
ON UNIVERSAL TRANSFORMATION GROUPS

I. Introduction

In this paper, we characterize minimal sets (X, T, ) where X is Tychonoff
(see [6]) by algebras of continuous functions, study compactifications of a
transformation group, and prove that there is a unique universal compac-
tificatio up to isomorphism of transformation groups. We develop several
algebraic-topology and Banach-algebra properties for the universal minimal
set associated with a discrete group (see [3]). We define a universal almost
periodic minimal set associated with any topological group and prove there
is a unique universal almost periodic minimal set associated with a topo-
logical group up to homeomorphism of spaces. In particular, we show that
the phase space of an almost periodic minimal set (X, T, r) with compact
Hausdorff space X is homeomorphic to a quotient space of a topological
group L(T), which is the maximal ideal space of the algebra of all left almost
periodic functions on T. In the last section, we define a universal minimal
set associated with any topological group and prove there is a unique univer-
sal minimal set up to isomorphism, which is a generalization of a result of
Professor R. Ellis (see [3]). As a general reference for the notions occurring
here consult [6] and [9]. The author wishes to take this opportunity to ex-
press his indebtedness to Professor W. H. Gottschalk and Professor H. C.
Wang for their encouragement and direction.

II. The general case

Let (X, T, r) be a transformation group with Tychonoff phase space X.
Let C*(X, R) and C*(T, R) be the algebras of all bounded, continuous,
real-valued functions on X and on T, respectively, with the uniform norm.
For each e T, we define

(-*) C*(X, R) --> C*(X, R) by (x)(f(*)t) (xrt)f
for f C*(X, R) and x e X, and

(p*)t C*(T, R) -- C*(T, R) by (s) (g(p*)) (st)g

for g C*(T, R) and s e T, respectively. Then is an algebra-isomorphism.
Let T be the set of all these t, for e T, with the discrete topology. Then
T is an automorphism group of C*(X, R) and C*(T, R), respectively.
Thus, we have

LEMMA 1. (1) These (C*(X, R), T, -*) and (C*(T, R), T, p*) are

transformation groups.
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(2) The (C*(T, R), Td p*) is always effective.
(3) (X, T, ’) is effective if (C*(X, R), T,, ’*) is effective.
(4) These two transformation groups, however, are never strongly effective.

Proof. (1) follows from the fact that T is an automorphism group. (2)
and (3) follow from the fact that the groups T and X are both Tychonoff
spaces. (4) holds because C*(X, R) and C*(T, R) both contain constant
functions.

DEFiNiTiON 1. Let (X, T81, r) and (Y, Ts., 6) be transformation groups
with phase groups T81 and Ts respectively, such that they both have the
same group structure T but they may have different topologies $1 and S
respectively. We say (X, TI, r) is homomorphic into or onto (Y, T,, 6)
by if there is a continuous map of X into or onto Y such that t 8t
for e T, or xt xCt for short. If this is continuous, one-to-one, into or
onto, we say (X, T,I, r) is continuously isomorphic into or onto (X, T,,, -)
by . If this is homeomorphic into or onto, we say (X, Ts, ) is topo-
logically isomorphic into or onto (Y, T,, ).

Remarl 1. By this new definition of homomorphism, the results in [4] are
still valid if the topology of the phase group T is not involved. If the results
in [4] involve the topology of the phase group T, they are still true, in almost
all cases, if $1 S, i.e., every open set in S is open in S.
LEMMA 2. Let (X, T, r) and (Y, T,, 8) be two transformation groups

with Tychonoff spaces X and Y respectively. If there is a continuous mapping
from X into Y such that (X) Y and (X, T,, -) is homomorphic into

(Y, Ts, ), then (C*(Y, R), T 8*) is homomorphic into (C*(X, R), T ’*).
Proof. We define * C*(Y, R) -- C*(X, R) by (f*)(x) (x)f for

f C*(X, R) and x e X. Then * is an algebra-homomorphism. We show
(f*)(r*)t (f(8*)t)* for f eC*(Y, R) and eT. For each x eX, we
have

(x) [(fb*) (r*)t] (xt) (fO.) (xrt)f
(x6t)f (x) (f(8*)t)
(x)[(f(8*)t).].

This proves that (C* Y, R), T, 8*) is homomorphic into (C*(X, R), Td, r*).
LEMMA 3. Let (X, T,, ) and (Y, T, 6) be two transformation groups with

Tychonoff spaces X and Y respectively. Let (X, T, r) be homomorphic into
(Y, T, 8) by . Then (X) Y if and only if (C*(Y, R), T 8*) is topo-
logically isomorphic into (C*(X, R), T, -*) by *.

