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1. Introduction

Given a Lie group G and a finite-dimensional continuous G-module V,
there present themselves several kinds of "cohomology groups" for G in V
that have representation-theoretical, topological, or group-structural interest.
In a concrete, but conceptually unsatisfactory fashion, they may be described
as the cohomology groups based on continuous cochains, differentiable
cochains, or representative cochains. If G is a real linear algebraic group,
there is a further specialization of cochains to rational representative cochains.

In order to bring these various cohomology theories under control, one
must define and analyze the underlying categories of G-modules, as well as
the appropriate notions of "resolution" of a G-module, capable of yielding
technically efficient definitions of the cohomology groups. The key for
obtaining satisfactory functorial definitions of cohomology groups of the
type considered here is the notion of "injectivity" of a module, which (in
the context of the general theory of modules) was considered and analyzed
first by Reinhold Baer (Bull. Amer. Math. Soc., vol. 46 (1940), pp. 800-806)
who showed, in particular, that every module can be imbedded in an injective
module, thus ensuring the existence of injective resolutions. It turns out
that, contrary to what is the case for projective resolutions, the mechanism
of injective resolutions can be adapted to take account of additional struc-
ture (topological, differentiable, or rational).
For algebraic linear groups over arbitrary fields of characteristic 0, such

a theory has been presented in [3], where it has also been shown how the
rational cohomology of such a group can be expressed in terms of the usual
cohomology of Lie algebras. The exactly analogous development for the
representative cohomology of a Lie group is included below. The continuous
cohomology theory has been presented in [11], which also contains the main
results on the passage to Lie algebra cohomology. Examination of the tech-
nicalities involved in this passage has revealed difficulties which were not
fully appreciated at the time when [11] was written, and which stand in the
way of a truly categorical treatment.
These difficulties reside in the requirements of "differentiability" and

"integrability" of a G-module, the first of which is the essential link to the
Lie algebra cohomology, while the second is an indispensable technical aid.
While it is immediate from classical results that requirements of this type

Received November 9, 1961.

367



368 G. HOCttSCHILD AND G. D. MOSTOW

are always met by any finite-dimensional continuous G-module, direct verifica-
tion of such analytical requirements tends to become extremely awkward or
even unfeasible for the vastly more complicated modules occurring in a
category that permits a general construction of the appropriate in]ective
resolutions for every member of the category. The way out consists in
balancing the definitions of differentiability and integrability with respect
to a standard construction of in]ective resolutions and with respect to each
other so that these properties are inherited in a formal fashion by the modules
occurring in the various resolutions. This accounts for the seemingly dis-
proportionate length of Sections 3-8 below. Most of the results of these
sections are amendments of results appearing in Sections 2, 3, and 4 of [11].

Sections 9 and 10 deal with the representative cohomology. Sections
11 and 12 answer the questions that originally motivated this investigation
in a surprisingly simple way (Theorems 11.1 and 12.1): if G is a real linear
Lie group with finite group of components, and V is a finite-dimensional
continuous G-module, then the continuous cohomology group for G in V is
naturally isomorphic with the tensor product of the representative cohomology
group for G in V by the continuous cohomology group of a certain factor group
of G in the trivial 1-dimensional G-module. If G is an algebraic linear group
there is an exactly analogous result, with "representative" in the place of
"continuous", and "rational" in the place of "representative".

2. Continuous cohomology
Let G be a locally compact topological group. By a continuous G-module

-we mean a Hausdorff topological vector space A over the field R of the real
numbers that is equipped with a G-module structure such that the corre-
sponding map G X A --+ A, written (x, a) ---+ x.a, is continuous, and the map
a -- x. a is a linear automorphism of A, for every x e G.
An exact sequence --* A - A+I --* of continuous G-module

homomorphisms is said to be strongly exact if there is a sequence of continuous
linear maps , A -- A-1 such that, for each i, +1 o -f-

_
o , is the

identity map of A onto itself. Such a sequence (,) is called a continuous
contracting homotopy.
We say that a continuous G-module A is continuously injective if, for every

strongly exact sequence 0 --* U P- V --. W -- 0 of continuous G-module
homomorphisms and every continuous G-module homomorphism a U --* A,
there is a continuous G-module homomorphism V --* A such that/ o p a.

If A and B are continuous G-modules, a strong imbedding of A in B is a
continuous G-module monomorphism a: A --* B such that there is a con-
tinuous linear map B --+ A whose composite o a with a is the identity
map of A onto itself. The continuous cohomology theory is based on the
fact that every continuous G-module has a strong imbedding in a continuously
injective G-module. We shall exhibit such an imbedding presently.

Let F(G, A) denote the space of all continuous maps of G into a topological
vector space A, and topologize F(G, A) by the compact-open topology, i.e.,
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the topology in which a fundamental system of neighborhoods of 0 consists of
the sets N(C, U), where C ranges over the compact subsets of G, U ranges
over the neighborhoods of 0 in A, and f N(C, U) means that f(C) c U.
We make F(G, A) into a G-module via the left translations f --* x.f, where
(x.f) (y) f(yx). It is not difficult to verify that this makes F(G, A) into
a continuous G-module.
Next we show that F(G, A) is continuously injective. Let

O U P- VWO
be a strongly exact sequence of continuous G-module homomorphisms, and let
a be a continuous G-module homomorphism of U into F(G, A). The strong
exactness of the sequence means that there is a continuous linear map
a V -- U such that p is the identity map on U. For v e V, define the
map (v) of G into A by (v)(x) a(cr(x.v))(1), where 1 stands for the
identity element of G. Clearly, f(v) e F(G, A). Moreover, one verifies im-
mediately that is a continuous linear map of V into F(G, A). Evidently,
(y.v) y.(v), for every y e G, so that is a continuous G-module homo-.
morphism of V into F(G, A). Finally, it is seen directly that f o p a.

Thus we have shown that F(G, A) is continuously injective.
Now suppose that A is a continuous G-module. With each element a e A,

we associate the element fa F(G, A) that is given by fa(x) x.a. Then
the map a --f is evidently a continuous G-module monomorphism of A into
F(G, A). The map f --+ f(1) is a continuous linear map of F(G, A) into A
whose composite with the map a --* f is the identity map on A. Thus the
map a f is a strong imbedding of A in F(G, A).

It follows immediately from this that, for every continuous G-module A,
there is a strongly exact sequence of continuous G-module homomorphisms
0 --, A -- X0 -+ X1 -- where each X is continuously injective. Such a
sequence is called a continuously injective resolution of A. From such a reso-
lution, we obtain a complex of topological vector spaces 0 X0 --+ X1
where X denotes the G-fixed part of X. The homology space H(X) of
this complex is independent, up to natural isomorphisms, of the choice of the
continuously injective resolution X of A. We denote it by He(G, A) and call
it the continuous cohomology space for G in A.
More generally, let 0 -- A --. Y0 -- Y1 --* be a strongly exact sequence of

continuous G-module homomorphisms, and let 0 --+ B -- Z0 --+ Z1 --+ be a
sequence of continuous G-module homomorphisms such that the composite of
any two successive homomorphisms is 0 and each Z is continuously injective.
Let a be any continuous G-module homomorphism of A into B. Then a can
be extended to a continuous G-module homomorphism of the first sequence
into the second so that the resulting diagram

0--*A -- Y0--+ Y--

O --. B --> Z --- Z1--
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is commutative. Moreover, this extension is unique up to a continuous
G-module homotopy, i.e., if al and a. are any two such extensions, there exists
a continuous G-module homomorphism /sending Y0 into B and Y into
for i > 0, such that o1 o. d. o " , o dz, where d and dz stand for the
sequences of maps in the complexes Y and Z, respectively. The proofs of
all these statements follow the usual pattern of homological algebra. In
particular, one sees from these facts that a induces a homomorphism
He(G, A) ---> Hc(G, B) in the canonical way. Thus H(G, .) becomes an
additive functor. More precisely, we obtain a connected sequence of
functors H(G, .), n 0, 1, ..., with connecting homomorphisms
H’{(G, C) ---> H’2+I(G, A) corresponding to every strongly exact sequence
0 -- A -- B -- C-- 0 of continuous G-module homomorphisms, such that the
sequence --H(G, A) -- H(G, B) --H(G, C) --H+1 (G, A) --+ is
exact (cf. [1, Ch. V]).
An explicit definition of H(G, A) and the associated homomorphisms may

be based on any functorial construction of continuously injective resolutions.
We proceed to give such a construction. For each f e F(G, A), let f’ be the
map of G into A given byft(x) x.f(x-1). Clearly, f’ eF(G, A), (f’)’ f,
and the map f ---> f’ is continuous. Thus the map f -- f’ is a continuous linear
involution of the topological vector space F(G, A). We have (x.f)’(y)
x.f’(x-ly). Thus the involution f ---> f’ transports the G-module structure
on F(G, A) into a new G-module structure in which (x.f)(y) x.f(x-ly).
We shall denote by F(G, A) the continuous G-module whose underlying
topological vector space is F(G, A) and whose G-module structure ’.is given
by this last formula. The map f --+ f’ is then a topological G-module iso-
morphism of F(G, A) onto F(G, A). For i -> 0, we define F(G, A) in-
ductively, setting F+1 (G, A) F(G, Fi(G, A) ). Clearly, Fi(G, A) may
then be identified with the continuous G-module whose underlying topological
vector space is the space of all continuous maps of the (i W 1)-fold direct
product of copies of G into A, topologized by the compact-open topology,
and whose G-module structure is given by the formula

(x.f) (yo y) x’f(x-yo x-y).

Each F(G, A) is continuously injective, as is clear from the above.
Now we define a continuously injective resolution

0 A F(G, A) FI(G, A)

as follows. The first map A --+ F(G, A) is the map associating with every
a e A the constant map G -- A with value a. For i _-> 0, the map
d F(G, A) -- F+(G, A) is given by the formula

(df) (xo x+l) +1 xi+l)’=0(-1) f(xo, ...,
where indicates that the argument below it is to be omitted. It is easily
verified that this is indeed a continuously injective resolution of A;a con-
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tracting homotopy, is given by 0 F(G, A) --> A;f --f(1), and, for i > 0,
i F(G, A) --. Fi-I(G, A); (,f)(x0, x_l) f(1, x0, x_l).
We shall call this resolution the homogeneous resolution. Now we observe

that F(G, A) is topologically isomorphic with F-I(G, A), by the map
f - f*, where

f*(xl xi) f(1, x xlx2, ..., x x).

The complex of the G-fixed part of the homogeneous resolution thus becomes
the complex of the nonhomogeneous continuous cochains

0 --+ A -- F(G, A) --> FI(G, A) --the coboundary map, , being given by

o A ---> F(G, A) (oa) (x) x.a a,

F-(G, A) F(G, A);

() (x0, ) x0.f(, x)- .- (--1)+f(xo, ..., xx+, x) + (--1)?(Xo, x_).

3. Auxiliary results on continuous modules

Let A be a topological vector space, and let G be a locally compact topo-
logical group. Let F*(G, A) denote the space of all continuous maps of G
into A with compact support, topologized by the compact-open topology.
We say that A is G-integrable if there is a continuous map Ja of F*(G, A) into
A and a separating family A’ of continuous linear functionals on A such that,
for every e A’ and everyf e F*(G, A), we have (Ja(f) Ia(’ of), where
Ia is a Haar integral on G, invariant in the sense that Ia(x.g) Ia(g), for
every x e G and every g e F*(G, A).

