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1. Introduction

We are concerned here with establishing a norm inequality for an equa-
tion which arises in a variety of interesting problems. This seemingly
simple inequality has a surprisingly large number of applications which
we have brought to the reader’s attention in 3.
The result concerns the equation

1 I )e_ike(1.1) - h(O)f(O dO g (0 <-_ k <__ n),

where f(O) is a sufficiently nice function, and where h(O) is a polynomial
of degree n in e. The purpose is to relate the "size" of h (0) to the "size"
of g (0) =0 ge. In particular, we find a norm inequality

(1.2) h

where I] denotes the sum of the absolute values of the coefficients in the
polynomials h (0) and g (0), and where the constant M is independent of the
particular g (0) and h (0) involved. Such an inequality allows one to consider
the convergence of a sequence of h’s in terms of the corresponding sequence
of g’s.

Before stating the main result, let us generalize the norm used. Let
(n) >= 1 be a function of the integer n such that (n) __< (m) (n m) for

every n, m. Denote by av the class of functions F(O) integrable over
--7 <= 0 -< r with Fourier coefficients Fk such that

Next, let us restrict the class of functions f(O) considered in (1.1). Let
f (0) be integrable over -7 _-< 0 _-< with Fourier coefficients ck, let D (f)
det(c_) (i, j O, 1, n), and let f(O) satisfy log f(o) a. In terms
of the notation iust introduced, equation (1.1) can be written

Co C_ C_n no go
cl Co c_,+ h g(1.4) ..
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Our main theorem is as follows:

THEOREM 1.1. Let log f(O) e (. Then, there exist an integer N and a
constant M, both depending only on f(O), such that for every pair g (0) and
h(O) of degree n >= N satisfying (1.1)

(1.5)

It is easy to construct an example to show the importance of a condition
like log f (0) e a for the truth of Theorem 1.1. For instance take

f(O) 1 e g(0) 1, and h(0) k=0e
Clearly, h II->- n -k 1, while g II 9(0). An inequality like (1.5) is
impossible for all n.

Equation (1.1) can be thought of as a "finite-section" Wiener-Hopf equa-
tion. An explicit solution of (1.1) can be given for h(O) in terms of the
gk’s and determinants of c’s by inverting (1.4). However, this explicit
solution does not reveal what happens when n becomes infinite, i.e., when
(1.1) approaches the usual Wiener-Hopf equation. Theorem 1.1 can be
used to give information in this direction (see 3).
One consequence of Theorem 1.1 worth special mention is that D (f) 0

for all n >- N. This follows according to (1.5), from the fact that the only
solution of the homogeneous equation (1.4) with g 0 for all k >= 0 is
h(O)
well as the unique relationship between these two polynomials is insured for
all n sufficiently large.
The proof of Theorem 1.1 is given in 2. The reader interested primarily

in the applications can pass directly to 3 after reading the first two para-
graphs of 2.
We wish to express our thanks to E. Reich for helping to shorten the

presentation.

2. Proof of Theorem 1.1

Except in the statement of theorems we now drop the subscript on the
norm.

Let the Fourier coefficients of log f(O) be {d}, and set

A (0) exp {o d eik}, B (0) exp {- d ei}.
We assume without loss of generality that f(O) is actually equal to its con-
vergent Fourier series expansion. Therefore, f(0) A (t) B (0). Let
a+ and a- denote the subsets of functions f(O) in a, with Fourier coefficients
c 0 for, respectively,/c < 0 and ]c > 0. Clearly, A (0) and (0) 1/A ()
belong to a+ while B (0) and [ (0) lIB (0) belong to a-. Finally, we
introduce a notation. If

(2.1) f (0)

_
c e
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then

(2.2) f+ (0) c ei’, f- (0) - c ei.
We merely remark that f+ (0) e a+ and f-(0) e aT, and that f+ =< f ]],
f- f II,
To prove Theorem 1.1 consider (suppressin dependence on )