Proof. Assume (X) Y. By Lemma 2, we know* is a homomorphism
from (C*(Y, R), T, 8*) into (C*(X, R), T, *). We show it is a one-to-

C*one mapping. For f, g e (Y, R), if f* g*, then (x)(f*) (x)(g*)
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or (x)f (x)g for all x e X. Since (X) Y and Y is a Hausdorff
space, we have (y)f (y)g for all y e Y. It follows that f g. We show

Clife* I]f for f e (Y, R). By the definition of the uniform norm,
we have

life* sup {I (x)f x eZ} sup {I Yf y e Y}

since (X) Y. Consequently, the image of C*(Y, R), under *, is a
closed subalgebra of C*(X, R), and (C*(Y, R), Td, 6*) is topologically iso-
morphic into (C*(X, R), T, *) by *.
Assuming (C*(Y, R), T, *) is topologically isomorphic into

(C*(X, R), T, *) by *, we show (X) Y. Suppose () Y;
there is y0 e Y such that y0 e (X). Since Y is Tychonoff, there exists a
continuous function

f" Y [0, 1]

such that (y)f= 0 for ye(X) and (yo)f= 1. ThenfeC*(Y, R) and
C*f 0. However, f*e (X, R), and re* 0. This shows that * is not

an isomorphism. It is a contradiction to the hypothesis. Therefore

(z) Y.

THEOREM 1. Let (X, T, ) be a transformation group with Tychonoff spe
X. Then (X, T, ) is a minimal set if and only if for eh xeX,
(C*(X, R), T, *) is topologically isomorphic into (C*(T, R), T, p*)
by x

Proof. For s, e T, define sp st. Then (T, T, p) is a transformation
group, and (T, T, p) is homomorphic into (X, T, ) by each x e X. Thus
this theorem is a direct consequence of Lemma 3.

CoaoLv 1. Let (X, T, ) be a transformation group wih a compact
Hausdorff phase space X and an Abelian phase group T. If (X, T, ) is an
almost periodic minimal set, then for x, y X, (C*(X, R))x* (C*(X, R))y*.

Proof. For x, yeX, feC*(X, R), and for v > 0, there exists eU,
where U is the uniformity of X, such that

(xt)f (z)f[ < /2 for z e (xt) and e T.
This statement is true, because f is uniformly continuous. Since X is a com-
pact Hausdorff minimal set, it is known that T is equicontinuous on X. It
follows that there exists e U such that

(x)t (xt) for e T.

Since x yT, there exists s e T such that ys (x) and

(xt)f (yst)f] < v/2 for e T,
where y and s are independent of the choice of t. Since T is Abelian we have

(yst)f (yts)f (yt)[f(*) ] (t)[(f(*))y*].
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Consequently fx* (f(r*) ) y* < . From the facts that
C* C* * C*f(*) e (X, R) and (X, R))y is closed in (T, R), it follows that

fx*e (C*(X, R))y*. Similarly, we can show that fy*e (C*(X, R))x* for
f e C*(X, R). Consequently (C*(X, R) x* (C*(X, R) y*.

Remark 2. Corollary 1 shows that if (X, T, ) is a compact Hausdorff
almost periodic minimal set, then for each pair x, y X, x*(y*)- is an auto-
morphism of C*(X, R).

LEMMA 4. Let (X, T, -) and ( Y, T, ) be two transformation groups with
compact Hausdorff spaces X and Y respectively. Let (X, T,, .) be homomor-
phic to (Y, T, ) by . Then,

(1) is onto if and only if (C*( Y, R), T *) is continuously isomorphic
into C* X R T r*

(2) is one-to-one if and only if (C*( Y, R), T *) is homomorphic onto
(C*(X, R), T, *).

Proof. It is a consequence of Lemma 2 and known facts that is onto
if and only if * is one-to-one, and is one-to-one if and only if * is onto.

Iil. Compactification
DEFINITION 2. Let (X, T, ’) be a transformation group with Tychonoff

phase space X. We say a transformation group (Y, T, p) is a compactifi-
cation of (X, T, ) by if T, is a topological group with the same group struc-
ture as T and with a topology s, and there is a homeomorphism from X into
Y such that (X, T, r) is isomorphic into (Y, T,, p) by . A compactifica-
tion (Y, T,, ) of (X, T, r) by is called universal if for any other compac-
tificatio (Z, T, ) of (X, T, ) by f there is a continuous mapping g from
Y onto Z such that o g f on X and (Y, T,, p) is homomorphic onto
(Z, T, ) by g.