LEMMk. 3.1. Let A be a G-integrable topological vector space, and let S be a
locally compact topological space. Let F( S, A) be the space of all continuous
maps of S into A, topologized by the compact-open topology. Then F( S, A) is
G-integrable, with respect to the family F(S, A)’ consisting of the functionals
t..8, where / ranges over A’, s ranges over S, and t.8(f) "(f(s) ).

Proof. Let q e F*(G, F(S, A) ). For each s S, define the map , G -- Aby setting ,(x) (x) (s). Clearly, , e F*(G, A), so that Ja(q,) is defined
as an element of A. Now define the map Ja(q) S -+ A by Ja()(s)
Ja(,). First we show that Ja(q) e F(S, A). Let sl e S, and let U be a
neighborhood of 0 in A. Since Ja is continuous from F*(G, A) to A, we can
find a compact subset C of G and a neighborhood V of 0 in A such
that Ja(N(C, V)) U. Now choose a neighborhood W of 0 in A such that
W -t- W W V. For each x e G, we can find a compact neighborhood
T of s in S such that(x)(t) (x)(s) eW, for all eT. Sinceis
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continuous, there is a neighborhood P, of x in G such that

(q(y) (x) (T) c W,
for all y e Px. The compact set C is contained in the union of a finite family
Pxl, "’", P. Let T be intersection of the corresponding neighborhoods T
of sl in S. Now let x e C and e T. Then x e P, for some i, and we have

(x) (t) (x) (s) [(x) (t) (x) (t)] + [(x,) (t) (x) (s)]

[,()(s) (x,) (s)],

which lies in V. Thus we have t q81 N(C, V) whence Ja(t 81) U,
i.e., Ja()(t) Ja()(sl) e U. We have shown that Jz() is continuous,
i.e., that Ja() e F(S, A).
Nextwe show that Ja is continuous from F*(G, F(S, A)) to F(S, A). Let

T be a compact subset of S, and let U be a neighborhood of 0 in A. The
condition Ja() c N(T, U) means that Ja(t) U, for every e T. This
will be the case if Ct e N(C, V), for every e T, i.e., if e N(C, N(T, V)).
Hence it is clear that Ja is continuous.

Finally, we have t.8(Je() "(Je(q,) Ie(’ ,) Ie(t. o )
which completes the proof of Lemma 3.1.

If K is any other locally compact group, and A is a continuous K-module,
we say that A is a G-integrable continuous K-module if A is G-integrable as a
.topological vector space with respect to a separating family A’ of continuous
linear functionals such that, for every - e A and every x e K, the map.
a --> .(x.a) belongs to A’. Then Lemma 3.1 shows immediately that if A
is a G-integrable continuous K-module, so is F(K, A).

LEMMX 3.2. Let G be a locally compact topological group, P a compact norma
subgroup of G, S a closed subgroup of G such that G SP. Let A be a P-inte-
grable continuous G-module that is continuously injective as an S-module. Then
A is continuously injective also as a G-module.

Proof. Let V be a continuous G-module having a continuous linear pro-.
jection onto a submodule U, and let a be a continuous G-module homo-
morphism of U into A. Since A is continuously injective as an S-module,
there exists a continuous S-module homomorphism g of V into A such that
coincides with a on U. For each veV, define a map of P into A
by (p) p-.(p.v). Clearly, e F(P, A), and the map v - is con-
tinuous. Now define the continuous map p of V into A by p(v) Je().
Here, making use of the fact that P is compact, we normalize Je so that it
maps constant functions onto their values. For s e S, we have

,.(p) p-.(ps.v) s.[s-p-s.(s-ps.v)] s.(s-ps).

For any f F(P, A), define f’ and s(f) as elements of F(P, A) by

f(p) f(s-lps) and s(f) (p) s.f(p).
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Then we have 8. s(8). We have Jp(s(f)) s. J,(f). Furthermore,
the uniqueness of the normalized Haar integral on the compact group P
implies that Jv(f’) Jp(f). Hence we obtain

(s.v) J.(,.,) s. J() s.(v).

On the other hand, with p e P, we have

p(p.v) Je(q,.) Je(p(p.)) p. Je(p.q) p. J.(q) p.p(v).

Thus we conclude that p is a continuous G-module homomorphism of V into A.
Finally, if v e U, then is the constant function with value a(v), whence

p(v) a(v), which completes the proof of Lemma 3.2.

LEMM. 3.3. Let G be a locally compact topological group, and let K be a
closed subgroup of G such that the space G/K of the cosets xK is compact. Let
A be a continuously injective G-module, and suppose that, as a topological vector
space, A is K-integrable. Then A is continuously injective as a K-module.

Proof. We need an auxiliary weighting function on G, and we use the
following construction due to P. Cartier [13, p. 22-02]. We shall construct a
continuous nonnegative real-valued function f on G with compact support
and such that IK((x.f) K) 1, for every x e G, where the subscript K denotes
restriction of the function to K. Let C be a compact neighborhood of the
identity in G. Since a finite set of translates of the canonical image of C in
G/K covers the compact space G/K, there is a compact subset D of G such
that G DK. We can find a nonnegative real-valued continuous function
g with compact support on G such that g(x) 1, for every x e D-1. Then,
for every x G, (x.g) is a continuous function with compact support on K.
Hence we may define a function h on G by setting h(x) I((x.g)). Since
G KD- and g takes the value 1 t ech point of D-1, the function (x.g)
is not identically zero. Since it is nonnegative, it follows that h(x) O, for
every x e G. Since g has compact support, it is uniformly continuous, whence
h is continuous. Now define f(x) g(x)/h(x). Then f is nonnegative and
continuous and has compact support. We have (x.f) (x.g)K/(x.h):.
For y eK, we have (x.h)(y) h(yx) I((yx.g)) I(y.(x.g)K)
I:((x.g)) h(x). Thus (x.h) is the constant function with value h(x),
and it follows that I((x.f)K) 1, for every x e G.

Since A is continuously injective as a G-module, we may identify it with a
direct topological G-module summand of F(G, A). Hence it suffices to show
that F(G, A) is continuously injective as a K-module. Let V be a continuous
K-module having a continuous linear projection /onto a submodule U, and
let a be a continuous K-module homomorphism of U into F(G, A). For
veV and xG, let p. be the map of K into A defined by m,(y)=
a(.(y.v))(xy-). Clearly, p. eE(K, A), whence (x-.f)p. eF*(K, A).
Define f(v) as a map of G into A by (v)(x) J((x-.f) p.). We see
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immediately that (v) e F(G, A) and that is a continuous linear map of V
into F(G, A).
Now let x e G and y e K. Then we have

(y. (y) (x) (v) (xy) JK( (y-ix-1 "f) : p.u) J( (x-i’f) Y"

But
(y.p,,,) (z) p,,(zy) o((zy.v) (xyy-lz-) p.,(z)

so that y’p,, p.,, Hence we obtain (y.(v) (x) (y.v) (x) showing
that is a continuous K-module homomorphism of V into F(G, A).

Finally, if v e U we have p,,(y) o(y.v)(xy-) a(v) (x), i.e., p,, is the
constant function with value a(v)(x). It follows that

(v) (x) I((z-’f))a(v)(x) a(v)(x),

so that coincides with on U. This completes the proof of Lemma 3.3.
The next result was already obtained in [11, Section 2.8] and is included

here for the convenience of the reader.

LEMMA 3.4. Let G be a locally compact topological group, and let K be a
closed subgroup of G. Suppose that the space G/K is paracompact and that there
is a continuous local cross-section G/K --> G. Then every continuously injective
continuous G-module is continuously injective also as a K-module.

Proof. It suffices to show that, for every topological vector space A, the
continuous G-module F(G, A) is continuously injective as a K-module. The
assumptions of the lemma imply that there is a locally finite open covering
(Ci) ix of G/K satisfying the following conditions. If p is the canonical map
G -- G/K, then p-(C) is homeomorphic with C X K, by a homeomorphism
commuting with the right K-action. There is a partition of the constant
function on G/K with value 1 into continuous nonnegative functions / with
support contained in C.
Now let U, V, a be as in the proof of Lemma 3.3. Let i be the continuous

K-module homomorphism of U into F(p- (Ci), A) defined by making a(u)
the restriction to p-i(ci) of a(U)eF(G, A), for every u eU. Now
F(p-I(ci), A) may be identified, as a continuous K-module, with
F(K, F(C, A)) by means of the homeomorphism between p-l(Ci) and
C X K. Hence the continuous K-module F(p-(Ci), A) is continuously
injective. Hence there is a continuous K-module homomorphism of V into
F(p-(C), A) such that coincides with on U. Now consider the value-
wise product (, p)(v), where v e V. This is an element of F(p-(C), A)
which may evidently be regarded as an element (v) of F(G, A) vanishing
outside p-1 (Ci). Clearly, is a continuous K-module homomorphism of V
into F(G, A), and coincides with (, o p)a on U. Since the covering by
the C is locally finite, it is clear that, for each v e V, the sum rb(v) is
defined as a map of G into A, in the sense that, for every x e G, only a finite
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number of the i(v)(x) are different from 0. Moreover, it is evident that
this sum represents an elementof F(G, A). If we write (v)
we see immediately that coincides with a on U, and it is not difficult to
verify that is a continuous K-module homomorphism of V into F(G, A), so
that Lemma 3.4 is proved.

4. Oifferentiable modules
Let G be a real analytic group, @ the Lie algebra of G. Let A be a real

topological vector space, and assume that the points of A are separated by
the continuous linear functionals on A. We say that a continuous map of
G into A is differentiable if it satisfies the following conditions.

(1) ForxeG,e@,andteR, wehave

(x exp(t)) q(x) + tq’(x, , t),

where q’ is a continuous map of G X @ X R into A.

(2) If, with e @, () G -- A is defined by (,)(x) ’(x, , 0), then
() satisfies (1) if , e@, then (()) satisfies (1), etc.

Let D denote the space of all real-valued differentiable functions on G. By
a differential operator on D we mean a real linear endomorphism of D that
can be written as a polynomial in multiplications by elements of D and real
linear derivations. As is well known, one may identify the algebra of all
those differential operators which commute with the right translations (f-f. x,
where (f.x)(y) f(xy)) with the universal enveloping algebra U(@) of @,
and the D-module of all differential operators is canonically isomorphic with
D (R) U(@).

