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RESTRICTION THEOREMS RELATED TO ATOMS

DASHAN FAN

Introduction

Let R” be n-dimensional real Euclidean space and let $"~! be the unit sphere in
R”*. Suppose thatdo = do (x’) is the element of Lebesgue measure on S*~! so that
the measure of S"~1is 1. If du = ¥do is a measure with smooth density v, then
from [9] or [10] we know that the Fourier transform of d u satisfies dfi(§) = O(]€|~%)
as || — oo, for some ¢ > 0. It turns out that if the density ¢ is merely in L? (do),
for some p > 1, then there is still an average decrease of dji atinfinity along any ray
emanating from the origin. More precisely, suppose that i is in LP(do), then

R
*) R! /0 ldi(p€)>dp < ARIE]),

wheree < (1—p~!)/2,and Aisa positive constant independent of R|| (see [10]).
The estimate (x) has the following application.

Let Q(x)|x|™ be a homogeneous function of degree —n, with Q € L? s*h,
for some p > 1, and fs,,_. Q(x")do(x") =0. Letr — b(r) be a bounded function
on (0, 00). We consider the distribution K = P.V.b(|x])Q2 (x)|x|™ and study the
boundedness of the operator T f which is definedby Tf = f * K. This operator was
studied extensively and its boundedness properties were established in R. Fefferman
[7], Namazi [8], Duoandikoetxea and Rubio de Francia [4] and Chen [1]. Inhis new
significant book [9], by using (x), E. M. Stein gives an alternative proof to conclude
that, under the restriction n > 2, the mapping f — f * K extends to a bounded
operator in L%*(R"). Meanwhile, he points out that the condition b € L* (0, 0o) can
be replaced by a weaker condition (see pages 372-373 in [10]; also see [4]):

R
(1) R_l/ |b(p)|*dp < A forall R > 0.
o

In this paper, we shall study du = ¥ do where the density ¥ is an atom. As an
application, we will prove that if Q(x’) is merely in the Hardy space H'($"~!) with
mean zero property and if, for some p > 1, the radial function b(}x|) satisfies

R
1) R‘I/ |b(p)|Pdp < AforallR > O,
o
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14 DASHAN FAN

then the operator Tf = f* K,with K =P.V.b(|x|)2(x")|x|~", extendsto abounded
operator in L2(R"), for n > 1. Clearly, our result significantly improves the above
mentioned L2 boundedness property. It also improves the result inour previous paper
[5]. The proofs in this paper are modifications of those in [5].

Recall that the Poisson kernel on $”~! is defined by

Pry(x"y =1 =r?®)/Iry’ = x'|",

where 0 < r < 1and x’,y’ € S"”'. Forany f € &'(5""!), we define the radial
maximal function P* f(x’) by

P*f(x') = sup

O<r<1

f(yl)Prx’(yl)dG(yl)i )

Sn—l
where S’(S"!) is the space of Schwartz distributions on sl

The Hardy space H 1(s™1) is the linear space of distribution f € & (s"~ 1) with
the finite norm || f|lmi(s-1) = ||P* fllLis=-1y < oo. The Hardy space H'(S*™")
was studied in [2] (see also [3]). In particular, a well-known result is L' H 2
H'(s"!') D L9(S"") forany ¢ > 1. Another important property of H!(S"~!) is
the atomic decomposition of H 1 " 1), which will be reviewed in the following:

An exceptional atom is an L™ function E (x) satisfying || E||cc < 1.
A regular atom is an L™ function a(x) that satisfies

@) supp(a) C {x' € §"71, |x' — xg| < p for some x; € $"Vand p > 0},
(i) [ a€hdo@) =o.

sn=
(iii) lalleo < p™"*.
From [3], we find that any @ € H'(S"™!) has an atomic decomposition 2 (¢§') =
Y- Aja;j(£'), where the a; ’s are either exceptional atoms or regularatoms and ) _ |A;| <
C"Q”Hl(sn—l).

We have the following restriction theorem for atoms:

THEOREM 1. Let I, be the interval (2%, 2%+1). Suppose that a (§) is an atom on
S*=1, Then for any q > 1,

) i ( / 7!
k=0 Ii

where A is a constant independent of x' € "' and the atom a (x).

q 1/q
dt) < A,

f a(ghe € do(g")
=1

Theorem 1 has the following consequence.
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THEOREM 2. Suppose that 2 is a homo geneous function of degree zero and sat-

isfies the mean zero property | i1 QENda (&) = 0. If b(x) satisfies (1') for some

p > 1 and Q is a function in H'(S"™1), n > 1,then the operator Tf = f x K, with
K =P.V. b(|x])Qx)|x|™, is bounded in L%([R").

