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GENUS n BANACH SPACES

E G. CASAZZA AND M. C. LAMMERS

ABSTRACT. We show that the classification problem for genus n Banach spaces can be reduced to the
unconditionally primary case and that the critical case there is n 2. It is further shown that a genus n
Banach space is unconditionally primary ifand only if it contains a complemented subspace ofgenus (n- ).
We begin the process of classifying the genus 2 spaces by showing they have a strong decomposition
property.

1. Introduction

It is well known that a Banach space with a basis has uncountably many non-
equivalent normalized bases [13]. However, there are spaces with normalized un-
conditional bases that are unique up to equivalence. G. K6the and O. Toeplitz [9]
showed that 2 has a unique unconditional basis and two papers by Lindenstrauss and
Pelczynski [10] and Lindenstrauss and Zippin [1 1] showed that the complete list of
spaces with a unique unconditional bases is e, 2 and co.

One quickly notices that a unique normalized unconditional basis must be symmet-
ric. This leads us to explore uniqueness up to a permutation. That is, two normalized
unconditional bases are said to be equivalent up to a permutation if there exists a
permutation of one which is equivalent to the other. Since the list of normalized
unconditional bases that are actually unique is now complete we will use the phrase
unique unconditional basis for unique up to a permutation. Edelstein and Wojtaszczyk
[6] showed that direct sums of e, e2 and co have unique unconditional bases and in
1985 Bourgain, Casazza, Lindenstrauss, and Tzafriri [2] showed that 2-convexified
Tsirelson T2 and (-,,=1 ])l)co, (’-,,%1 )2)co, (n%l )e2)e,, (,,=1 c0)e,, (along
with their complemented subspaces with unconditional bases) all have unique uncon-
ditional bases, while somewhat surprisingly (-.,,% )e2 and (-,,% co)e2 do not.
More recently Casazza and Kalton [4], [5] showed that other Tsirelson type spaces,
certain Nakano spaces, and some co sums of e,,, with p,, have unique uncondi-
tional bases.

In [2] they define a new class of Banach spaces. A Banach space X is said to be
of genus n if it and all its complemented subspaces with unconditional bases have a
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unique normalized unconditional basis and there are exactly n different complemented
subspaces with unconditional bases, up to isomorphism. For example, the space e
2 is a Banach space ofgenus 3, the three different complemented subspaces being 9
e2, e and e. It was shown in the memoir [2] that 2-convexified Tsirelson space, T2,
is a Banach space of infinite genus. In fact T2 has uncountably many non-isomorphic
complemented subspaces with unconditional bases and every unconditional basis of
a complemented subspace is unique. It is not known if there are any Banach spaces of
countable genus, i.e., of genus co. Our results apply to this case as well so we include
it in this paper.

At this point even the genus 2 spaces are unclassified, although there is a conjecture
that they are precisely the ones we already know(see Appendix 5). In Section 2
we show that the problem of classifying genus n spaces reduces to classifying the
unconditionally primary genus n spaces. We then characterize the unconditionally
primary genus n spaces as those which contain a complemented subspace ofgenus n
1. This basically shows that the backbone of this classification problem is really the
genus 2 case.

In Section 3 we show that all Banach spaces of finite genus have the property that
any subsequence of the original basis must contain a further subsequence equivalent
to the unit vector basis of co, e or e. This is particularly important to the genus 2
case for it classifies such spaces into these three cases.

In Section 4 we first show that if the only spaces of genus 2 containing co are
those conjectured by the memoir [2] ((Y,, e’),.,,, (,, )e),.,,), then the only
space of genus 2 containing e are the duals of these spaces. In other words it is
enough to consider only the "co case". The remaining part of this section deals with
decomposing genus 2 spaces containing co. This decomposition relies heavily on a
result of Wojtaszczyk so we give some details of this for clarity.

Finally we end with an appendix of a conjectured list of all genus n spaces for
< n < 6. We divide the genus n spaces into those which are unconditionally

primary and those which are not.

2. Reducing genus n spaces

We start with a simple observation. If (x,,) and (y,,) are sequences in Banach
spaces X and Y respectively, we write (x,,) (y,,) to mean that Tx,, y,, defines
an isomorphism from span[x,, to span[y,, ]. Also we write (x,,) " (y,,) if there is a
permutation zr of the natural numbers so that (x,,) (y,,,)).