Clearly, if , is any continuous linear functional on A, and if o is a differ-
entiable map of G into A, then , o o e D, and we have -(o) -(, ),
for every i" e @. Using the above facts concerning the differential operators,
and that the elements of A are separated by the continuous linear functionals,
we see that the action of gO on differentiable maps of G into A can be extended
uniquely to an action of the algebra of all differential operators on differentiable
maps such that the formula /o/t() /t(/o ) holds for all differential
operators

Let Fd(G, A) denote the space of all differentiable maps of G into A. It is
clear that every differential operator sends F(G, A) into itself. We claim
that, furthermore, Fd(G, A) is stable under the left translations with the
elements of G. LetfeF(G,A),x, yeG,e@,teR. Then we have

(y.f) (x exp(t)) f(xy exp(ty*())),

where y* is the element of the adjoint group of G that corresponds to y-.
Hence

(y.f) (x exp(t’)) (y.f) (x) -]- tf’(xy, y*(’) t).
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xDefine (y.f)’ G X @ X R A by (y.f)’(x, , t) f( y, y*(), t). Then
(y.f)’ is evidently continuous, and we have shown that y.f satisfies (1).
Moreover, we have

(y.f)(x) (y.f)’(x, , O) f’(xy, y*(), O) y*() () (xy),

so that (y.f)= y.y*()(f). Since y*(i’)(j) eFt(G, A), what we have
already proved shows that (y.f) satisfies (1), and that, with r e@,
r((y.f)) y.y*(r) (y*(’) (f)). Clearly, this argument can be repeated,
and we conclude that y.f F(G,. A). Similarly, but more easily, one sees
that F(G, A) is stable under the right translations.
We topologize F(G, A) by taking for a fundamental system of neighbor-

hoods of 0 the sets N(C, E, U), where C ranges over the compact subsets
of G, E over the finite sets of differential operators on D, U over the neighbor-
hoods of 0 in A, and f eN(C, E, U) means that (f)(C) c U, for every
ricE.
We claim that F(G, A) thus becomes a continuous G-module. Let be

a differential operator on D that commutes with the left translations; let
x e G and f eFt(G, A). Then we have (x.f) x.(f), whence it is clear
that the map (x, f) (x.f) is continuous from G )< F(G, A) to F(G, A).
Since every differential operator on D is a D-linear combination of such
’s, it follows that the map (x, f) -- (x.f) is continuous from G X F(G, A)
to F(G, A), for every differential operator . But this is equivalent to the
statement that the map (x, f) x.f is continuous from G X F(G, A) to
F(G, A), so that our claim is proved.
We shall say that a continuous G-module B is a differentiable G-module

if, for every b e B, the map fb G -- B, defined by fb(x) x.b, is a differ-
entiable map and the map b -- f is continuous from B to F(G, B). We
shall show that F(G, A) is a differentiable G-module.

Let e F(G, A). Then we have

(x exp(ti’)).) (y) q(yx exp(tf)) (yx) + t’(yx, , t).

Define the map ’, G -- A by ’,(x) ’(x, , t). Then the above gives

(x exp(t’)). x. -t- tx.,t.
Hence we have

f(x exp(t)) f(x) - t(f)’(x, , t),

where (f)’(x, , t) x ’, If 0, we have t-(exp(t). )
which belongs to F(G, A). On the other hnd, ’,0 (), which lso
belongs to F(G, A). It follows that (f)’ is a map of G X @ X R into
F(G, A).

In order to show that (f)’ is continuous, it suffices to prove that, for
every derential operator that commutes with the left translations, the
map (x, , t) (x’’r.t) x.(’r,t) is continuous from G X @ X R to
F(G, A). For 0, we have (’r,t) (t-(exp(t).- ))
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t-l(exp(t’).(9) (9)) (9)’r.. On the other hand, 9’’.0 ’(9).
Since commutes with the left translations, it commutes also with " e @,
so that (9’r,0) ’((9)) (9)’r.0. Thus we have, for all e R, 8(9’r.,)
(9)’r.,. Hence it suffices to show that, if k (= ()) is any element of
Fd(G, A), the map (x, , t) x.b’r., is continuous from G X @ X R to
F(G, A). Since k’ is continuous, this is evidently the case.
We have now shown that the map f, of G into F(G, A) satisfies condition

(1) of the definition of a differentiable map. Moreover, we have ’(f,) (x)
(f)’(x, , O) x.’.o x.’(), so that ’(f) f) Hence our above
argument applies again to show that ’(f,) satisfies condition (1), etc., and
we may conclude that f is a differentiable map of G into Fd(G, A).
Now observe that, if is any element of the universal enveloping algebra

of @, we have (f) f(), whence we see immediately that the map -o (f)
is continuous from F(G, A) to F(G, F(G, A)). But this implies that the
map --*f, is continuous from F(G, A) to F(G, Fd(G, A) ). Thus F(G, A)
has been shown to be a differentiable G-module.

LEMMA 4.1. Let U be a convex neighborhood of 0 in a topological vector
space A, and let b be a map of R into A such that b(O) 0 and b has a de-
rivative b’(t) e U, for all in the closed interval [-e, e], where e is some positive
real number. Then, for every positive real number c, we have b(t) e (1 + c)tU,
for all te [-e, el.

Proof. By symmetry, it suffices to show that the final assertion holds for
all e [0, e]. Let S be the subset of this interval consisting of all x e [0, e]
such that $(t) e (1 + c)tU whenever 0 =< -< x. Let s be the least upper
bound of S. We have k(s + h) k(s) + hb’(s) + hg(h), where
approaches the 0-element of U as h approaches 0. Writing this with h -z
and with h y, where z and y are nonnegative real numbers, and subtracting,
we obtain b(s + y) b(s z) + (y + z)b’(s) + yg(y) + zg(-z). There
is a positive real number cl such that 9(h) ecU whenever hl -< cl. By
the definition of s, there is a real number z such that 0 =< z <- min(c, s)
and k(s-z)e(1 +c)(s-z)U. Then we have, for all y such that
0 <= y<-c,b(s+y) e(l+c)(s-z)U+ (y+z) U+ycU +zcU. Since
U is convex, this means that k(s + y) e (1 + c)(s + y)U. We may evi-
dently conclude from this that s e and S [0, e], Q.E.D.

PROPOSITION 4.1. Let G be a real analytic group, K an arbitrary locally
compact group. Let A be a K-integrable locally convex real topological vector
space. Then Fd(G, A) is locally convex, and differentiable and K-integrable
as a G-module.

Proof. F(G, A) is evidently locally convex. We have already shown
that it is a differentiable G-module. What remains to be shown is that
F(G, A) is a K-integrable G-module.

Let 9 e F*(K, F(G, A)). For each x e G, let 9, denote the map of K into
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A that is given by q(y) q(y)(x). Then q e F*(K, A), and JK() is
defined as an element of A. We know from the proof of Lemma 3.1 that if
JK(q) (x) J(q), then J(q) e F(G, A). We must show that, actually,
J() e Fd(G, A). We have

q ep(t)(Y) q(Y) (x exp(ti’)) q(y) (x) + t,(y)’(x, ’, t).

Thus q e:,(t) q -t tq’x,t where q’x,t(Y) q(y)’(x, , t). Fort O,
it is clear from this that ’,,t e F*(K, A). On the other hand, ’,,o(y)
,(y) ’(x, ’, O) ((y) (x) whence it is clear that ’x.o F*(K, A). Hence,
for every e R, J(’,,t) is defined as an element of A, and we have

J() (x exp(ti’)) J() (x) - tJ(q’x,,).

We must show, therefore, that the map (x, , t) --> J:(,p’..t) is continuous
from G X @ X R to A. Since J is continuous from F*(K, A) to A, this
will follow as soon as we have shown that the map (x, ’, t) -+ q’,.t is con-
tinuous from G X @ X R to F*(K, A). In order to do this, it is evidently
sufficient to show that the map (y, x, , t) ---> (y)’(x, , t) is continuous
from K X G @ X R to A. Now the continuity of this map is clear except
art =0.
Hence it suffices to show that, given y0, x0, ’0 and a neighborhood U of

0 in A, there is a neighborhood V of (y0, x0, i’0,0) in K X G X @ X R
such that (y)’(x, , t) (y0)’(x0, i’0,0) e U, for all (y, x, , t) e V, i.e.,
such that (y)’(x, , t) ’0((y0)) (x0) e U, for all (y, x, ’, t) e V. Now
define a map of R into A by

(t) t[q(y)’(x, , t) ’((y)) (x)]

(y) (x exp(t’)) (y) (x) t(,p(y)) (x).

Evidently, has a derivative /at every e R, and

’(t) i’((y) (x exp(ti’)) ’((y) (x).

Since A is locally convex, we can find a convex neighborhood U1 of 0 in
A such that 3U1 c U. We can find a neighborhood W of (y0, x0, 0) in
K X G X @ .and a positive real number e such that

’((y)) (x) ’o((yo)) (Xo) U and

i’((Y)) (x exp(t-)) -((y)) (x) e U,

whenever (y, x, ) e W and tl <_- e. In particular, we have then h’(t) e U1.
By Lemma 4.1, this implies that (t)e2tU, whenever (y, x, ) e W and

--< e. For these points (y, x, ’, t), we have therefore

’(q(y)) (x) o((Yo)) (Xo) e U1 and (y)’(x, , t) ((y) (x) 2U

whence
(y)’(x, , t) ’o((yo)) (Xo) e 3U U.
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Hence, if JK()’ is defined by JK()’(x, , t) J:(’..t), we have shown
that J()’ is continuous from G >< @ >< R to A, and

J() (x exp(t)) J() (x) + tJ:()’(x, , t).

This gives (J() (x) J:()’(x, , O) J(’.,o) J:( ( o )),
sothat’(JK()) J(" o). Since" o is still in F*(K, Fd(G, A)),wemay
repeat the above arguments and conclude that J() e Fd(G, A). More-
over, it is clear that, for every element 6 of the universal enveloping algebra
of @, we have 6(J()) J(6 ).
Taking into account what is known from the proof of Lemma 3.1 concern-

ing the composition of JK with continuous linear functionals, we see that there
remains only to show that the map J is continuous from F*(K, F,,(G, A))
to F(G, A). For this, it suffices to show that, for every element 6 of the
universal enveloping algebra of (9, the map --+ 6(J()) J(6 o ) is
continuous from F*(K, F(G, A)) to F(G, A). Since the map --+ 6 o
is continuous from F*(K, F(G, A)) to itself, and since J is continuous
from F*(K, F(G, A)) to F(G, A) (as we know from the proof of Lemma
3.1), this is indeed the case, so that Proposition 4.1 is proved.

5. Diferenticble cohomolo,
The differentiable cohomology for a real analytic group G is defined in

exactly the same way as the continuous cohomology, the sole change being
that only differentiable G-modules are admitted. In particular, we say
that a differentiable G-module A is differentiably injective if, for every strongly
exact sequence 0 -- U 2_. V-- W -+ 0 of continuous G-module homomor-
phisms between differentiable G-modules U, V, W, and every continuous
G-module homomorphism a U --+ A, there is a continuous G-module homo-
morphism t V -+ A such that/ p a.

LEMMA 5.1. Let A be a real topological vector space whose points are sepa-
rated by the continuous linear functionals. Then the differentiable G-module
Fd(G, A) is differentiably injective.

Proof. Using the notation of the above definition, let be a continuous
linear map of V into U such that z o p is the identity map on U. For v e V,
define the map (v) of G into A by (v)(x) a(z(x.))(1). Since V
is a differentiable G-module and since z and a are continuous, it is clear that
(v) e Fd(G, A). One verifies immediately that is a G-module homo-
morphism and that o p a. There remains only to show that is a con-
tinuous map of V into Fd(G, A), or that, for every differential operator 6,
the map v -- 6((v)) is continuous from V to F(G, A). As usual, let us
define f G -+ V by f(x) x.v. Define al U -- A by al(u) a(u)(1).
Then we have (v) al o o f, whence 6((v)) a, o 6(f). Since the
map v -- 6(f) is continuous from V to F(G, V), it follows that the map
v -- 6(t(v)) is continuous from V to F(G, A), Q.E.D.
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Lemma 5.1 ensures the existence of a differentiably injective resolution
for every differentiable G-module A, so that the spaces H(G, A) of the
differentiable cohomology for G in A can indeed be defined. The construc-
tion of the homogeneous continuously injective resolution that we made at
the end of Section 2 can be carried out with Fd(G, A) in the place of F(G, A)
and, as in the continuous case, this leads to a description of Hd(G, A) as
the cohomology space of the complex of nonhomogeneous differentiable co-
chains. The differentiable n-cochains for G in A are the differentiable maps
of the direct product of n copies of G into A, and the coboundary map is
given by the formula at the end of Section 2.