As an analogue of formula (x), we have the following:

THEOREM 3. Suppose that do = do (x') is the Lebesgue measure on S"~1. If
du = Ydo with adensity y in H1(S"~1), then we have

R
(*%) R! / ldu(t8)| dt = o(1) as R|§| — oo.
0

Proof of Theorem 1

We first prove Theorem 1 for a regular atom a(£¢'). Let

q 1/q
Ak ={/ ! dt} .
I

We will prove the theorem in the two different cases n > 2 and n = 2, respectively.

Case n > 2. For a regular atom a(x") with supp(@) € B(xy, p) S s"~1, without
loss of generality, we may assume that p is very small. Let 1 = (1,0, ..., 0) be the
north pole of "~ !. By arotation we can assume thatx’ = 1. Let' = (s, &2, .. ., &);

then
1/q
A, 5A{f t‘llFA(t)qut] ,
I

f a(€)e'" ) do (&)
Sn—l

where

F(s) = (1= )"y 1) [S L als, 1=y do (),

do (y') is the Lebesgue measure on $"~2 and F {¢) is the Fourier transform of F(s).
Now we easily see that fR F(s)ds = 0. Furthermore, we can check that, up to
a constant independent of the atom a(§’), F is a regular atom on R. Since the
computation istedious but similar to the simplest casesupp(a) € B(1, p), weexamine

this fact for supp(a) € B(1, p) (more details can be found in [6]). For small p, we
may assume

supp(a) C {&' = (5,&,...,E) € "L (s — D2+ EZ+ - - +82 < p?)

Clearly this implies supp(F) € (1 — p?/2, 1) and || F|| < Cp~2. Now assume that
the atom F has support (sy —r, 5o + r). If 2¥*1 < r—1 by the cancellation condition
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of F(s), we easily see that

l/q
Ac <r [/ 191 dt} = A 2kr.
I
Thus, we obtain

3) Y AvsaAr ) 2t<a

2kt <p=1 K+l <p=1

To estimate A, for 2k*1 > r—1 using Holder’s inequality, we obtain

1% . 1/2q
A < (/ t-2dz) (/ |F (t)|2‘7dt) .
Iy R

By the Hausdorff-Young inequality, we have
A < A2\ FllLupggy < Ar—'2a2-H%,

Therefore,
@) Z A, <Ar1/% Z 27k24 < A,
2k>1/r %>1/r

This proves the theorem for the case n > 2.
Case n = 2. In this case ¥ = T, the one-dimensional torus. As before, we may
assume that supp(a) C (—p, p). Let x’ = (cos a, sine). Then for 2k < o,

Ak - (/ t—l
I

Thus ZZ"fl/p A < A.
Next we only prove the case cosa # 0 and sina # 0, since the estimates for
these two cases are easier than in the prior case. Also we assume sinae > 0. For

1/p <2F < p7?,
q l/q
dt)

Ak = (/ t‘l
I
2kH cosa q
/ ! dt
2% cosa
2k cosa "4 ) .
/ t_l f a(o)eutanasme d9|q dtll/q
2 cosar -7

2%+1 cosar b4 q
f Pl ( la(@)(cos® — 1)|d0> dt
2

k cosa -

7 ) q 1/q
f a(@)(e°6-9 _ 1) de dt) < A(2%p).

4

T
f a (9)6” cosf cos aettsm 6 sina do

-

1/q

/n a(e)eit(cos 0—1)eittana sin@ do

-7

IA

l/q
+ A

= Bk+Ck.
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Itis easy to see thatCy < A pz(f(fk+I 714 gr)la < A p22k,

2%k +1 cosar
2k cosar
2%+ sing
= / t—l
2% sina
2%+ sina
2% sina
2%+ sina
+ A / e
2k sina

= Dk+Ek~

1/q
Bk =

q
/n a(e)eittana(sine——e)eittanao d@’ dt

b4

n q Va
/ a(g)eit(sinG—G)eite del dt)

-7
q 1/q
dt

l/q
a(@)(sin 6 — 0)| do|? dt)

IA

” .
f a®)e? do

-
n
v/;”

Clearly, E, < Ap22*.
If 2% < (p sina) !, then D can be bounded by

2k sin o

(v/;" sin

q 1/q
t_ldt> < A;o2k+1 sina.

fﬂ a@®){e"® —1)do

17

If 2¢ > (p sina)~!, then, by Holder’s inequality and Hausdorff-Young’s inequality,

we can find that

2+ sina 1/4
D, = / la”@)|9t " dt
2k sina
?+ ging /2 1129
f 2 dt ( f la (r) 29 dt)
2k sina R

< AGsine 297|a g -1 < AQR*sin @)™V p7!/H,

IA

This proves that

Yo A< ) G+ ) B

pl<2%k<p-? 2%<p? p-l<2k<p~?

A+ Y B+ ) D

2k<p? pl<2d<p?

IA

IA

IA

2% <(psina)~! (p sina)~1 <2

IA

A.