PROPOSITION 2.1. IfX has an unconditional basis and X* has a unique normal-
ized unconditional basis, then X has a unique normalized unconditional basis.

Proof. Since X* is separable, every unconditional basis for X is shrinking. So if
(x,,, x,) and (y,,, y,) are normalized unconditional bases for X then (x,’) and (y,)
are bounded unconditional bases for X*. Hence (x,’) - (y,]’) and so (x,,) (y,,).
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We had to assume that X has an unconditional basis above since has preduals
without unconditional bases. We immediately get:

COROLLARY 2.2. ffX has a unconditional basis and X* is genus n, then X is of
genus < n,for all n < to.

Recall that a Banach space X is said to be primal, if whenever X - Y Z, then
either X Y or X Z. We say that X is unconditionally primary, if whenever
X - Y Z and Y, Z have unconditional bases, then either X Y or X Z. Now
we wish to give a characterization of primary genus n Banach spaces. For this we
need a recent result of Kalton [8].

THEOREM 2.3. If X is a Banach space with an unconditional basis and X has
only countably many non-isomorphic complemented subspaces with unconditional
bases then X - X2.

The impact of the theorem is clear, for it follows that genus n spaces are isomorphic
to their squares. We are now ready for our characterization of unconditionally primary
spaces of finite genus.

PROPOSITION 2.4. Let X be a Banach space ofgenus n. Then X is unconditionally
primary (fand only ifX contains a complemented subspace ofgenus n I.

Proof. =, Let Z be a complemented subspace of X with a unique unconditional
basis of maximal genus m and m < n. If m < n there exists a complemented
subspace Y of X with an unique unconditional basis not equivalent to a complemented
subspace of Z and not isomorphic to X. Using the theorem of Kalton, we have
Y Y Y and Y is complemented in X. It follows that X X @ Y. Similarly
X X Y X Y Z. So Y 3 Z is complemented in X and has genus k < m
genus(Y). But if k m then Y Z Y contradicting our assumption that Z

does not imbed complementably into Y. Hence, k > m. But Z was the maximal
complemented space with genus m and m < n so Y Z must be of genus n and
hence isomorphic to X. So X is not primary contradicting our assumption. Therefore
we must have m n I.

= By way of contradiction, suppose W is a complemented subspace of X and W
is genus n 1. Now let X Y Z, where neither Y nor Z is isomorphic to X. Then
Y and Z are genus m and genus m2 respectively with m, m2 < n.

Since there are n-distinct unique unconditional bases for complemented subspaces
of X, n of them must be in W and the remaining one is the basis for X. Hence
if (y,,) is a basis for Y then because Y has genus m with m < n it can not be a
basis for X hence it must be equivalent to a subsequence of the basis for W. Similarly
for Z.

This implies that Y and Z are both complemented subspaces of W with unique
unconditional bases, hence Y Z is a complemented subspace of W W W by
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the preceding theorem. It follows that X is a complemented subspace of W. This is
clearly a contradiction since X is genus n and W is genus n 1. r--I

Now we do the reduction of classifying genus n Banach spaces to the uncondi-
tionally primary case.

THEOREM 2.5. Every Banach space X ofgenus n can be decomposed into X
X X2 Xm, where each Xi is unconditionally primary.

Proof. If X is unconditionally primary, we are done. Otherwise by definition
X Y Z where neither Y nor Z is isomorphic to X and both Y and Z have unique
unconditional bases. Also Y and Z are genus < n. Now iterate this process until it
stops. 121

Theorem 2.5 tells us that to classify all Banach spaces of genus n we only need to
classify the unconditionally primary Banach spaces of genus n. From the results of
[2], we know that the following spaces are unconditionally primary (See Section 5):

where, for < n < cxz,

and

n co n

E,, e’ or e, or e or e2,

F,, or c0, or or

It is natural then to conjecture that such iterations are the only way to produce uncon-
ditionally primary spaces. So we end this section with the following conjecture.