Clearly, if A is any differentiable G-module, a differentiably injective resolu-
tion of A can be mapped into any continuously injective resolution of A.
These maps are unique up to continuous homotopies and induce a natural
homomorphism Hd(G, A) He(G, A), or, more precisely, a morphism of
the functor Hd(G, .) to the functor obtained by restricting the functor
Hc(G, ,) to the category of differentiable G-modules. Moreover, this mor-
phism evidently commutes with the connecting homomorphisms.

LEMMA 5.2. If A is a locally convex G-integrable topological vector space,
then F(G, A) is continuously injective.

Proof. Choose an element w e D with compact support and such that
I(w) 1. Let F(G, F(G, A)), and define 1 F(G, Fd(G, A)) by
(x)(y) w(xy-1)(x)(yx-1). Let S be the support of w, and let
Fs(G, F(G, A)) denote the subspace of F(G, F(G, A)) consisting of all func-
tions b such that the support of is contained in Sy, where b(x) b(x)(y).
In particular, e F*(G, A), so that we may define Jo() as a map from G to A
by J(b)(y) J(). Evidently, the proof of Proposition 4.1 applies to the
elements of Fs(G, Fd(G, A)) and shows that the map --, J() is a continuous
map of F(G, F(G, A)) into F(G, A). We have Fs(G, F(G, A)), and
we write * J(l) F(G, A).

Clearly, the map --* 1 is continuous, so that the map --* * is also
continuous. We have (z.)(x)(y) (xz)(yz), so that (z.)(x)
z.[(z.)(x)]. Thus (z.) z(z.), where, generally z() is defined
by z(b) (x) z.b(x). This gives

(z.)* J((z.)) J(z(z.)) z. J(z.) z. J(,,) z.,*.

Thus the map * is a continuous G-module homomorphism of
F(G, F(G, A) into F(G, A).
Now suppose that f, where u F(G, A). Then we have 1(x) (y)

w(xy-)u(y), which gives *(y) I(y-w)u(y) u(y). Thus
(fu)* u. Hence we conclude that the map u --* fu is a topological G-
module isomorphism of Fd(G, A) onto a direct topological G-module summand
of F(G, F(G, A) ), whence F(G, A) is continuously injective.
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TOtEM 5.1. If A is a locally convex, differentiable and G-integrable
G-module, then the canonical homomorphism Ha(G, A) -- He(G, A) is an
isomorphism.

Proof. By Proposition 4.1, F(G, A) is a locally convex, differentiable,
and G-integrable G-module. By Lemma 5.2, it is continuously iniective.
Hence we see inductively that the differentiably injective resolution of A by
the modules F(G, A) is actually also a continuously iniective resolutioa
and therefore effects an identification of Ha(G, A) with He(G, A).

6. Differential forms
Let G be a real analytic group, D the algebra of all differentiable func-

tions on G, T the D-module of all real linear derivations of D. Let V be
a differentiable G-module. For every positive integer q, let Aq(T, V) de-
note the D-module of all (D, q)-linear alternating maps with arguments
in T and values in Fa(G, V). We agree that A(T, V) F(G, V) and
Aq(T, V) (0) if q is a negative integer. We let A (T, V) denote the weak
direct sum of the D-modules Aq(T, V). An element of Aq(T, V) is called.
a V-valued differentiable differential form of degree q.
To every r e T, there is attached a D-linear homogeneous endomorphism

c, of degree -1, the contraction with respect to r, which is given by

The natural action of T on Fd(G, V) (in which the G-module structure of V
does not enter) is extended to an action of T on A (T, V) by homogeneous
real linear endomorphisms t of degree 0, where

t() (-,..., -) -(,(,-,..., ,-)) +

_
(-, ,..., [,-, -], ..., -)

One has the identities

[t, t,] t,

The differential operator,/}, on A (T, V) is a homogeneous real linear endo-
morphism of degree 1, which, as such, is characterized by the identity
/}c -F c,/ t. One has/} 0, and/} commutes with each t. The ex-
plicit formula for / is

(,) (-o, ..., -) _o 1) %(,(-o, ..., ,, ..., ,-))

-F <, (--1)+"a([rr, r,], r0,’", Cr,’", , ,’", r)..

Now let K be a closed subgroup of G, and consider the homogeneous space
G/K of the cosets xK. This is a differentiable manifold, with D as the
algebra of all differentiable functions, where D is the subalgebra of D con-
sisting of all f e D such that x.f f, for every x e K. The complex of the
V-valued differential forms on G/K is defined exactly as above, with D
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in the place of D and F,(G/K, V) Fd(G, V) : in the place of F,(G, V);
again, F,(G, V) : is defined as the DK-submodule of F,(G, V) consisting
of allfeF,(G, V) such that x.f f, for all xeK. We denote the DK-
module of all real linear derivations of D by T, and the complex of the
differential forms on G/K by A(T, V).
We regard T and T as right G-modules, with

(.x) (f) (f.x-) .x,

wherexeG, feDorD,and reTorTs.
In addition to the G-module structure of F,(G, V) by left translations, we

define a right G-module structure on F(G, V) by

(f.x) (y) x-.f(xy).
Now we make A (T, V) and A (T:, V) into G-modules by

(x. ) (, ) ,(.x, ,.x) .-.
It is verified directly that ti is a G-module endomorphism of A (T, V) and
A(T: V).
The Lie algebra @ of G is identified with the real linear subspace of T con-

sisting of all r e T such that r.x r, for every x e G. In addition to the
right G-module structure used here, T has a left G-module structure given by

(. ) () .
We denote by T the subspace of T consisting of all r e T such that x. r=
for all x e G. The natural maps of D (R) gO into T and of D (R) Ta into T are
both isomorphisms.
We define a real linear projection T -- T, denoted r -- *, by setting

r*(f) (x) r(x’f)(1),

where f e D and x e G. Observe that we have (#)* f(1)r*, and hence
(x.(#))* f(x)(x.r)*. Evidently, the elements of T map DK into itself,
so that we have a restriction map --+ a of T into TK.
Now let a e Aq(T, W). We define a function p(a) on q-tuples of ele-

ments of T and with values that are maps of G into V by

p(Ol) (T1, Tq) (X) Ol( (X" T1) SK (X" Tq) :K) (X).

We see immediately that p(a) is (D, q)-linear and alternating. Moreover,
if the ri’s are in T, we have p(a)(r, ,rq) a((rl), "’, (rq)),
which lies in F,(G, V):. Since the elements of Ta span T over D, it follows
that the values of p(a) lie in F,(G, V), so that we have p(a) eAq(T, V).
Next we show that p commutes with . Since the elements i’* with e @

span T over D, it suffices to show that
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whenever each ’i lies in (R). Since

(x. ’i*) * (i’i*)* ’* and [r*, ’,*] [’,, r]*,

the desired equality becomes immediately apparent from the explicit formula
for /t.

Furthermore, p is a G-module homomorphism. Indeed, we have

(x.p(a)) (rl, rq)(y) x.p(a) (r.x, rq.x) (x-y)

X" a.( (x-ly "rl’X) *K, (x-lY" rq’x) *K) (x-ly).

Now one verifies in a straightforward fashion that (x-., x) * r*. x. Hence
we obtain

(x’p(a))(rl,..., rq)(y) x.a(((y.r)*.x), ..., ((y.rq)*.x))(x-y)

(x. a) (y. 1) *, (y. rq) *) (y)

p(x.a) (r, rq) (y).

Thus x. p(a) p(x. a), and we conclude that p is a homomorphism of the
G-module complex A (TK, V) into the G-module complex A (T, V).
Now we define a right G-module structure on A (T, V) by

( x) (, ) x-.(x. . ).
The explicit formula for shows immediately that tt is also a right G-module
endomorphism of A (T, V). Let A(T, V) be the set of all e A (T, V)
such that a.x a, for all x e K and cr(a) 0, for all i" e , the Lie algebra
of K. We claim that A(T, V) is a subcomplex of A(T, V), i.e., that it
is stable under tt. Clearly, if a eA:(T, V), we have i(a) .x 6(a.x) 6(a),
for all x e K. Moreover, if " e , c(5(a)) tr(a). If we identify T with
D (R) (9, we see immediately that A(T, V) may be identified with
E((9’) (R) F(G, V), where E(@’) is the exterior R-algebra constructed over
the dual (9’ Hom(@, R) of (9. The representation of G on A(T, V)
given by -- a.x- thereby becomes the tensor product of the representation
of G on E(@’) that is induced by the (dual of the) adjoint representation
of G on (9 and the representation of G on F(G, V) by left translations.
Hence it is clear that A (T, V) is a differentiable G-module with the G-action

--1
a -+ a. x Moreover, it is easily verified that the differential of this repre-
sentation of G on A (T, V) is the representation -+ tr of (9 on A (T, V).
It follows that t annihilates A(T, V) whenever " e , so that the above
shows that c(ti(a) 0 whenever a e AK(T, V) and e . Thus A(T, V)
is indeed a subcomplex of A (T, V). Moreover, it is seen immediately from
the definitions that A(T, V) is also a left G-submodule of A (T, V). We
shall show that p maps A (T, V) isomorphically onto A(T, V).

It follows at once from the definitions that p(a).x p(a), for every
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a e A(Tt, V) and every x e K. Now let " e. We have

cr(p(a)) (rl, rq_l) p(a) (’, r, rq-1), and

Now this is the element of V obtained by evaluating the local differential
form t at the q-tuple of elements of the tangent space at xK to G/K de-
fined by the infinitesimal transformations (x. )*t, (x. r)*K. But if
f eFt(G, V), we have (x.)*t(f)(xK) (x.)(x.f)(1) (f)(x), which
is equal to 0 because i" annihilates F(G, V). Hence we have cr(p(a) O,
and we conclude that p(A(T, V) c At(T, V).
Now we recall that p(a) (rl, rq) a((rl) t, (rq)) whenever

the r’s lie in Tq. Since the differential of the canonical map G -- G/K
sends the tangent space to G at x onto the tangent space to G/K at xK, the
elements (rt)t, with r e Ta, make up the whole tangent space to G/K
at xK. Hence we see, on localizing as above, that p is a monomorphism.