LEMMA 5. There is a universal compactification of (X, T, .) with Tychonoff
phase space X.

Proof. Let t(X) be the Cech-Stone compactification of the space X.
Then, for every e T, there is a unique extension (r*) of such that (r*)
is also a homeomorphism of t(X). Let T-- {tit T} with the discrete
topology. Then ((X), T, *) is a transformation group. It is easy to
see that this is a compactification of (X, T, ). We show it is universal.
Let (Z, T, ) be a compactification of (X, T, ) by f. Then there is a con-
tinuous mapping ]" (X) Z which is an extension of f" X --, Z. Since
(X)f Z and (X) is compact, we have (B(X)] Z, or ] is onto. We
show ((X), T, *) is homomorphic onto (Z, T, ) by ]. It is enough to
show that ((y) (*)t)] ((y)]) (tt), for y e t(X) and e T. Suppose
there are y e/(X) and e T and ((y) (*)t)] ((y)]) ()t. By continuity
and the fact that Z is Hausdorff, there exists a e V, where V is the uniformity
of (X), such that

(y)a(r*)")] n (y)a]) () .
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Since X is dense in (X), there exists x e X n (y)a such that

)f (x/)* .
It is a contradiction to the hypothesis that (X, T, ) is isomorphic into
(Z, T, ) by f. Hence ((X), T, *) is homomorphic onto (Z, T, )
by f. It is clear that e o ] f where e is the evaluation map of X into (X).
It follows that ((X), T, *) is a universal compactification of (X, T, v).

THEOREM 2. There is a universal compactification of (X, T, ) with Tycho-
noff phase space X, and any two universal compactifications of (X, T, ) are
topologically isomorphic.

Proof. The first statement is Lemma 5. We show the second statement.
Let (Y, T,, p) be another universal compactification of (X, T, r) by f.
We show (Y, T, p) and ((X), T, *) are topologically isomorphic onto.
Since Y, T,, p) is universal, there exists a continuous mapping g Y --. (X)
such that (Y, T,, p) is homomorphic onto ((X), T, r*), and f o g e
where e is the evaluation map of X into B(X). Let ]:/(X) -- Y be the
continuous extension of f X --. Y. Let E (X) --. (X) be the continu-
ous extension of e. Then E is a homeomorphism and ]o g on (X).
Hence ] is a homeomorphism of (X) onto Y, and ((X), T, r*) is topo-
logically isomorphic onto (Y, T,, p) by ]. The uniqueness is proved.

COROLLARY 2. Let (X, T,I, ) and (Y, T,, p) be homomorphic.
their universal compactifications are also homomorphic.

Then

Proof. Let (X, TI, r) and (Y, T, p) be homomorphic by f. Then
((X), T, *) is homomorphic to ((Y), T, p*) by ], where ] is the con-
tinuous extension of f" X --. Y.

IV. Minimal sets

Let T be a topological group. There exists at least one minimal set M
in the transformation group ((T), Td, ), where (T) is the Cech-Stone
compactification of T. Then (M, T, i) is a transformation group such
that xT M for x e M. If T is discrete, Professor R. Ellis called, in [2],
(M, T, ) a universal minimal set associated with T.

LEMM 6. The transformation group (M, T, ) is homomorphic onto any
compact Hausdorff minimal set (X, T, ’).

Proof. By the proof of Theorem 1, we know (T, T, p) is homomorphic
into (X, T, v) by x e X. By Corollary 2 to Theorem 2, we know that
(f(T), T, ) is homomorphic to (X, T, ) by 4, where is the exten-
sion of x. SincexT X, we know (T) Xor is onto. Choose a
minimal set (M, Td, i5) from ((T), T, i5). Since (X, T, r) is minimal,
it follows that (M, T, i) is homomorphic onto (X, T, ) by 4.

THEOREM 3. Let T be a topological group as well as a normal space, and
its ech groups H(T; G) Hq(T; G) 0 for q >- n - 1. Let (M, T ) be
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a minimal set chosen from ((T), T, ). Then
(1) Hq+((T),M;G) .Hq(M;G) forq >_ n W 1 andH+I((T),M;G)

is isomorphic into H,(M G), where G is a compact group or a vector
space over a field.

(2) Hq(M; G) ---Hq+I(B(T),M; G) for q >- n - 1 and Ha(M; G) is
homomorphic onto H’+I(( T), M; G), where G is a K-module over any
ring K.

If T is of covering dimension n, then Hq(M; G) O, Hq(M; G) 0 for
q>=nWl.