CONJECTURE 2.6. X is unconditionally primary and genus n ifand only if there
is an unconditionally primary space Y of genus < n with unconditional basis (Yi
and one of thefollowing holds:

(1)

(2)

or X =’
co e

) (2).Y,, or X = Y,,

where Y,, span[y, Y2 y,,].
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This gives an indication of the role that Banach spaces of genus 2 may play in the
bigger picture of classifying all Banach spaces of finite genus. Conjecture 2.6 would
look much more tractible if a conjecture of [2] were true. That is, in [2], it is asked
if X having a unique normalized unconditional basis implies that co(X) also has a
unique normalized unconditional basis? Recently, Casazza and Kalton [5] showed
that this is false by showing that co sums of the original Tsirelson space fails to have
a unique normalized unconditional basis while in an earlier paper [4] they showed
that Tsirelson’s space and its dual do have Unique normalized unconditional bases.

3. Genus n spaces contain co, e or e2

If we consider only spaces of finite genus we get the following result.

THEOREM 3. I. IfX isfinite genus n then every, normalized unconditional basis.fir
a complemented subspace ofX has a subsequence which is permutatively equivalent
to the unit vector basis of co,

To prove the theorem we need three propositions from [2]. The first gives a condi-
tion on an unconditional basis which implies the unconditional basis has a permutation
which is subsymmetric. Recall that an unconditional basis (x,,) is subsymmetric if it
is equivalent to all its subsequences.

PROPOSITION 3.2 [2, Proposition 6.2]. Let X be a Banach space with an uncon-
ditional basis (x,,). Suppose that every subsequence of (x,,) contains a further sub-
sequence which is permutatively equivalent to (x,,). Then there exists a permutation
r ofthe integers such that (x,rl,,) is a subsymmetric basis.

The next two propositions generalize results on Banach spaces with symmetric
bases to Banach spaces which have subsymmetric bases. Actually Proposition 3.4
generalizes a result on homogeneous bases (bases Which are equivalent to all of their
normalized block bases) but it is a well-known result of Zippin that bases with this
property must be equivalent to the unit vector basis of co or ep for some < p < cx
and therefore are symmetric.

PROPOSITION 3.3 [2, Proposition 6.3]. Let X be a Banach space with a subsym-
metric basis (xn). Let (trj)j be mutually disjoint subsets of the integers so that
max(trj) < min(trj+l),for all j. If we let U span[uj -ioj xi], then X U is
isomorphic to X.

PROPOSITION 3.4 [2, Proposition 6.4]. Let X be a Banach space with a normal-
ized unconditional basis (xn). Suppose that for every normalized block basis with
constant coefficients (uj), there exists a permutation rr ofthe integers so that (u,rj)
is equivalent to (x,,),,= Then (x,, ),,= is equivalent to the unit vectors in co or et,

for < p < o.



312 P. G. CASAZZA AND M. C. LAMMERS

Combining Proposition 3.3 and Proposition 3.4 one can obtain the following im-
mediate corollary [2].

COROLLARY 3.5. lfX has a subsymmetric basis anda unique unconditional basis
up to permutation, then X is isomorphic to co,

Proof. If (uj) is a constant coefficient block basis of the subsymmetric basis
(x,,),,= then by Proposition 3.3 span[uj] X is isomorphic to X. By the uniqueness
of the unconditional basis for X the basis ((uj), (x,,)) is permutatively equivalent to

(x,,),,=. Hence by Proposition 3.4, (x,,),,=t is equivalent to the unit vector basis of
c0 or el,. However for p # 1,2, ep does not have a unique unconditional basis up to
a permutation: This implies that (x,,) must be equivalent to the unit vector basisn--
of co ,e or e2. [-]

In particular, if X has a subsymmetric basis and is genus n, then X is isomorphic
to c0, or e2. Now we are ready for the proof of the main theorem in this section.

Proofof Theorem 3.1 By Corollary 3.5 it is enough to show that every nor-
malized unconditional basis (x,,) for a complemented subspace of X has a sub-n--

symmetric subsequence. Since X is genus n there are only n different normalized
unconditional bases for complemented subspaces of X. Let (x,,,i),,,= < < n be
a representative of each of these n different bases.

CLAIM 3.6. (x,,) has a subsequence (x,, (1)) with the property that every subse-
quence of (x,, )) has afurther subsequence permutativeiy equivalent to (xn )).