Let be a linear complement of in @. The tangent space to G at a point
x is the space of the tangents r as r ranges over @, where r(if) r(f)(x).
The differential at x of the canonical map G .--. G/K is an epimorphism of
@ onto the tangent space to G/K at xK, and its kernel is precisely .
Hence it maps 9 isomorphically onto the tangent space to G/K at xK.
Now let a be any element of T. We define a tangent vector field r on G
by making r the unique element of 9 whose image under the differential
of the canonical map G -- G/K is the tangent t at xK that is defined by .
It is easily seen that r is a differentiable vector field, so that it may be identified
with an element r e T such that r(:)(x) r(j’), for every x G. Thus we
conclude that every element of TK is the restriction to D of an element of T.
Now let eA(T, V). If we identify T with D (R) @ we see that the

kernel of the restriction map of T into the D-module of all real linear de-
rivations of Dt into D becomes identified with D (R) . Hence we see that
,(r, rq) depends only on the restrictions of the r’s to D. Next we
note that an element r of T restricts to an element of T if and only if x.r r

on D, for every x e K. Since ,.x , whenever x e K, it follows that
(r, ..., rq) eFt(G, V) whenever the r’s send Dt into itself. Hence
the restriction of , to such q-tuples defines an element a e Aq( Tt, V). Then
we have p(a)(r, ..., rq)= (rl, ..., rq) whenever the elements r be-
long to Ta and hence whenever they belong to DTa T. Thus p(a) ,,
and we have shown that p maps A (Tt, V) isomorphically onto At(T, V).
As before, let us write A (T, V) E(@r) (R) F(G, V). Then the left

G-module structure of A (T, V) takes the form x. (e (R) f) e (R) (f.x-),
where (f.x-)(y) x.f(x-y). We topologize A(T, V) by giYing it the
coarsest topology making all the maps a -- a(r, rq) continuous from
Aq(T, V) to F(G, V). Clearly, every R-basis of E(@’) then yields a homeo-
morphism of A (T, V) onto a direct sum of copies of the topological vector
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space F,(G, V). Since V is a differentiable G-module, the map f -+ f’, where
f’(x) x.f(x-1), is a continuous involution of F,(G, V) transporting the
G-module structure f -+ f. x-1 into the G-module structure of F(G, V) based
on the left translations. Hence it is clear that F,(G, V) is a differentiable
G-module for the structure f ---> f.x-, whence A(T, V) is a differentiable
G-module for the structure a --> x.a.
On the other hand, we regard A (T, V) as a K-module with the action

a a.x-. We have already remarked above that this is the structure
of a differentiable K-module. Clearly, the subspace E((@/)’) (R) F,(G, V)
is both a G-submodule and a K-submodule of A (T, V). Combining these
structures, we evidently obtain the structure of a continuous (even differ-
entiable) GXK-module.
Now suppose that V is locally convex and G- and K-integrable as a G-

module. Then it follows from Proposition 4.1 that F,(G, V) is G- and K-
integrable as a G-module, and also as a GXK-module. By Lemma 5.2,
F,(G, V) is continuously injective as a G-module.

Quite generally, if P and Q are locally compact groups, M a Q-integrable
continuously injective P-module, and U a finite-dimensional continuous
P-module, then U (R) M is a Q-integrable continuously injective P-module;
the Q-integrability is seen quite directly by using the linear functionals
on U; the injectivity follows from the fact that U (R) F(P, M) may be identi-
fied with F(P, U (R) M).

In particular, we conclude that E((q9/) ) (R) F(G, V) is a K-integrable
GK-module and continuously injective as a G-module. If K is compact,
it follows therefore from Lemma 3.2 that E((@/)’) (R) F(G, V) is con-
tinuously injective as a GK-module. It follows trivially from this that
its K-fixed part, i.e., A:(T, V), is continuously injective as a G-module.
In order to proceed, we must impose an additional integrability condition

on V. We assume that there is a separating family V’ of continuous linear
functionals on V, stable under composition with the G-operators on V, and
a continuous linear map J F(R, V) ----> V, where R stands for the space of the
real numbers, such that, for every /e V’ and every f e F(R, V), "(J(f)) is
the ordinary integral from 0 to 1 of the continuous real-valued function, o f. Let us refer to this property of V by saying that V is [0, 1]-integrable.
The proof of Proposition 4.1 carries over without change to show that if
V is locally convex and [0, 1]-integrable, then F(G, V) is [0, 1]-integrable.
Now let us suppose that K is a maximal compact subgroup of G and that

V is a differentiable G-module that, as such, is G-, K- and [0, 1]-integrable.
Since F(G, V) is [0, 1]-integrable, so is evidently F(G, V) :, and we know
from the proof of Proposition 4.1 that r(Jl(f)) J(r o f), for every r e T
and every f e F(R, F(G, V):). Since the differentiable manifold G/K is
now diffeomorphic with Euclidean space, and since F(G, V) : is [0, 1]-in-
tegrable, one sees that the usual constructive proof of the Poincarti Lemma
can be applied to produce a continuous real linear contracting homotopy of
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the V-augmented complex A (TK, V). IdentifyingA (TK, V) with A(T, V)
by means of the isomorphism p, which is easily seen to be a topological iso-
morphism, we conclude that the sequence of continuous G-module homo-
morphisms (0) -- V-- A(T, V) -- A(T, V) -- is strongly exact,
and hence is a continuously injective resolution of V.
Now (A:(T, V)) is the K-fixed part of E((@/)’) (R) V, for the repre-

sentation of K obtained as the tensor product of the given representation of
K on V and the representation of K on E((@/) ’) that is induced from the
adjoint representation of K on @. Since K is connected, this means that
(A(T, V)) is the space Cq(@, , V) of the relative Lie algebra cochains
for (@, ) in V. Moreover, the map Cq(@, , V) Cq+l(@, , V) that is
induced by ti is the usual coboundary map of the relative Lie algebru cochain
complex. In this way, He(G, V) is identified with the relative Lie algebra
cohomology space H(@, , V), the topology being ignored. Note, however,
that if V is finite-dimensional, then the spaces Cq(@, , V) are finite-dimen:
sional, whence we see that the induced topology of Hc(G, V) is then Haus-
dorff so that, with its induced topology, H(G, V) becomes identified with
the finite-dimensional Euclidean space H(@, , V). Thus we have the
following result (cf. [11, Theorem 3.6.1]).

THEOREM 6.1. Let G be a real analytic group, and let K be a maximal
compact subgroup of G. Let V be a locally convex, G-, K-, and [0, 1]-integrable,
differentiable G-module. Then the resolution of V by the V-valued differential
forms on G/K yields an isomorphism of He(G, V) onto the relative Lie algebra
cohomology space H(@, , V). If V is finite-dimensional, this isomorphism
is a topological isomorphism.

7. Groups of finite homology type
We say that a locally compact group G is of finite homology type if, for every

finite-dimensional continuous G-module V, the cohomology space Hq(G, V),
with its naturally induced topology, is a finite-dimensional Hausdorff space,
for every q. By Theorem 6.1, a real analytic group is always of finite ho-
mology type.

TgEOREM 7.1. Let G be a locally compact group, K a closed normal sub-
group of G, V a finite-dimensional continuous G-module. Assume that there
is a continuously injective resolution o V as a G-module that is also a con-
tinuously injective resolution of V as a K-module. Suppose that Hq(K, V)
is afinite-dimensional Hausdorff space, for each q, and thatH(G/K, Hq(K, V)
is a finite-dimensional Hausdorff space, for all p and q. Then H(G, V) is
a finite-dimensional Hausdorff space, for each n.

Proof. Let 0 --+ V -- X0 --. X1 -- be a continuously injective reso-
lution of V as a G-module such that each X is continuously injective also
as a K-module. Since each Xi is continuously injective as a G-module,
each X is continuously injective as a G/K-module.
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Let C’’ F*’-I(G/K, Xq:), where we agree that F-1 (G/K, Xq*:) Xq*:.
Let d denote the map Xq:--+ Xq+: obtained from our resolution, and let
8 be the coboundary map F’(G/K, Xq*’:) --+ F’+*(G/K, XqK), as defined
at the end of Section 2. Let D be the map C’q --+ C+’q q- C’q+ defined
by D(f) (f) -k (-1) d f. Then the weak direct sum C of the C’q,
equipped with the map D, is a bigraded complex of topological vector spaces.
On the subspace X of C, the boundary map D coincides with the boundary
map d, so that X is a subcomplex of C. Hence the injection X -- C induces
a continuous map of He(G, V) into the homology group of the complex C.
Since each Xq is continuously injective as a G/K-module, the homology
group of the "partial" complex ( C’q, 8) reduces to its component of
(partial) degree 0, which is Xqe. If we filter the complex C with respect to
the secondary degree q, we see that this implies that the above continuous
map of Hc(G, V) into the homology group of C is an isomorphism of un-
topologiaed vector spaces; the argument is carried out, for instance, in
[8, Ch. I, Section 4]. Hence it suffices to show that, for each degree n, Hn(C)
is a finite-dimensional Hausdorff space.

In order to do this, we consider the spectral sequence associated with the
filtration of the complex C with respect to the primary degree p. In the
usual notation of spectral sequences, we have E ’q C’’q, and the differ-
ential operator do on E0 is the map f -+ (- 1)d. f sending C’q into C’’q+.
Let Z(Xq:) denote the kernel of d in Xq. Then the kernel of do in E ’q

is F’-(G/K, Z(Z) while do(E’-) F’-I(G/K, d(Zq_l:) ). Hence
we have

Ef, F’-(G/K, Z(Zq:) /F*’-I(G/K, d(Z_:) ).

Since Hq(K, V) is a finite-dimensional Hausdorff space, the continuous G/K-
module sequence 0 --+ d(Xq_l:) --+ Z(Xq:) Hq(K, V) ---+ 0 is strongly exact.
Hence it is clear that E ’q may be identified with F’-I(G/K, Hq(K, V)).
The differential operator d’E’ ---+ E+’ is the map

F’-(G/K, Hq(g, V)) ---+ F*’(G/K, Hq(g, V) ).

Hence we have E’ H(G/K, Hq(K, V)), which, by assumption, is a
finite-dimensional Hausdorff space. It follows that each E’q is a finite-
dimensional Hausdorff space.
Now let H(C), be the pth filtration subspace of H(C), for the filtration

of H(C) induced by the filtration of C. Then we have the continuous canon-
ical isomorphism H*’+q(C),,/H’+q (C) ,+1 -+ E’. Hence we see that, for
each n, H’(C) ,/H’(C) ,+ is a finite-dimensional Hausdorff space. Since
g (C) H (C), and H (C) 0 when p exceeds n, it follows that H (C)
is a finite-dimensional Hausdorff space. This completes the proof of Theorem
7.1.

Let G be any connected locally compact group. Then, as is shown in the
solution of Hilbert’s fifth problem, G has a compact normal subgroup K such
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that G/K is a real analytic group [10, Ch. IV, Theorem 4.6]. Thus G/K has
finite homology type. Let V be a finite-dimensional continuous G-module.
Then V is K-integrable, and it follows from Lemmas 3.1 and 3.2 that the
resolution of V by the modules F(G, V) is also a continuously injective
resolution of V as a K-module. Moreover, by Lemma 3.2, the continuous
cohomology of K in any finite-dimensional continuous K-module W reduces
to H(K, W) W. Thus we may apply Theorem 7.1 to conclude that G
is of finite homology type.
Now let T be a discrete free group. If V is any continuous T-module, we

may compute He(T, V) from the complex of the nonhomogeneous cochains
for T in V, as described at the end of Section 2. Since T is discrete, every
cochain for T in V is automatically continuous. The 2-cocycles for T in V
are factor sets for group extensions of V by T. Since T is a free group, these
group extensions are split, whence it follows that every 2-cocycle for T in V
is a coboundary, i.e., that H(T, V) (0). The exact sequences resulting
from strong imbeddings of continuous T-modules in continuously injective
continuous T-modules now show that H:(T, V) (0), for all n > 1. Let S
be a free system of generators for T. Then it is easy to see from the non-

He(T, V) is isomorphic, as a topo-homogeneous cochain description that
logical vector space, with the factor space of the space of all maps of S into V
(topologized by the finite-open topology) modulo the subspace consisting of

Hc(T, V) may bethe maps of the form x -+ x v v, where v e V. Finally,
identified with Vr, of course. Hence it is clear that if T is finitely generated,
then it is of finite homology type.