Proof. By using the facts that

Hq((T);G) HHq(T;G) 0 and Hq((T);G) HH(T;G) 0

for q _>- n - 1, and exact sequences of pair (fl(T), M), (1) and (2) follow.
If T is of covering dimension n, then it is known that the covering dimen-
sion of B(T) is also n. Consequently

Hq(M; G) 0 and Hq(M; G) 0

for all q n- 1. In particular, if T is discrete, then

Hq(M; G) Hq(M; G) 0

for q 0, and if T R, then

Hq(M; G) Hq(M; G) 0
for q 0, 1.

LEMMA 7. Let (M, T, ) be a universal minimal set associated with a
directed group Ta. Then M is a retract of fl( T).

Proof. Let x e M; then f,:T-. M by (t)f, xt is continuous, and
(T)f, xTa M. Consequently, there exists an extension ], of f, such
that ],’(Ta) --, M is a continuous onto mapping, and by Corollary 2 to
Theorem 2, (fl(Td), Ta, i) is homomorphic onto (M, T, ) by ], Since
(M, T, i) is universal minimal, the mapping, ],IM M --* M is homeomor-
phic onto (see [2]). Then r,--f, o (],IM)- is a retraction, namely,

r, fl(Td) -- M.Remark 3. The proof of this lemma shows that we can consider the points
of M as a set of homeomorphisms of M.

THEOREM 4. Let r, be the retraction of B( Ta) onto M as we state in Lemma
7. Let i M--. fl(Ta) be the inclusion mapping. Then

C*(fl(Ta), R) image (r*) + kernel (i*),
where

r C*(M, R) -- C*((Ta), R) by fr* rf
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for f C*(M, R), and

"*" C* C* "*((T),R) (M,R) by g ig

C*for g e (( T), R), and image (r*) is a closed subalgebra, and kernel (i*)
is a closed ideal.

Proof. Since
/(Td)

if

is commutative where il is the identity mapping, we have

C*(/(Td), R)
/

i*///
C*(M, R) ., C*(M, R)

,1

.,
is commutative, and by Lemma 4, we know ,1 is isomorphic onto, i* is homo-
morphic onto, and r* is isomorphic into. By Theorem 1, we know that
image (r) is a closed subalgebra of C*(B(T), R). By this commutative
diagram, we have the desired results

V. Universal almost periodic minimal sets

Let T be a topological group. Let L*(T, R) be the algebra of all real-
valued, left almost periodic functions (see [9]) on this topological group T
with the ,uniform norm.

LEMMA 8. Let (X, T, ) be an almost periodic, minimal set with compact
Hausdorff space X. For each x X,

x C*(X, R) ---. L*(T, R) by (t)fx* (xt)f,

for f e C*(X, R) and T, is isomorphic into, and the image under x* is closed
in L*(T, R).

Proof. By Theorem 1, we know x* is an isomorphism from C*(X, R) into
C*(T, R). However, (X, T, r) is an almost periodic minimal set, and X is

C* *compact Hausdorff; it is not hard to see that for every f e (X, R), fx
is left almost periodic. Since L*( T, R) is a subalgebra of C*(T, R), we know

L*x C*(X, R) (T, R)

is isomorphic into. That the image of C*(X, R) under x* is closed follows
from Lemma 3.
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DEFINITION 3. Let T be a topological group. A transformation group
(X, T, r) is called a universal almost periodic minimal set associated with T
if (1) (X, T, r) is an almost periodic minimal set with compact tIausdorff
phase space X, (2) there is a continuous mapping a: T -- X, with (T) a X
such that a* C*(X, R) -- L*(T, R) induced by a is an isometric and iso-
morphic onto mapping, and (3) for any almost periodic minimal set (Y, T, )
with compact Hausdorff phase space Y, Y is a continuous image of X.

LEMM 9. For every topological group T, there is a universal almost periodic
minimal set associated with T.

Proof. Let L*(T, R) be the algebra of all real-valued, left almost periodic
functions on T. Then it is known (see [9]) that the maximal ideal space,
with the hull-kernel topology, of L*(T, R) is a compact group L(T), and
there is a continous homomorphism : T -- L(T) such that (T)a L(T)
and a*:C*(L(T), R) -- C*(T, R) induced by a is an isometric and isomor-
phic onto mapping. Define r L(T) X T --> L(T) by (x, t)- x.o(t) for
x e L(T) and e T. Then (L(T), T, v) is a transformation group, and it is
an almost periodic minimal set (see [6]). We show it is universal. Let
(Y, T, /t) be an almost periodic minimal set with Y as compact Hausdorff
phase space. For each y e Y

y T -- Y is continuous,

and by Lemma 8, we know y*" C*(X, R) -- L*(T, R) is isomorphic into.
Hence y*(a*) -1" C*(X, R)-- C*(L(T), R) is isomorphic into. It is
known there is f L(T) --. X which is a continuous and onto mapping such
that f* y*(a*) -. This shows (L(T), T, ) is a universal almost periodic
minimal set associated with the given T.