(2.3) hf G + g + G,

where G and G are the terms in the product hf of the form

Relation (2.3) can be written conveniently as

(2.4) hA G + g + G, hB Gd + gd + Gd.
We finish the proof by showing from (2.4) that

Gd Const. g ]], G Const. g ],
where the constants are independent of g and h. That this is sufficient
follows from (2.3) and

a + g + a [I.
Let (or n) denote the Fourier coefficient of (or ), and set

() Ec:-1 e (or X (n) ET+,X e).
Now, hA . Thus, using the first equation in (2.4) and the notation of
(2.2) we have

a. ()- (G )- ()- (G (n)).
But this means

Now, ifN is sufficiently large, then ()A < i for all n > N. Thus,

In a similar manner using the fact that hB in (2.4) has zero Fourier coeffi-
cients for > n, we have when X (n)B a < 1

(2.6> G x a X g + a2 I1.
it follows readily from (2.5) and (2.6) that a 1 boh

that one can take M (3 e)/(1 e).
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3. Applications
In this section we demonstrate some uses of Theorem 1.1.

1. Approach to the Wiener-Hopf equation. Let g e (+, and let h be the
polynomial of degree at most n in ei such that

1 I O)e_o(3.1) h,(O)f( dO gk (0 <- k <- n),

where log f(O) is in a. The solution of the Wiener-Hopf equation, i.e.,
(3.1) when n , is in terms of the notation of (2.2)

(3.2) H (g[) + H, eimo.

Question. How close is hn to H?

To answer this we show that if H (n) 0 H mOe then for all n suffi-
ciently large

(3.3) h,- H(n) <-- M f H- H(n)

where M is the constant of Theorem 1.1. Thus the convergence of h to H
is at the same rte as the convergence of the tail of H. To show (3.3) we
apply Theorem 1.1 to

1 (H(n)-h)f(O) e- dO
1

(3.4) 2-- (H(n)-H)f(O) e- dO

gk(n) (0 <- tc <_ n).

We get immediately

h H(n) _-< M g (n) =< M f Ill H H(n)

2. On a theorem of Szeg5. One theorem of Szeg5 concerning the behavior
of D (f) says that

(3.5) D(f)/Dn-l(f) exp log f(0) d

provided f(O) >- 0 and f(0), log f(O) are both integrable. The method of
proof of this theorem used in [3, p. 44] is to relate the left-hand side of (3.5)
to a minimization problem. Unfortunately, this method breaks down as
soon as one leaves the case of real f(O). In the case that log f(O) is in
we can now prove (3.5) for possibly complex-valued functions f(O) as well.
One starts with the relation

1
u(e)f(O) e-i dO o (0 - ] - n),

2

where u (e) is a polynomial of at most degree n in e which is uniquely
determined for M1 sufficiently large n. The constant term in u,(e) is
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exactly Dn-l(f)/Dn(f). From (3.3) we see that this constant term has
a limit as n becomes infinite. In fact, since g(0) 1, this limit is exactly
the constant term in H I (g/}) + i. Thus

Dn-1 (f) /Dn(f) exp (--do),

which proves the result.

3. On a conjecture of the author. In a previous paper [1] we made a con-
jecture. Later [2], we proved the conjecture for the case of real-valued
functions f(O). Using (1.5) we can now prove it in general. For any
f(0) withD(f) 0foralln >= 0weset (n >__ 1)

(3.6)

Cl CO
C2 Cl

Cn Cn--1

C--n-k2
C--n+a

Cl

C-1 C-2 C--n
(--1)" co c_ c-,+1

" D._(f)
Cn--2 Cn--a C--1

Finally, let I]all (m) al, and [[[ (-m) [[, where
now we assume that (n)/n 0 as n for some k 0.

