Apsinc E
2 <(psinoO- (p sin c)- _<2

2-k/2q (sin p)-I/2q
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Finally, we estimate -2 1/p2 Ak. Since

q 1/q

Ak <_ -1 a (O d- ot)eit csO dO dt

0

0/)i tcos 0+ -1 a(O + dO dt A,l + Ak,2,

and since the estimates for Ak, and Ak,2 are exactly the same, without loss of gener-
ality we assume A Ak,

Using H/Slder’s inequality and changing variables u cos 0, we have

Ag < 2-k/2q a(O -t- ot)eit csO dO

(fNfc 12q )l/q< A2-k/2q a(t -- COS-1 u)(1 u2)-l/EeitU du dt
sp

Thus, by the Hausdorff-Young inequality again, we find that A k is bounded by

A2-g/2q(fX(cos/9,1),la(t-t-cos -1 t)(1 t2)-l/212q/(2q-1) dt)
(2q-1)/2q

where gcos/9, l, is the characteristic function of the interval (cos/9, 1). Changing
variables again, we obtain that

(fop )
(2q-1)/2q

Ak < A2-/2qllall IsinO1-1/(2q-1)dO

< A 2-g/2q p-/q.

Thus we have -2k>_/9-2 Ak < A, which completes the proof of Theorem 1 for the
regular atom a (’). If a (’) is an exceptional atom, we can view it as a regular atom
supported in Sn-1 without the cancellation condition. Thus we assume the support
of a(x) is contained in a ball with radius/9 1. If we examine the proof for the case
of regular atom a (x), we find that we actually did not use the cancellation condition
of a (x) to prove- A _< A for n > 2 and Ak < A when n 2.

2 >r-I 2 >_/9-2

Now, letting p 1 and r and mimicking the proof for a regular atom, one has
no difficulty proving the theorem forthe case ofan exceptional atom. This completes
the proof for Theorem 1.
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Proof ofTheorem 2

Let/ be the Fourier transform of K. By Plancherel’s theorem, we only need to
prove that

(5) iI/11 _< Allf2lln,(sn-,).
In fact, let x Ixlx’ with x’ Sn-1. Then by H61der’s inequality one easily sees
that, up to a constant, K (x) is bounded by

(fo --1)IP )lip(foils (e it (x’,’)Ib(tlx[ dt
,-

+ Ib(tlxl-)l (’)eit(x’’’) dcr(’)
n-I

q )
1/q

1)dcr(’) -q dt

-1 dt I(x) + lI(x).

Clearly, by (1’), one has

I(x) < A Ixl Ib(t)lp dt dt

AIIK211H,<S-,) since IIK211’<sn-’) AIIK211H’<S-’>.
For I I (x), we recall that (’) Zjaj (’), where the aj’s e either exceptional
atoms or regular atoms and IZyl A IIlln,s-,). Therefore it remains to prove
that for any atom a(’),

(6) II (x) b(t/Ixl) a(’)eit(x’’’ d(’) -1 dt A

with a constant A independent of a (’) and x N. In Nct,

-2+
IIa(x) ]] b(t/lx,) ] a()eit(x’,’) dg () t-I dt

k d2 JSn-

L(x).
k

Now by Htlder’s inequality and (1’), we find that Lk(x) is dominated by

(fk )liP (f [fs ]q )l/qIb(t/Ixl)l p dt -q a(’)eit<’’e> dtr(’) dt
n-I

< A Ixl2-k- Ib(t)l p dt Ak < A Ak,

whereAk (ftk t-ll fs,-, a(’)eit<"x’> dtr(’)lq dt)1/q. Now Theorem 2 is easily
proved by using Theorem 1.
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Proof ofTheorem 3

Toprove the theorem, by changing variables, we only needtoprove that as R

R

(7) R-1Jo Idtx’(tx’)l dt o(1) uniformly forx’ Sn-.

We know that p HI(sn-l) has anatomic decomposition p C=lCkak with
Icl < oo. So for any e > 0, there exists an N such that"N Ickl < . For an

atom a(x), we let dlza a dtr. Then it is obvious that

R

R-l Jo Idfta(tX’)l dt < A

with a constant A independent of x’, R and the atom a(x). Therefore one easily sees
that to prove (7), it suffices to prove

lim R-1 fR(8)
R--- oo J0

By Htilder’s inequality, we have

Idfza(tX’)l dt O.

0
R )

1/2R
-1 12R- Idl (tx’) dt <_ A R Idfta(tX’) dt

Since each atom a (x) is an Lp function, (8) follows easily from (,). Theorem 3 is
proved.
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