THEOREM 5. For every topological group T, there is a universal almost
periodic minimal set associated with T. Let (X, T, -) and (Y, T, ) be any
two universal almost periodic minimal sets associated with T. Then X and
Y are homeomorphic to each other.

Proof. The first statement is Lemma 9. We show the second statement.
’L*Since, by definition, C*(X, R) L*(T, R) and C*( Y, R) (T, R), we

have C*(X, R) C*( Y, R). Hence there is a homeomorphism a such tha
a:X Y is a homeomorphic onto mapping.

COROLLARY 3. For every almost periodic minimal set Y, T, r) with compact
Hausdorff phase space, this space Y is homeomorphic to a quotient space of the
compact group L( T).

Proof. By Theorem 5, we know there is a continuous mapping:L(T) -- Yfrom L(T) onto Y. For each s, teL(T), define sRt if and only if
(s) (t). Then R is a closed equivalence relation, and the quotient space
L(T)/R is homeomorphic with Y.
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VI. Universal minimal sets associated with a topological group
DEFINITION 4. Let T be a topological group. We say a transformation

group (X, T, r) with compact Hausdorff phase space X is a universal minimal
set associated with a topological group T if any other compact Hausdorff minimal
set Y, T, p) associated with the same topological group T is its homomorphic
image.

LEMM) 10. Let T be a topological group. There is a universal minimal set
associated with T.

Proof. Let F be a set of compact Hausdorff minimal sets (X., T, .),
a e F, associated with T, where 1 is the index set corresponding to F.
By the preceding theorem, we know F is not empty. Let PX. be the
Tychonoff product of X., for a e 1. Define

r}Pr." PZ T-- PZ by [x [ae F}(P.) {x r.

for Ix. a e F} e PX. and e T. Then (PX., T, Pr.) is a transformation
group with the compact Hausdorff phase space PX.. It is known that there
is a minimal set M in PX.. Define

P.:PX.-X. by

for {x. a e F} e PX. and e T, to be the a projection of PX. onto X..
Then (X, T, P.) is homomorphic to (X., T, .) by P., for each a e F.
Since (M, T, P.) and (X., T, r.) are minimal sets, the mapping P. is onto.
This shows (M). X. for all a e F. Hence (M, T, P.) is a minimal set
associated with T. Complete the proof by Zorn’s Lemma.

THEOaEM 6. Let T be a topological group. There is a unique compact
Hausdorff universal minimal set associated with T, up to isomorphism.

Proof. By the preceding lemma, we know there exists a compact Hausdorff
minimal set M, which we choose from (PX., T, Pr.), a e F. It is enough to
show that any other universal minimal set (X, T, ) associated with T, with
compact Hausdorff phase space is isomorphic onto (M, T). Let E(M, T) be
the enveloping semigroup (see [4]) of (M, T), and let I be its minimal right
ideal. Then (I, T) is a transformation group. For x e M,

: (I, T) -- (M, T) by p xp,

for p e I, is a homomorphism. Since (M, T)is onto (X, T), and (X, T)
is universal, there exists a continuous mapping g: (X, T) -- (I, T) which is
homomorphic onto. Consequently, fg: (I, T) - (I, T) is homomorphic
onto. By a known result (see Lemma 5, [3]), fg is isomorphic onto. Since
r, f, and g are onto mappings, and M and X are compact Hausdorff, it
follows that f: (M, T) -- (X, T) is isomorphic onto. The theorem is proved.
Remark 4. Our universal minimal sets generalize those of [2]. In that
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paper, Professor Ellis defines universal minimal sets for discrete groups only,
and he constructs a universal minimal set associated with a discrete group
T from the Cech-Stone compactification of T. In our results, we did not use
the Cech-Stone compactification of T. By Theorem 6, however, these two
are isomorphic.

COROLLARY 4. Let T be a maximally almost periodic group (e.g., T is a
locally compact Abelian group, a free group of several generators with the discT’ete
topology, etc.). Then the compact Hausdorff universal minimal set associated
with T is strongly effective.

Proof. By Lemma 9, there is a universal almost periodic minimal set X
associated with T. Since T is maximally almost periodic, it is not hard to see
that X is strongly effective, and so is the universal minimal set associated
with T.
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