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It was shown in [1] (see also [5]) that the radius of univalence, Rv(),
of the function zl-VJ(z), where J(z) is the usual Bessel function ( > 0),
is the smallest positive zero of its derivative, and two-sided inequalities
were obtained for Rv(). In this note we give a short proof of a more gen-
eral result, which delineates a rather broad class of entire functions for which
the same conclusion holds. Further, we refine the inequalities mentioned
above to sharper ones which give asymptotic equalities for -- oo. The
basic idea is simply that whereas the radius of univalence is quite trouble-
some to deal with directly, the radius of starlikeness is obtainable almost
immediately from Hadamard’s factorization.

Let be a Montel compact [2] family of functions

(1) f(z) z -t- a - ...,
regular in [z] < 1, and put 7 max/z a (n 2, 3, ...). If

(2) g(z) z + +
is a given entire function, then the if-radius, Rv, of g(z) is

(3) Rv sup

The inequalities [b ]Rn- Tn (n 2, 3,...) which must hold for all
R Rv, show first that either R < or g(z) z, and second that

(4) R min.{n/J b
We consider the families (T) of typically real functions, (U) of univalent

functions, (S) of starlike univalent functions, and (C) of convex univalent
functions. If g(z) in (2) has real coefficients, then plainly

(5) R =<R=<R=<R
since a univalent function with real coefficients is typically real.
Now let G denote the class of entire functions of either of the following two

forms"
(a) g(z) ze 11= (1 + z/a),

(6)

or

(7)

(b) -> 0; 0 < a _-< a. _-< ’la [-1 < oo,

g(z) zII,=l (1 z/a,),
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THEOREM 1. Let g(z) G, and let a denote the smallest of the moduli of the
zeros of g’ z) Then

(8) Rc _-< Rs Rv a _-< Rr =< min_> {nil bn I} i/(n-1).

Proof. The rightmost inequality in (8) follows from (4) and Rogosinski’s
theorem [3] that , n in (T). In view of (5) and the obvious fact that
Rv -_< a we need only show that Rs a. But Rs is the radius of the smallest
circle on which
(9) Re {zg’(z)/g(z)} > 0

fails at some point. If, e.g., g(z) is of the form (6), then for zl r < al
and arg z 0 we have

Re[ 1-{- Re z- E
n-_l Z 2ff a

1-t-reos0+r r+,eos0
,_- r + a + 2, r cos

> 1_ r+r r,-_ +a--2,r

-r)o’(-)
(-r)

he lasg quangigy clearly remains posigive until ghe firsg ero of ’(-r) is
reached, i.e., as long as r N . he proof in ghe ease (7) is virgually idengieal.

To 2. For he fcioe -()eG we hve

(10) ( {1 + 1/ + o(-’ ( .
Pro4. Leg us define

and then

(1) (z) h’(iV) ( + 1)(z)

Since h(z) has only real zeros, so has h’(z), and thus (z) has only negative
real zeros. Being of order , it is of the form

(Z) :=1 (1 + Z/an) (ai > 0; j 1, 2, ...).

Following the method of Euler ([4], p. 500), let us write

:_ (j , ,...).
We then find that

(12) ;(z)/(z) :o 1)+ z (Izl < al).
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By matching coefficients in (11) and (12) the first few a. are easily calculated
(we omit the somewhat lengthy details), and then the relation

--1/3 < /
gives the result (i0).
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