A+Apsina Y 2+4 Y 27H(sina p)7M
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Finally, we estimate ) .., ,> A¢. Since

Ak < (f t_l
I

+ /t“
Iy

and since the estimates for A, ; and A, , are exactly the same, without loss of gener-
ality we assume A, = A, ;.
Using Holder’s inequality and changing variables u = cos 6, we have

o2 29 1/2q
242 f
R
1 ] 2q 1/q9
A2~ M2 / / a(a+cos~lu)1 —u?)12e™ du| dt .
R

cos p
Thus, by the Hausdorff- Young inequality again, we find that A is bounded by

n
f a(@+a)é’°? 4o
0

q 1/q
dt)

0 q
/ a(0+ )eucose do

w

1/q
dt) = Ar,1 + A2,

Ay

IA

p .
f a® +a)ée' 0 4o
0

IA

2q-1)2q
A2+ ( f Xccos p.1y0 lale + cos ™ 1) (1 — t2)-1/2|24/<2q-”dt) ,
R

where X cosp, 1o i the characteristic function of the interval (cos p, 1). Changing
variables again, we obtain that

2q-1)/2q
Ag

IA

P
A27M 2 |g|| (f | sing|~'/@a—1) de)
0
A2—k/2qp—1/q.

IA

Thus we have 22*> _» Ay < A, which completes the proof of Theorem 1 for the
regular atom a (§'). If a(&) is an exceptional atom, we can view it as a regular atom
supported in $*~! without the cancellation condition. Thus we assume the support
of a(x) is contained in aball with radius p = 1. If we examine the proof for the case
of regular atom a (x), we find that we actually did not use the cancellation condition
of a(x) to prove

Z Ar < Aforn >2 and Z Ar < Awhenn = 2.

2k Z"_I 2k ZP—Z

Now, letting p = 1 and r = 1 and mimicking the proof for a regular atom, one has
no difficulty proving the theorem for the case of an exceptional atom. This completes
the proof for Theorem 1.
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Proof of Theorem 2

Let K be the Fourier transform of K . By Plancherel’s theorem, we only need to

prove that
(5) 1K oo < AN g1¢sm1y-

In fact, let x = |x|x’ with x’ € $"~'. Then by Hélder’s inequality one easily sees
that, up to a constant, K T{x) is bounded by
q l/q
t7d t)

1 p 1

( f bl ™ dt) ( f

0 0
£l dt = 1(x) + I (x).

+ [ 1b(1x1 ™) ‘ fs Q" do &)

f QENE" —1)do(E)
Sn—l

Clearly, by (1), one has

el /p 1 1/q
A (Ix|/ b@)P dt) (/ dt) 1211z sy
0 0

A"Q"HI(Sn—I) since "Q"LI(Sn—l) < A"Q"Hl(sn—l).

I(x)

IA

IA

For I1(x), we recall that Q (§") = Y_ Ajaj (§"), where the a;’s are either exceptional
atoms or regular atoms and Y [A;| < A ||| a'(s~"). Therefore it remains to prove
that for any atom a(¢’),

(6) 11,(x) = /oo \b(t/IXI) a(g e da(é’)\ rldt < A
1 1

Nas

with a constant A independent of a(¢) and x € R". In fact,

I,(x) = io:f
k=0

2%

= ZLk(x).
k=0

Now by Holder’s inequality and (1), we find that L (x) is dominated by

1/p o q lq
( f |b<t/|x|)|"dt) (/ - / a(s/)e"@'”da(sol dt)
Iy I Nl
2+ /x| 1/p
5A(le2”"“ f |b(t)|Pdt) Ay S A A
0

whereA;, = (f,,c t7Y fonor al§ Neits' X do (£7)]9 dt)1/4. Now Theorem 2 is easily
proved by using Theorem 1.

2k+l
t~Var

b(t/)x]) f a(g)eé" ) do (&)
sn—l
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Proof of Theorem 3

To prove the theorem, by changing variables, we only need to prove that as R — oo,
R
) R7! f |diXtx')| dt = o(1) uniformly forx’ € §"~!.
0
We know that ¥ € H!(S"~!) has an atomic decomposition ¥ = Y so; ckax with

3 |ck| < 00. Soforanye > 0, there exists an N such that Y son |ck| < &. For an
atom a(x), we let dus = a do. Then it is obvious that

R
R ﬁ \d i (1) df < A

with a constant A independent of x’, R and the atom a(x). Therefore one easily sees
that to prove (7), it suffices to prove

R

®) lim R™! f ldfia(tx')| dt = 0.
R—o0 0

By Holder’s inequality, we have

R R
R f ldpa (x| dt < A(R“‘ f |dﬂa(tx’)|2dt)
0 0

Since each atom a(x) is an L? function, (8) follows easily from (*). Theorem 3 is
proved.

1/2
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