THEOREM 3.1. Let f (O) be a bounded, measurable function on - 0 ,
and let Dn(f) O for all n O. Then log f (O) < if, and only if,
] ]] < and [ < . Moreover, in either case

1 O}D(f)/D_(f) exp log f(0) d

As pointed oug in [2], Theorem g.1 has ingeresging interpretations in erms
of expansions of functions by means of he Seg6 polynomials and in erms
of ghe asympgogie behavior of D (f). Alghough we discuss ghese eonneegions

a ligfle bi below, we will assume from ghis poin on ha he reader is familiar
with the proofs in [2] in an attempt to avoid what we consider to be essen-
tially repetition.

Proof of Theorem 3.1. The only gap which existed in the proof of the gen-
eral conjecture in [2] was to show that log f(O) in a implies a and
finite. This could be accomplished by Theorem 6.1 in [2] if we could show
that the polynomials u (e) and v (e) of at most degree n in e and e-,
respectively, satisfying

2- u()f(0) dO &0 (0 kn),

1
v(e)f(O e dO o (0 ),
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converge in norm to nonzero functions. According to (3.3), u fl --, 0,
since H fl/9+ fl 0. A similar argument shows that v also con-
verges in norm to a nonzero function. Thus, an application of Theorem 6.1
of [2] finishes the proof.

4. The asymptotic behavior of D (f). Theorem 3.1 is extremely useful in
analyzing the asymptotic behavior of D (f) because of the following identity
involving the quantities am and defined in (3.6)"

(3.7) D (f) Co

If log f(O) is integrable, let

log f() dOt
and let dk be the Fourier coefficient of log f(O). We use (3.7) and Theorem
3.1 to prove the following generalization of a result of Szeg5 [5], a result of
Kac [4], and a result of the author [2].

THEOREM 3.2. Let log f (O) be integrable and such that

(3.8) Y’- k I: d < .
Then, there exists a finite limit

(3.9) lim D (f) /G (f) +1 exp ’=1 md, d_m }.
By using the Wiener-L4vy Theorem [6, p. 245], condition (3.8) can be

rewritten in a variety of ways. For example, we can say that if f(O) is a
continuous function with winding number zero around the origin as 0 ranges
over -7 _-< 0 -<_ 7, and if k I1 ck < , then the limit in (3.9) exists.
An example has already been given in [2] to show that Theorem 3.2 is precise
in the sense that no moment condition of the type k Ild < with, < 1/2 can universally imply (3.9). We omit the proof of Theorem 3.2 since
it parallels so closely the corresponding proof in [2] of its counterpart Theorem
2.1. There is one point we should mention, however. To prove Theorem
3.2 there should be a generalization of Lemma 9.1 in [2]. Such a generaliza-
tion is easy to state and is essentially proved in Szeg6 [5]. Actually, Szeg6
considers only the real case, but his steps are algebraic and can be carried
through essentially without change in general.

5. A convergence equivalence. Theorem 3.1 also has interesting conse-
quences for Szeg5 polynomials associated with a function f(O) such that
log f (0) e a. The Szeg6 polynomials, (z) and (z), are defined by

(i) ,(z) and k,(z) are polynomials of degree n in z and 1/z, respec-
tively, with equal leading coefficients,

1 q(z)b,,(z)f(O) dO nm (Z eiO).(ii)
27
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A necessary and sufficient condition for the existence of and for all n
is that D (f) 0 for all n.

These polynomials can be used to expand an integrable function, say
g (0), defined on -r =< 0 =< r. If we set

_
(z) (z), then

(3.10) g (0) ’_ gk

Of course, g (0) also has an expansion in ordinary Fourier series

(3.11) g(O)

_
Gk e.

Question. Are the convergence properties of {G} and gk} the same?

The following theorem gives an answer to this question. Once again we
assume that

THEOREM 3.3. Let D, (f) 0 and log f (0) e (, and let g (0) be an integrable
function over --r <= 0 <= r wilh expansions (3.10) and (3.11) in terms of the
Szeg6 polynomials associated with f(O). Then ,(m) G < oo if, and

We omit the proof and refer the interested reader to the proof of Theorem
2.2 in [2]. A connection between Theorem 3.3 and the Wiener-Lvy Theorem
[6, p. 245] is also mentioned in this reference.
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