Let G be a locally compact group, K a normal closed subgroup of G such
that K and G/K are of finite homology type and G/K is either compact or
discrete. Then, in virtue of Lemma 3.3 or Lemma 3.4, Theorem 7.1 ap-
plies to show that G is of finite homology type. Let us say that a group
G is quasi-solvable if there is a finite series

G0-- G GI Gn- (1)

of closed subgroups of G such that each Gi is normal in Gi_l and G_/G is
either compact or discrete, finitely generated and free. Then we have the
following result.

TEOREM 7.2. Let G be a locally compact group, G the connected component
of the identity in G. Then, if G/G1 is quasi-solvable, G is offinite homology type.

An important special case is that of a closed normal subgroup G of a Lie
group M such that M/M1 is finite. In order to deal with this case, we need
not appeal to the difficult theorem that a connected locally compact group
has a compact normal subgroup such that the factor group is a Lie group.
We argue as follows. Since G/(G n/1) is finite, it will follow that G is of
finite homology type as soon as we have shown that G n M1 is of finite ho-
mology type. Thus we may assume that M is connected. Now G/G1 is a
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discrete subgroup of the center of M/G1, and hence is a finitely generated
abelian group. Hence it is clear from the above that G is of finite homology
type.

Note. Theorem 7.1 fills a gap in the proof of [11, Theorem 4.1]. The
definition of finite homology type of [11] should be amended to include the
requirement that H(G, V) be Hausdorff, as well as finite-dimensional. This
additional requirement is needed to make legitimate line 8 of p. 37 of [11].

8. The restriction homomorphism
We shall need the following strengthening of the integrability condition.

Let G be a locally compact topological group, and let A be a topological vector
space over R. We say that A is G-summable if it is G-integrable and, given
any neighborhood U of 0 in A, there is a neighborhood V of 0 in A such that,
for every nonnegative real-valued continuous function g on G with compact
support Sg and Ia(g) 1, we have Ja(gN(Sg, V)) c U.

Let us verify that R is G-summable. Let U and g be as above. There is
a positive real number c such that every real number of absolute value no
greater than c lies in U. We claim that if V is the set of real numbers of
absolute value less than c, then V satisfies the above requirement. Indeed,
let f e N(S, V). Since G is locally compact and S is compact, we can
extend the restriction of f to S to a continuous real-valued function f* on G
such that the absolute value of f*(x) is less than c, for every x e G. Now
we have gf gf*, whence -cg(x) <- g(x)f(x) <- cg(x), for every x e G.
Hence-c <- Ia(gf) <- c, Q.E.D.
Now suppose that A is G-summable and that S is a locally compact topo-

logical space. We claim that then F(S, A) is also G-summable. Let X be
a neighborhood of 0 in F(S, A). Then X contains a neighborhood of the
form N(T, U), where T is a compact subset of S and U is a neighborhood of
0 in A. Let V be a neighborhood of 0 in A that is adapted to U as described
in the summability condition. Now put Y N(T, V). We claim that
Y is adapted to X. Indeed, let e N(S, Y). Then, in the notation of
the proof of Lemma 3.1, (g), g,. If s e T, then , e N(Sg, V), whence
Ja(gq,,) U. Thus we have Ja(gq)(s) U whenever s e T, i.e.,

Ja(g,) N(T, U) X, Q.E.D.

If A is any G-module, we denote by A* the maximum locally finite G-
submodule of A, i.e., the sum of all finite-dimensional G-stable subspaces of A.

LEMMA 8.1. Let A be a G-summable continuous G-module, where G is a
compact topological group. Then A* is dense in A.

Proof. Let a e A, and let U be a neighborhood of 0 in A. Let fa be the
element of F(G, A) defined by fa(x) x.a, for every x e G. Let V be a
neighborhood of 0 in A that is adapted to U as in the above definition of
summability. Now choose a neighborhood X of 1 in G such that a x. a e V,
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for all x e X. Choose a real-valued nonnegative continuous function g on
G such that the support S of g lies in X and I(g) 1. Then we have
Ja(g(a fa)) U, where we identify a e A with the constant map on G
with value a e A. On the other hand, since Ja is continuous, we see from the
Peter-Weyl Theorem that there is a representative function h on G such that
Jo( (g h)f) U. Now we have

a- Ja(hfa) Ja(g(a- fa)) + Jo((g- h)fa)eU + U.

With x G, we have

x. Jo(hfa) Jo(hx(fa) Jo(h(fa’X) Ja( (h.x-1)f).
Since h is a representative function, this shows that Ja(hf,) e A*
Lemma 8.1 is proved.

so that

THEOREM 8.1. Let G be a locally compact topological group, K a closed normal
subgroup of G such that G/K is compact. Let V be a K-integrable and G/K-
summable continuous G-module. Then the restriction homomorphism
Hq(G, V) Hq(K, V)elk is a topological isomorphism onto a dense subspace
of Hq (K, V) aIK, for each q.

Proof. We consider the homogeneous resolution of V by the continuously
injective G-modules X F(G, V). By what we have seen above, each X
is K-integrable and G/K-summable with respect to a separating family X’ of
continuous linear functionals that is stable under composition with the
G-operators and such that X+I’ o d c X’, where d is the boundary map of
the resolution. By Lemma 3.3, each X is continuously iniective also as a
K-module. Hence He(K, V) is the homology group of the complex XK, and
the restriction homomorphism Hc(G, V) H(K, V) is the homomorphism
induced by the injection X-- XK. Clearly, it is continuous, and the image
of He(G, V) lies in the subspace H(K, V)(IK of H(K, V).
Our assumptions imply that each XK is a G/K-summable continuous

G/K-module. Hence we have a continuous linear projection ta/K XK --X,
defined by talK(U) Ja/K(fi,), where fu(z) z.u, for every z e G/K. More-
over, since X+I’ d Xr, we see that to/ commutes with d. Hence
induces a continuous homomorphism H(K, V) ---. Hc(G, V) whose composite
with the restriction homomorphism is the identity map on Hc(G, V). By
Lemma 8.1, each (XK) * is dense in XK. Hence the image of the cohomology
spuce of (XK)* in H(K, V). Since (XK)*H(K, V) is a dense subspace of
is semisimple as a G/K-module, the G/K-fixed part of its cohomology space
coincides with the cohomology space of X, i.e., with the restriction image
of H(G, V). This completes the proof of Theorem 8.1.

It is an immediate corollary that if H(K, V) is a finite-dimensional
Hc(G, V)Hausdorff space the restriction map is a topological isomorphism of

onto Hg(K, V)a/K, because a finite-dimensional Hausdorff topological vector
space has no proper dense vector subspaces.
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If V is finite-dimensional, we can show, without making any assumptions on
the cohomology groups, that the restriction map Hie(G, V)--- H(K, V)alx is
a topological isomorphism. A cocycle version of this result is due to P.
Cartier and was used by him to give a new simple proof that the fundamental
group of a compact semisimple analytic group is finite; cf. [13, p. 22-04,
Th4orme 2]. The result on the restriction map can be proved as follows.

Let Yi F(K, V). Then d(YoK) may be identified with the space of
maps x --. x.v v of K into V, with v ranging over V. Thus d(Yo) is a
finite-dimensional subspace of the kernel Z(Y1) of d in YI. Now let be
the restriction map X1 -- Y, where, as before, Xi F(G, V). Let P be
the kernel of . Then P is the intersection of the kernels of a subfamily of
XI’, so that the family S of all elements of X’ that vanish on P separates the
elements of XX/P. Let Q be the inverse image, under , of d(Y0K) in X1.
Then Q/P is evidently finite-dimensional. Hence it follows that Q is the
intersection of the kernels of elements of S. Thus the family of all elements
of XI’ that vanish on Q separates the elements of XI/Q. It follows that
J(/(f) e Q, for all f e F(G/K, Q).
Now let u be any element of H(K, V), and let be a representative

of u in XK. Then we have z. e Q, for every z e G/K. Hence we obtain
t(t) t= Jl(ft- t) e Q, because ft- teE(G/K, Q). Hence u coin-
cides with the element of H(K, V): that is represented by the element
tail(t) e XI, and thus belongs to the restriction image of HIo(G, V), Q.E.D.

9. Representative cohomology
Let G be a locally compact topological group. By a representative G-module

we shall mean a real vector space V on which G acts by linear automorphisms
in such a way that each element of V lies in a finite-dimensional G-stable
subspace of V (which we express by saying that V is locally finite) and that,
for each finite-dimensional G-submodule W of V, the induced representation
of G on W is continuous. We say that the representative G-module V is
representatively injective if, for every exact sequence

O---. A P__ B-- C--__> O

of G-module homomorphisms between representative G-modules A, B, C, and
for every G-module homomorphism a of A into V, there is a G-module homo-
morphism $ of B into V such that t p a. A representatively injective
resolution of the representative G-module V is an exact sequence of G-module
homomorphisms 0 --+ V -- X0-- where each X is a representatively
injective representative G-module.

Let R(G) denote the algebra of all real-valued representative functions on
G, i.e., let R(G) F(G, R)*. Then R(G) is a representative G-module,
with G operating by left translations. It is easy to verify that, for every real
vector space A, the G-module R(G) (R) A, with G operating by left translations
on the factor R(G), is a representatively injective representative G-module.
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If A is a representative G-module, the map fa G -- A may be regarded as an
element of R(G) (R) A, so that A is imbedded in the representatively injective
G-module R(G) (R) A. We note also that this G-module R(G) (R) A is iso-
morphic, as a G-module, with the G-module R(G) (R) A in which the action
of G is given by x. (f (R) a)= (f.x-1) (R) (x.a) cf. Section 2.

In particular, it is now clear that every representative G-module V has a
representatively injective resolution X. We define the representative coho-
mology group Hr(G, V) for G in V as the homology group of the complex X.

If V is any representative G-module, we topologize V by the coarsest
topology for which all linear functionals are continuous. Then V becomes a
continuous G-module, and every exact sequence of G-module homomorphisms
between representative G-modules, topologized in this manner, is strongly
exact. Hence, if X is a representatively injective resolution of V, and Y is a
coatinuously injective resolution of V, there is a continuous G-module homo-
morphism of the G-module complex X into the G-module complex Y that
extends the identity map of V onto itself. Such maps induce a unique
canonical homomorphism of Hr(G, V) into He(G, V), for all representative
G-modules V. Note that the induced topology on H(G, V) is again the
coarsest topology for which all linear functionals are continuous, and that
the canonical map H,(G, V) -- Hc(G, V) is continuous.
Now let G be a real Lie group with only a finite number of connected

components. It is immediately clear from the definition that the repre-
sentative cohomology for G is the same as the representative cohomology for
G/P, where P is the intersection of all kernels of finite-dimensional continuous
representations of G. It is known, due to M. Goto, that G/P has. a faithful
continuous representation as a group of automorphisms of a finite-dimensional
vector space (cf. [5, Theorem 7.1]). Hence we may assume without loss of
generality that G is a linear group. In that case, there is a simply connected
solvable closed normal analytic subgroup K of G such that G/K is reductive,
in the sense that every continuous finite-dimensional representation of G/K
is semisimple and that G/K has a faithful such representation. Moreover,
G is a semidirect product S-K. Such a subgroup K is called a nucleus of G;
cf. [5, Theorem 9.1], [7, Section 2].