Proof Either (x,,) has the required property, and we are done, or (xn) has a sub-
sequence (x) which has no further subsequence equivalent to (x,,). Now, either (x,
satisfies the claim or it has a subsequence (x,2,) which.contains no further subsequence
equivalent to (x). Continuing, we find either a sequence satisfying the claim or we

(t,xi’oo n-I where 0 satisfying"can find sequences kk=li=O, Xk Xk,

(1) (xk)k=i is a subsequence of (x-)k for all _< _< n 1.
i-I xa(2) (xk)k=i has no subsequence eqmvalent to (xk )k_ for all < < n 1.

Since X is genus n, it follows that ((x)’ ,)i’-7.0 mu’have exhausted the list, up
to permutative equivalence, of all unconditional bases for a complemented subspace
of X. But then by (2) every subsequence of (xk"- )k= is permutatively equivalent to
x,’-) ok=l"

By Claim 3.6 and Proposition 3.2, (x,,) has a subsequence with a permutation, call
it (y,,), so that y,, is subsymmetric. By Corollary 3.5, span[y,, is isomorphic to co, e
or

The above argument works for Banach spaces of genus w also. To do this we need
another result of Kalton [8].
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PROPOSITION 3.7. If X has an unconditional basis and at most countably many
subsequences ofthis basis span non-isomorphic Banach spaces, then X is isomorphic
to its hyperplanes.

COROLLARY 3.8. If a Banach space X is of genus co, then eve. normalized
unconditional basis for X has a subsequence permutatively equivalent to the unit
vector basis ofco, or 2.

Proof We will just note the changes required in the argument of Corollary 3.5.
Actually it is only Claim 3.6 that needs to be altered since the rest of the proof works
perfectly well in this case. Let (x,,) be the unique normalized unconditional basis for
X and (y/)k,= be a complete list of unconditional bases for complemented subspaces
of X. Now either (x,,) has the required property or (x,,) has a subsequence (x, which
has no further subsequence equivalent to (y,,). Continue as in the proof of Claim 3.6,
only now the process does not stop so we constrtct infinitely many subsequences
with the properties:

(1) (x)k% is a subsequence of (x-)k--I
(2) (x,) has no subsequence equivalent to (x-) or (vi)= -.. =.
Now choose the diagonal elements from these subsequences, (x) (z) to get a

subsequence of (x,). There must be an so that (y)=oo (zk)=. But (z)c=i+l is
a subsequence of t..io which has no subsequence equivalent to (y) Finally,.-k )k=
applying Proposition 3.7 we get the contradiction that (zk)_l_ is equivalent to (z)=i+ic
(since they span isomorphic spaces which by definition have unique unconditional
bases) while one of these is permutatively equivalent to (y)C and the other is not.k=l

One should note that this does not say that every subsequence of the unconditional
basis of a genus n space must contain the same ep unit vector basis. Clearly e co has
subsquences of the unconditional basis equivalent to both that of co and el. However
for a genus 2 space this is precisely the case and hence we can classify the genus 2
spaces into the categories of containing co, e, or e2. We consider two of these cases
in the next section.

4. Genus 2 spaces containing co

First we notice by duality that if we can classify all spaces of genus 2 containing
co, then we also get the desired result for those spaces containing

PROPOSITION 4.1. The only genus 2 spaces containing complemented co are
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and only "the only spaces ofgenus 2 containing complemented g. are

i1=1 f n=l e

Proof. = Follows from Corollary 2.2.

= We use the results of James [7] that an unconditional basis for a space X is
boundedly complete iff the space does not contain co, and the dual result relating
shrinking bases and e Let (x,1) be a normalized unconditional basis for a genusn=

2 space X containing e complemented and let (x,) be the associated biorthogonal
functions of (x,,),l=. Then co cannot embed into X or X would be at least genus 3.
Hence (x,1 X.),1= is boundedly complete, and so if Y =span[x,], then Y*

CLAIM 4.2. Y is genus 2.