LEMMA 9.1. Let G be a real linear Lie group with finite component group,
and let K be a nucleus of G. Then every representatively injective representative
G-module is representatively injective also as a K-module.

Proof. Let V be a representatively injective representative G-module.
Then V may be identified with a direct G-module summand of R(G) (R) V,
where G operates by left translations on the factor R(G) only. On the other
hand, if B is any representatively injective representative K-module, then,
for any real vector space W, B (R) W is still representatively injective, because
B may be identified with a direct K-module summand of R(K) (R) B (with K
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operating on the factor R(K) by left translations), so that B (R) W is iso-
morphic with a direct K-module summand of R(K) (R) (B (R) W). Hence it
suffices to show that R(G) is representatively injective as a K-module.

Since G is a semidirect product S.K, R(G) is a tensor product R(G) K (R) T,
where T is a subalgebra of R(G) that is stable under the left translations
with the elements of K, and that is mapped isomorphically onto the restriction
image R(G) of R((7) in R(K), by the restriction homomorphism
R(G) -- R(K) [5, Proposition 2.4]. Hence it is clear from what we said
above that it will suffice to prove that R(G) is representatively injective as
a K-module. It is easily seen that, in doing this, we may assume without
loss of generality that G is connected.

Actually, we shall show that then R(G) is a direct K-module summand
of R(K). In order to do this, it will be convenient to consider the algebra
C(G) of the complex-valued representative functions on G. We have

C(G) R(G) (R) C, C(G) R(G)(R) C, and C(K) R(K) (R) C.

Hence it suffices to show that C(G) is a direct K-module summand of C(K).
This can be read off easily from the known results [6, Section 4] on the

structure of C(G) and C(K), as follows. There are algebraically independent
elements ul, ..., un of C(K) and indices 0 <= p -< q =< n satisfying the
following conditions. The elements u+l, u span Hom(K, C) over C,
and uq+, un span Hom(G, C) over C, where C denotes the field of the
complex numbers. Let Q be the multiplicative group consisting of the
exponentials of the C-linear combinations of the u’s with i > p, and define
Qq similarly. Then C(K) is the group algebra of Q over C[ul, u],
while C(G)x is the group algebra of Qq over C[ul, u]. Thus C(K) is
the direct K-module sum of C(G): and the submodule consisting of the
C(G) -linear combinations of the exponentials of the nonzero C-linear combi-
nations of u,+, Uq. This completes the proof of Lemma 9.1.

THEOREM 9.1. Let G be a real linear Lie group with finite component group,
and let K be a nucleus of G. Let V be a representative G-module. Then the
restriction map is an isomorphism of Hr(G, V) onto Hr(K, V)GI:.

Proof. By Lemma 9.1, a representatively injective resolution X of V is
also a representatively injective resolution of V as a K-module. Hence
H(K, V) may be identified with the homology group of the complex XK,
and the restriction map is induced by the injection XG

--+ X. Now X, as a
G/K-module, is the sum of finite-dimensional continuous representation spaces
for G/K. Since G/K is reductive, this implies that X is semisimple as a

G/K-module. Hence the G/K-fixed part of the homology group of X, i..e.,
Hr(K, V) is the homology group of the G/K-fixed part of XK, i.e., of X,
and this homology group is Hr(G, V). This completes the proof.
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10. Representative differential forms
Let G be a real analytic group, and let V be a representative G-module.

We consider the complex A (T, V) of the differentiable V-valued differential
forms on G. We say that a differential form a e A (T, V) is representative
differential form if its transforms x.a, with x ranging over G, all lie in a finite-
dimensional subspace of A (T, V). It is easily seen that the representative
differential forms of degree 0 are precisely the canonical images in Fa(G, V)
of the elements of R(G) (R) V. We have seen that A (T, V) may be identified
with E(@’) (R) Fe(G, V), the G-module structure being such that
x. (e @ f) e (R) (f.x-1). Hence we see that the subspace of the repre-
sentative differential forms is identified with E(@’)(R) R(G)@ V, the
G-module structure being such that x. (e (R) f (R) v) e (R) (f.x-) (R) (x.v).
One sees immediately that this is a subcomplex of A (T, V) and a G-submodule
of A (T, V) for both the left and the right G-module structure. Moreover,
it is clear from the definition of the differential operator on A (T, V) that
the induced differential operator on E(@’) @ R(G) (R) V acts only on the
factor E(@’) (R) R(G). Thus the cohomology space of the V-valued repre-
sentative differential forms is the tensor product of the cohomology space of
he R-valued differential forms by V.
We recall that is a G-module endomorphism of A (T, V) for both the left

and the right G-module structure. We have noted in Section 6 that the
differential of the representation sending x e G onto the transformation

--1
a a.x of A (T, V) is the representation f -- tr of @ on A (T, V). The
formula ticr + c tr shows that the induced representation of @ on the
cohomology space of A (T, V) is trivial. Since G is connected, this implies
that the representation of G on the cohomology space of A (T, V) that is
induced by the right G-module structure of A (T, V) is trivial. We wish to
obtain the same result for the left G-module structure.

For this purpose, we define an involution a -* a’ of A (T, V), as follows.
For f e F(G, V), set f’(x) x.f(x-). For r e T, define r’ e T by setting
r’(g) (r(g’))’. For A (T, V), define ’ A (T, V) by a’(r, r)
a(r’ Evidently, a"..., q’)’ a, foreveryaeA(T, V). WithxeG,
we have

(.)’( ,..., ) (.x)(’, ..., ’)’ (x-.(x.’, ..., x.J))’

X
-1((-.x-) ’, (- ).x

a(..x-, rq.x-).x

(-.’)(, ..., ).
Thus (a’x)’= x-’a’. Moreover, we have c(a)’ c,(a’) and t,(a)’
t,(a’), whence (a’) /t(a)’. Thus the map a -- a’ is an involution of the
complex A (T, V) transporting the right GZmodule structure onto the left
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G-module structure. Hence we conclude that the representation of G on
the cohomology space of A(T, V) that is induced by the left G-module
structure of A (T, V) is trivial also.

Moreover, it is easy to verify that the involution --+ ’ maps the sub-
complex of the representative differential forms onto itself. Hence the above
argument also applies to this subcomplex, and we conclude that the repre-
sentation of G on the cohomology space of the complex of the representative
differential forms that is induced by the left G-module structure is trivial.

THEOREM 10.1. Let G be a real analytic group, and let K be a nucleus of G.
Then the canonical injection E((@/)’) ---+ E(@’) (R) R(G) induces an iso-
morphism of the Lie algebra cohomology space H(@/, R) onto the cohomology
space of the complex of the representative differential forms on G.

Proof. Let us write G as a semidirect product S.K. Then S is a reductive
analytic group, whence the representative G-module E(@’) (R) R(G) is semi-
simple as an S-module. Since the induced representation of G, and thus of S,
on the cohomology space of the complex E(@’) (R) R(G) is trivial, it follows
that this cohomology space may be identified with the cohomology space of
the S-fixed part of E(@’) (R) R(G). This S-fixed part is E(@’) (R) R(G),
where R((7) s is the S-fixed part of R (G) for the representation of S on R(G)
by right translations.
The canonical injection identifies E((@/)’) with a subcomplex of

E(@’) (R) R(G) . Our theorem will be proved as soon as we have shown that
the cohomology space of the factor complex, P say, is (0). Let J denote the
ideal of E(@’) (R) R(G) s that is generated by (@/)’. We define a decreasing
sequence of subcomplexes of P by setting

Pq (E((@/) ’) + J) /E((@/K) ’),

agreeing that Pq P for q -< 0. We have Pq (0) when q exceeds the
dimension of @/. Hence, in order to show that the cohomology space H(P)
of P is (0), it suffices to show that H(Pq/Pq+I)= (0), for all q.
We may write

p/pq+j (E((@/),)E(@,) (R) R(G) S)/(E((@/),) .q_ j+l).

The restriction map R(G) R(G)K c R(K) induces an isomorphism of
R(G) s onto R(G) K. Combining this with the restriction epimorphism
@’ --* ’, we obtain an epimorphism E(@’) (R) R(G)s -- E(’) (R) R(G)
whose kernel is evidently our ideal J. Moreover, we see immediately that
E(’) (R) R(G) is a subcomplex of E(’) (R) R(K), and that our epimorphism
is an epimorphism of complexes. The above form of Pq/Pq+I shows that
this epimorphism induces an isomorphism of H(Pq/Pq+I) onto

Eq( (@/) ’) (R) H((E(’) (R) R(G) :) /R)
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Hence it suffices to show that the cohomology space of the complex
(E(9.’) (R) R(G),:)/R is trivial. In order to do this, we ppel (s in the
proof of Lemm 9.1) to the following known results on the structure of R(G)
[6, Section 4]. There re algebraically independent elements u, u in
R(K) nd n index q, 0 -< q =< n, such that the elements u+, u spn
Hom(G, R) over R nd R(G) is the tensor product of R[u, u] with
the R-lgebr consisting of the elements of R(G) that can be written as
complex linear combinations of exponentials of complex linear combinations
of u+, u. Furthermore, R(G) is precisely the R(G) -module of
ll those derivations of R(G): that re restrictions to R(G): of derivations of
the algebr R[[u, ..., u]] of ll integral power series in the n wriables
Ul ?n

In order to see this, note first that if e and h e Horn(K, C), then r(h)
is a constant, and r(exp(h)) r(h) exp(h). Hence it is clear that every
element of , and therefore also every element of R(G) ,, can be extended
to a derivation of the algebra R[[u, ..., u,]]. The derivations of
R[[u, u,]] are the R[[u, u,]]-linear combinations of the derivations

such that r(u.) . The derivations of R[[u, ..., u,]] that send
R(G): into itself are therefore the R(G)-linear combinations of the r’s.
Hence it suffices to show that the restrictions of the r’s to R(G) belong
to R(G) . It is clear from what we hve already said in proving Lemma 9.1
that R[[u, u,]] also contains R(K) and that the r’s send R(K) into
itself. Let be the restriction to R(K) of any one of the r’s (or of any
R(G) -linear combinations of the re’s). We show first that e R(K),.

Considering the tangent space to K at the identity element 1, we see that
there is a basis , ’, of such that (u)(1) .. Let d denote
the determinant formed from the (u.). Then we can evidently find elements
g e R(K) such that _,.._g ’(u) dr(u), for all j, which implies that= g. i’ dr. Applying these derivations to u.x-, withx e K, and evalu-
ating at x, we obtain ’’.- g(x)(u.x-) (x) d(x) r(u..x-1) (x), which
reduces to g(x) d(x)’r(u.x-)(x). Thus we have g dh, where
h(x) r(u.x-) (x). Clearly, h R(K) and ’= h . Now it is
clear from what we have said in proving Lemma 9.1 concerning the structure
of the algebra of representative functions that there is an R(G)-linear
projection, q say, of R(K) onto R(G):. Our last result shows that the
restriction of r to R(G): coincides with .. (h)i’ e R(G): ,.
Now note that the subalgebra R(G): of R [[u, u]] is stable not only

under the derivations r of R[[u, ..., u]], but also under the process of
formal integration with respect to any one of the variables u. Hence it
follows immediately from the proof of the formal Poincari Lemma for
R[[u, ---, u]], as given, for instance, in [2, pp. 65-67], that the complex
(E(,’) (R) R(G):)/R has cohomology space (0). Theorem 10.1 is thus
established.
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THEOREM 10.2. Let G be a real linear Lie group with finite component group,
and let K be a nucleus of G. Let V be a representative G-module. Then the
complex of the V-valued representative differentialforms on K is a representatively
injective resolution of V as a K-module and yields an isomorphism of H(G, V)
onto the Lie algebra cohomology space H(, V)

Proof. By Theorem 9.1, Hr(G, V) is isomorphic, by the restriction homo-
morphism, with Hr(K, V)1:. By Theorem 10.1, the V-augmented complex
E(’) (R) R(K) (R) V has cohomology space (0), and therefore is a repre-
sentatively injective resolution of V as a K-module. Hence H,(K, V) may
be identified with the homology space of the complex

(E(’) (R) R(g) (R) V)= E(’) (R) V,

i.e., with the Lie algebra cohomology space H(, V). Moreover, the result-
ing isomorphism H(K, V) -+ H(, V) is evidently a G/K-module isomor-
phism, so that it maps H(K, V): isomorphically onto H(, V) e.
This completes the proof of Theorem 10.2.

11. Relation between representative and continuous cohomology
Let G be a real linear Lie group with finite component group, and let K

be a nucleus of G. Let V be a finite-dimensional continuous G-module.
Let X be a continuously injective resolution of R as a G/K-module, and let
Y be a representatively injective resolution of V as a G-module. We regard
each Yq as a topological vector space, giving it the coarsest topology making
all linear functionals continuous. Now consider the tensor product complex
X (R) Y. We regard this as a complex of topological vector spaces by giving
each X (R) Yq the coarsest topology making all linear maps X (R) Yq --> X
that are induced by linear functionals on Yq continuous. Clearly, if we
augment the complex X (R) Y by the map V- X0 (R) Y0 defined from the
given maps R -- X0 and V -. Y0 we obtain a strongly exact sequence of
continuous G-module homomorphisms.
Now let Z be a continuously injective resolution of V. Then there is a

continuous homomorphism of continuous G-module complexes X (R) Y -- Zextending the natural map R (R) V -- V. This map defines a homomorphism
Hc(G/K, R) (R) H(G, V) -- Hc(G, V) which, by the general facts of homo-
logical algebra, is independent of the choices of X, Y, Z and the map
X (R) Y --. Z. We shall call this map the canonical map. It may be viewed
as the composite of the "inflation" H,(G/K, R) -- Ho(G, R) and a "cup
product" H(G, R) (R) Hr(G, V) ---. H(G, V).

THEOREM 11.1. Let G be a real linear Lie group with finite component group,
and let K be a nucleus of G. Then, for every finite-dimensional continuous
G-module V, the canonical map Hc(G/K, R) (R) H(G, V) Hc(G, V) is an
isomorphism.
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Proof. Let G1 be the connected component of the identity in G. Since
G/GI is finite, the restriction from G to G1 gives isomorphisms

He(G/K, R) Hc(G/K, R) 1al, Hr(G, V) Hr(G1, V),
Hc(G, V) ---+ gc(GI, V)

It is easy to see that the canonical map is compatible with restriction and
with the action of G/GI. Hence it is clear that it suffices to prove our theorem
in the case where G is connected, which we shall now assume.
Write G as a semidirect product S.K, and let P be a maximal compact

subgroup of S. Let X be the continuously injective resolution of R as an
S-module that is obtained from the complex of the differential forms on the
homogeneous space SIP. Since the canonical epimorphism G -- G/K maps
S isomorphically onto G/K, we may regard X as a continuously injective
resolution of R as a G/K-module. In fact, we shall write X in the f arm
(E((@/( ))’) (R) D) ’K, the superscript referring to the right mo4ule
structure.
On the other hand, consider the complex E(@’)(R) R(G)(R) V of the

representative differential forms on G. This has a left G-module structure
and a right S-module structure which combine to form the structure of a
representative GXS-module. The subspace E(@/)’) (R) R(G) (R) V is evi-
dently a GX S-submodule, and it is representatively injective as a G-module.
Since S is reductive, the S-fixed part of this GX S-module is a direct G-module
summand and hence is still representatively injective as a G-module. Under
the right S-module structure of E((@/(R))’) (R) R(G) (R) V, the factor V is
left inert, so that the S-fixed part is (E((@/)’)(R) R(G))S(R) V. We
know from our discussion of differential forms on homogeneous spaces that
this is a subcomplex, Y say, of E(@’) (R) R(G) (R) V. We claim that the
V-augmented complex Y has cohomology space (0). This amounts to saying
that the R-augmented complex (E((@/)’) (R) R(G) s has cohomology space
(0). It is clear from the results of Section 6 that the G-module complex
(E((@/)’) (R) R(G)) may be identified with the complex of the repre-
sentative differential forms on the homogeneous space G/S, i.e., with the
maximum locally finite G-submodule of the complex of all differential forms
on G/S. On the other hand, the homogeneous space G/S may be identified
with K (as a differentiable manifold). Then the complex of the differential
forms on G/S takes the form E(’) (R) Ds, with G operating so that x. (e (R) f)
e (R) (f.x-). Hence the complex of the representative differential forms
on G/S is isomorphic with E(’) (R) R(G) . From the proof of Theorem
10.1, we know that the cohomology space of the complex (E(’) (R) R(G) )/R
is (0). Hence the same is true for the complex (E((@/)’) (R) R(G))/R.
Hence we conclude that Y is a representatively iniective resolution of V.
Now let Z denote the complex of the differential forms on the homogeneous

space G/P. Since P is a maximal compact subgroup of S, and since K is
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solvable and simply connected, it follows that P is also a maximal compact
subgroup of G. Hence, as we know from Section 6, Z is a continuously
injective resolution of V. There is an evident continuous map of G-module
complexes of X (R) Y into Z, namely the tensor product map induced by the
multiplication in E(@’) and the multiplication D (R) F(G, V) --* F(G, V).
The canonical map He(G/K, R) (R) Hr(G, V) -- Hc(G, V) is induced by the
composite of the maps X (R) ya -- (X (R) Y) a - Z.
Now Xa may be identified with the complex C(, , R) of the relative

Lie algebra cochains for (, ) in R, Ya may be identified with C(@, , V),
and Zo with C(@, , V). Our canonical map of the group cohomology spaces
is thereby transported into the map of Lie algebra cohomology spaces

H(, , R) (R) H(@, , V) -- H(@, , V)

composed of the cup product

U(@, , R) (R) U(@, , V) -- H(@, , V),

the canonical map

and a map
H(@, , V) -. H(@, , V),

H(, , R) --* H(@, , R)

inverting the restriction epimorphism H(@, , R) -- H(, , R). This
map is discussed in [4, Section 4], where it is shown to be an isomorphism,
provided only that is a reductive subalgebra of @, and V is semisimple as
an -module, which is evidently the case here. The fact that the restriction
map H(@, , R) -- H(, , R) is an epimorphism follows easily from the
fact that @ is the semidirect sum - . We remark that the above result
on the Lie algebra cohomology is a straightforward generalization of [9,
Theorem 12], which is the case where (0). This completes the proof of
Theorem 11.1.

12. Representative and rational cohomology for real linear
algebraic groups

Let G be a real linear algebraic group. The rational cohomology of G is to
be understood in the sense of [3]; the definition is obtained by replacing
"continuous representation" by "rational representation" in the definition of
the representative cohomology. If V is a rational G-module, we denote the
rational cohomology space for G in V by Hp(G, V). If V is finite-dimensional,
the relation between Hp(G, V) and Hr(G, V) is exactly analogous to the
relation between H(G, V) and He(G, V), as given in Section 11. We proceed
to discuss this in detail.
Note first that, by [12, Appendix], the component group of G is finite.

Let N be the maximum unipotent normal algebraic subgroup of G. Then G
is a semidirect product T. N, where T is a fully reducible algebraic subgroup
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of G. Let L be a nucleus of T, andputK LN.
nucleus of G. We define a canonical homomorphism

Then K is evidently a

Hr(G/N, R) (R) Hp(G, V) -- Hr(G, V)

in a fashion strictly analogous to the construction underlying Theorem 11.1.
Note that, here, there is no need to consider any topology of the resolutions
and cohomology spaces. The result is as follows.

THEOR. 12.1. Let G be a real linear algebraic group, let N be the maximum
unipotent normal subgroup of G, and let V be a finite-dimensional rational
G-module. Then the canonical homomorphism

H(G/N, R) (R) Hp(G, V) -- H,(G, V)

is an isomorphism.

Proof. We know that the restriction from G to K yields isomorphisms
H(G/N, R) -+ H(K/N, R) o and Hr(G, V) --> H(K, V) a. Following these
up with the isomorphism of Theorem 10.2, we obtain isomorphisms

H(G/N, R) --> H(/9, R)a and H(G, V) -- H(, V)a.
On the other hand, it is known from [3] that the restriction from G to N

yields an isomorphism H(G, V) -- H(N, V). Moreover, it was shown in
[3] that the complex of the rational differential forms on N (obtained from
the complex of the representative differential forms by replacing the algebra
of the representative functions with the subalgebra of the rational repre-
sentative functions) gives a rationally injective resolution of V, and hence a
natural isomorphism of H(N, V) onto H(9, V). Composing this with
the restriction map, we obtain a natural isomorphism H(G, V) ---. H(9, V) o.
By means of these isomorphisms, the canonical homomorphism

H(G/N, R) (R) Hp(G, V) -- Hr(G, V)

is transported into a homomorphism

U(/, R) o (R) U(, V) o H(, V) o.
It was shown in [3, Section 5] that the map from rational group cohomology
to Lie algebra cohomology is obtained from any injective group resolution
by regarding it as a Lie algebra complex and mapping it into any injective
Lie algebra resolution. This is easily seen to apply in exactly the same way
also to representative cohomology. It follows that the above homomorphism
H(/, R) (R) H(, V)o_. H(, V) must be the restriction to the G-fixed
parts of a homomorphism H(/, R) (R) H(, V) : --> H(, V) that is ob-
Cained in the canonical way from injective Lie algebra resolutions. Using
the standard injective Lie algebra resolutions described in [3, Section 5], one
sees that this canonical homomorphism of Lie algebra cohomology spaces is
the usual composite of the lift H(/, R) -- H(, R), the lift
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H(, V)--> H(, V) obtained by identifying H(R, V) with the relative
H(, , V), nd the cup product H(, R) (R) H(, V) -- H(t, V). Now,
if we note that H(/9, R) my be identified with H(, R), [9, Theorem 12]
sys precisely that this homomorphism is n isomorphism. This completes
the proof of Theorem 12.1.
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