Proof. Let (y,,) be a normalized unconditional basis for a complemented sub-
space of Y and let (y,]’) be the associated biorthogonal functions Because the space
spanned by (Y,1) cannot contain complemented e, again because X did not contain
complemented c0, (y,1) is a shrinking basis for the span[y,]. Since Y* X and
the basis is shrinking it follows that (y,) is a normalized unconditional basis for a
complemented subspace of X. Therefore, either (y,]’) -- (x,1) for some permutation
7r or (y,]’) (e,,)e,. So (Y,1) (x,]’) or (Y,1) (e,1),.,,. Hence Y is genus 2. I"1

Now since (x,l) has subsequences equivalent to (e,1)e, co embeds into YI--

Hence Y is a genus 2 space containing c0. So Y is isomorphic to

and X is isomorphic to one of the duals of these two. That is,

n=l e n=l e

One of the major difficulties in working with the genus n spaces is that although
every subsequence of the basis is equivalent to one of n specified unconditional bases,
there is no uniform constant of equivalence. For example, in

the natural basis of e]’ co becomes "badly" equivalent to the unit vector basis of
co as n increases. Our next goal is to produce a uniform constant in genus 2 spaces
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for subsequences of the unconditional basis which are equivalent to the whole basis.
That is, there is a constant K so that any subsequence of the original basis of a
genus 2 space X that spans a space isomorphic to the original space, is K-uniformly
equivalent to the original basis. Then we will use this constant to show that X has a
UFDD (unconditional finite dimensional decomposition) of a very strong form.

In order to do this we first need a theorem of Wojtowicz 15] which also appears
in [14] and implicitly in [12]. We should mention that Wojtowicz’s theorem can be
applied to any Banach space with an unconditional basis not just those of genus 2.
In fact the theorem was used in 14] for a result on quasi-Banach spaces. Although
we will not reproduce the proof of this theorem we do need to present some of the
terminology and results from bipartite graph theory in order to state the stronger
version of Wojtowicz’s theorem which we need and which he actually proved. The
following can be found in Wojtaszczyk’s paper [14] and in more detail in [3].
A bipartite graph G consists of two disjoint sets N and M, and any set E(G) of

ordered pairs from N U M with the property that one element in the ordered pair is
from N and one is from M. We denote N U M by V (G). We call the elements of
V(G) the vertices of the graph while E(G) is called the edge set of G. A subset
A C V(G) is called one sided if A C NorA C M. Let A be a one sided subset
of V (G) we say A is matchable if there exists a 1-1 map ap: A V(G) such that
(a, p(a)) 6 E(G) for all a 6 A and we call a matching of A.
We now give a version of the classical Schroeder-Bernstein theorem of set theory,

which has been observed by Banach [1], in the language of bipartite graph theory.

THEOREM 4.3. Let M, N and E(G)form a bipartite graph G. Ifboth M and N
are matchable then there exists a matching of N, such that (N) M.

Now we are ready to state Wojtowicz’s theorem and sketch how it is proved. This
will elucidate the quantitative estimates needed. We change the statement slightly,
for the original theorem was stated for quasi-Banach spaces and here we are only
concerned withBanach spaces.

THEOREM 4.4. If(x,, ),,eN and (y,,, ),,,et are normalized I-unconditional basesfor
Banach spaces X and Y, and each is equivalent to a permutation ofa subsequence
of the other. (that is. (x,,),,v (Y,,,)),,v for a 1-1 map cr N --> M and
(y,,,).,et (xrt,,,))met for a I-I map , M ---> N) then (x,,),,eu and (Y,,,),,,zt are
permutatively equivalent to each other.

One should note that although trandy are 1-1 maps they need not be onto, while
the conclusion of the theorem implies that there exists a 1-1 and onto map for the
equivalence of (x,,) and (y,,).

Wojtaszczyk 14] uses bipartite graph theory and the classical Schroeder-Bernstein
theorem to obtain his result. In particular he creates a bipartite graph G with V(G)
N LI M and E(G) {(n, tr(n))},, U {(m, ),(m))},,,t. Since both M and N are
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matchable there exists a I-1 map q N ont--" M, and a partition of N, N N t_J N2,
and hence a partition of M, M (N) t.J q(N2) so that (x,,),,sN, is equivalent to

(Y,,,),,,e,tN,) and (x,,),,sN is equivalent to (Y,,,),,,s.tu2). In particular

q(n)= { tr(n) ifn6N
t,-I(n) ifn 6 N2

and therefore (x,,),,sv and (Ym),,,eM are permutatively equivalent to each other.
If we consider the constants of equivalence K and K2 such that (x,,),,sv

(y,t,,)),,eu and (Y,,,),,,et "r2 (xt,,,)),,,e4 by the l-unconditionality of the basis one
can obtain

The inequality in the other direction can be produced in a similar way. The arguments
above yield the following.

THEOREM 4.5. Let (x,,),,eN and (Y,,,),,,st be normalized l-unconditional bases

for Banach spaces X and Y. IfK and K2 are constants such that
(1) (Xn),,eN ""K, (Yat,,)),,eN and
(2) (Y,,, ),,,eM K2 (Xyt,,, ),,,M

then (x,,),,ev and (Y,,1),,,sM are (K + K2)-permutatively equivalent to each other.

An immediate corollary to this theorem is the form we will need for the proof of
the theorem below.

COROLLARY 4.6. If (X,,),,__ is a normalized l-unconditional basis and (xni) is
a subsequence of (x,,),,= which has a further subsequence which is K-equivalent
to a permutation of (x,),,__ then (xni) is (K -t- l)-equivalent to a permutation of
(Xn o)n=l

We are now ready to present a decomposition theorem for Banach spaces ofgenus 2.
To do this we first produce a uniform constant for subbases of the original basis that
span a space isomorphic to the original space. This relies heavily on the theorem



GENUS n BANACH SPACES 317

above and the fact that any subsequence of an unconditional basis for a genus 2
Banach space X containing co which is not equivalent to the unit vectors in c0, must
be a basis for a space isomorphic to X. This is clear since any subsequence of the basis
spans a complemented subspace with an unconditional basis. We start by producing
the necessary uniform equivalence constant.

THEOREM 4.7. Let X be a Banach space ofgenus 2 containing co and let (x,,)
be a normalized l-unconditional basisfor X. Then there exists a natural number K
such thatfor any subsequence (x,,i) of (x,1) which spans a space isomorphic to
X, (x,li) is K-permutatively equivalent m (X,,).

Proof Assume no such K exists and then we will proceed by induction on K
to get a contradiction By Corollary 4.6 there exists a subsequence (x,l) of (x.)n---I
such that

(i) span[(x,l)] is isomorphic to X and
(ii) no further subsequence of (x,l) is 2-permutatively equivalent (i.e., K 2) to

(x,,)=.

If such a sequence did not exist and all subsequences that spanned the space had
a further subsequence that was 2-permutatively equivalent to (x,1) then by the

I1--

corollary all subsequences ofthis type would be 3-permutatively equivalent to (x,1)n--I
Let k0=2 and choose k > k0 such that

n--

Now since (x) is permutatively equivalent to (x,,),, and we have assumed no K
exists satisfying the theorem, there exists (x,2,) a subsequence of (x,l) such that

(i) span[(x2)] is isomorphic to X and
(ii) no further subsequence of (x,Z,) is (ko +k)2-permutatively equivalent to (x,,)n---

Without loss of generality we may assume that the support of (x,2,) > k0 -I- k. Now
choose k2 so that k2 > k and

Xn
n--

Proceeding in this manner we can generate subsequences (xl) of (xn) suchn=l
that for all 11,

x (xi+(1) (x,+) is a subsequence of (,1) with support of. ,, > ko+k +k2 +... +ki
Ki,
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ki 2(2) ,,- x], >

(3) no subsequence of (x,il) is (Ki_)2- permutatively equivalent to (x,), and
(4) span[(x],)] is isomorphic to X.

kj ) This is a normalized basis forFirst consider the sequence (z,,) ((x),i=
a complemented subspace of X and because of (2) above it can not span a space
isomorphic to-c0. Since X is genus 2, (z,,) must be a basis for the whole space. Also

by genus 2. we know that ((x)kj ). is D-permutatively equivalent to (x,,)n forn=l j=l
i. Ki_lsome D and some permutation r. Now consider the sequence (y,/1) (x,,),,= U

((x)k ) for each 6 N. Again this is a basisfor the whole space and is an=l j=i+l

subsequence of (x]l) by ).
If we let (a,,) be any set of scalars we have

< Ki- a,,y,i + D a,,z,,
In=Ki-

<__ Ki a,. , + D a,, yn
n=l n=l

This follows from the fact that (z,) and (y,i,) are the same sequence for n > K_.
Similarly we get

a,x, + anzn
n= n= IlmKi_ +

< anXn + anzn
n=l n=Ki_l+l

<_ Ki-I a,x(n) + D anx(,)
n-" n--

n-"

(2)

By the two inequalities above we have that (y,) is (Ki_ + D)-equivalent to a
permutation of (x.) But the fact that (y,) is a subsequence of (x) and from (3)n--
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above we have

)2(Ki-I + D) > (Ki-I

This is a contradiction since Ki goes to oo and D is fixed.

Below we will refer to this constant as K0 for a given Banach space of genus 2
with unconditional basis (x,,) Now we show that spaces of genus 2 which containn=

co have a strong decomposition property.
A sequence (E,,),, of finite dimensional subspaces of a Banach space X is called

an unconditionalfinite dimensional decomposition for X, denoted UFDD, if for each.
x X there is a unique choice of x,, E,, so that

X .. Xn
n--

and the series is unconditionally convergent in X. In this case we write

If the E,,’s are not necessarily finite dimensional we call this an unconditional
Schauder decomposition. If there is a K > so that E,, is K-isomorphic to X,
for all n I, 2, 3 we say that X has an unconditional decomposition into copies
of itself.

THEOREM 4.8. IfX is a Banach space ofgenus 2 containing co, then. there exists
X E,,, an unconditionalfinite dimensional decomposition satisfying"

(I) Each E,, is dimension n and has a unconditional basis (x’)’i’__.
(2) ((x’)’i’= ),,= is an unconditional basisfor X.
(3) There is a constant K > so thatfor all n < m,

I1 \11 I11 I1

Xi )i=l "r tXi )i=1"

(4) For all n < n2

Proof. Let (x,,),,__ be a normalized unconditional basis for X. By Theorem 4.7,
(x,,),,% is K0-permutatively equivalent to (x,, o0),,=m for m 2, Then letting
m 2 above, we can choose n, n2 > so that (xi)/2= is Ko-equivalent to a
permutation of {x,,,, x,,2}. Continuing we can find n3, n4, n5 > max{nt, n2} so that
(xi)3 is Ko-equivalent to a permutation of {x,,., x,, x,,, After taking permutationsi=1
we have found ((x’)’i’=),,=, a permutation of a subsequence of (x,,),, so that (I)
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holdswith E,, span[(xi ):’" ,=] Now (2) of the theorem is immediate and (3) follows
from the choice of (x’):’ Finally, since X is not isomorphic to co,

Therefore, for every n < n2

sup
Ili

and so Y y @E,,; is not isomorphic to c0. Hence Y X. But Y is the span of a
subsequence of the basis for X. So again by Theorem 4.7, Y -r,, X. !--I

We immediately have"

COROLLARY 4.9. IfX is a Banach space ofgenus 2 containing co then X has an
unconditional Schauder decompositon into copies of itself, i.e., X - X.

The following result of Kalton [8] is the corresponding result for genus co Banach
spaces.

PROPOSITION 4.10. If X has an unconditional basis which has only countably
many non-isomorphic subsequences, then X has an unconditional Schauder decom-
position into copies of itself.

The next step to classifying genus 2 spaces would be to use the strong decompo-
sition result in Theorem 4.8 to show that genus 2 spaces containing co must be of the
form X ( 3E,,),.,,. After this there are enoughtools available to complete the
classification.

5. Appendix

The following is a conjectured list of all genus n spaces for < n < 6.
Genus 1" It is known [2] that the only genus spaces are

CO, el, 62.

Genus 2: The spaces

n= co n= co n= el n=
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are known [2] to be genus 2 and have been conjectured [2] to be the only spaces of
genus 2. They are all unconditionally primary.

Genus 3: The spaces

CO ) el, CO e2, el

are known [6] to be genus 3.
We conjecture that the only unconditionally primary spaces of genus 3 are

n=l e co
k=l n=l e

Genus 4: We conjecture that the only genus 4 spaces that are not unconditionally
primary are

n=l e n=l e n=l e n=l e

and the only genus 4 spaces that are unconditionally primary are

j= n= e. e

j=l n=l el e

Genus 5" We conjecture that the only spaces of genus 5 that are not unconditionally
primary are
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and the only spaces of genus 5 that are unconditionally primary are

Genus 6" We conjecture the only spaces of genus 6 that are not unconditionally
primary are

n=l e k=l n=l e e,x, e

and that the only spaces of genus 6 that are unconditionally primary are

m=l I=1 k=l j=l

m= I= k= j=

n=l e e co e

n=l e e 1 Col
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