TORSION-FREE AND MIXED ABELIAN GROUPS

BY
JoserpH RoTMAN

I. Infroduction

In the initial sections of this paper we classify arbitrary torsion-free abelian
groups in a manner similar to that used to classify the subgroups of the ra-
tionals. An existence theorem is presented to complete the picture, and
these results are applied to give new examples of indecomposable groups of
any finite rank.

The remaining sections are concerned with certain countable mixed groups
of torsion-free rank 1; they are essentially classified by the invariants which
came up in Kaplansky and Mackey’s solution [6] of the analogous problem
for modules over complete discrete valuation rings. The proof of the present
classification theorem depends heavily on the author’s adaptation [10] of
their work to modules over (not necessarily complete) discrete valuation
rings. Again an existence theorem shows the set of invariants is complete.
Although these invariants are clumsy, they are used to solve cancellation,
square-root, and isomorphic refinement problems.

Il. Basic definitions and notation

All groups considered are abelian and are written additively. If G is a
group, the set of all elements in G of finite order forms a subgroup 7', the
torston subgroup of G. @G is torsion if T = @; G is torston-free if T = 0. An
arbitrary group may contain elements of infinite order and elements of finite
order. Since most work on abelian groups has been done on torsion groups
and torsion-free groups, a general group is called mized to distinguish it from
these particular cases.

Let p be a prime integer, x an element of G. =z is divisible by p" in case
there is a y € G such that p"y = x. « has p-height n, denoted h,(z) = n,if n
is maximal with the property that x is divisible by p"; if there is no such =,
x has infinite p-height.

Let I denote the rational integers, @ the rational numbers. If G is a group,
Q ®; G is a vector space over Q. The rank of G is the dimension of @ ® G.
(There are other notions of rank in abelian group theory; the one defined
above is sometimes called the “torsion-free rank” of G. No confusion should
arise from our abbreviation since no other kind of rank will be used.) Closely
allied to the concept of rank is that of independence: A set {x,} of elements of
@G is independent in case D m;x; = 0, m; ¢ I, implies m; = 0 for all &. In
particular, each element in an independent set must have infinite order. A
basis is a maximal independent subset; all bases have the same cardinality
which is equal to the rank.
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If p is a prime in I, we may form I, , the ring of quotients of I with respect
to (p). This is the ring of p-adic fractions consisting of all elements of @
whose denominators are prime to p. Observe that p is the unique (up to
associates) prime in the ring 7,. We must also consider (unitary) modules
over I,. The definitions given above for groups may be applied to I,
modules, with the following simplification. Since I, has only one prime, we
speak of the height of an element x, h(x), instead of the various p-heights.

For a complete discussion of these ideas, as well as the concept of Ulm
tnvariants, the reader is referred to [4, 5, 8].

lil. Torsion-free groups

TueoreM 1. Let G and G be torsion-free abelian groups of finite Irank s.
T'hen @ is isomorphic to G’ if and only if there are bases 21, -+ , s G, x1, -+,
zs 1n @' such that h,,(z mix;) = ho(D_m; xi) for all primes p and all tntegersm; .

Proof. We define an isomorphism f as follows. First, set f(z;) = x for
alli. Supposey > 0,y ¢ G. Then, since the 2’sform abasis, my = Y m;;
for some nonzero integer m and integers m;. We may assume that m = p*
for some prime p, since G modulo the subgroup generated by the 2’s is torsion,
and is thus the direct sum of primary groups. Hence h,(D m;z;) = k;
therefore, there is a unique (G’ is torsion-free) element y’ ¢ G’ such that
Py =D my zi. Set f(y) = y/. Itis a simple matter to verify that f is
a well-defined isomorphism.

Let P denote the set of primes in I, and let I° denote the cartesian product

of s copiesof I. An ordered basisz; , - - - , , induces a function g: P X I’ —
nonnegative integers and « by g(p,my, - -+ ,ms) = hy (O m;x;). Theorem
1 is unsatisfactory as stated since the “invariant”” it mentions depends on the
choice of ordered basis of G. Suppose y;, - - - , ¥ is another basis of G, which

induces a function f. There is a rational nonsingular s X s matrix B = (b;;)
such that y; = 2 b;x;. If nis the product of the denominators of the

bs; , then ny; = 2 (nby;)x; , where now all coefficients are integers. Hence
f(p,mma, +-- ,mme) = g(p, 2 mimba, -+, 2 minbs,)
= g(p, [m1, -+, mnB),
where we consider [m,, --- , m,] as a row matrix. It is easy to check that

this relation is an equivalence relation, and that any two ordered bases of G
determine the same equivalence class of functions. Thus this equivalence
class is an invariant of G.

TuaeoreMm 1’. Let G and G’ be torsion-free abelian groups of finite rank s.
Then G 1s isomorphic to G’ if and only if they have the same equivalence class of
herght functions.

Several comments may be made at this point. Theorem 1 may be proved
for torsion-free modules of any rank over principal ideal domains, the proof
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being identical to the one given above. Also, if the groups have rank 1,
Theorem 1’ is precisely the usual classification of the additive subgroups of
the rationals by means of “characteristics” or ‘“Steinitz numbers.”

There is yet another formulation of this theorem. Instead of considering
ordered bases, one may consider the free subgroups they generate. The
height functions now become functions of only two variables, f(p, a), where p
is a prime, and @ varies over a free subgroup of rank s; indeed, this is the ap-
proach of Campbell [1]. (I remark that Campbell’s paper and my own were
done independently.) It is now obvious that the invariants really tell how
the free subgroups of rank s are situated within G. However, I prefer the
functions of several variables (i.e., ordered bases instead of free subgroups)
since the equivalence relation is less cumbersome, thus permitting an applica-
tion (Theorem 3).

In order to prove the existence theorem, we first consider the simpler case
of modules over I, .

Let f:I, — nonnegative integers and . Abbreviate the argument
(ry, ++- ,rs) of fbyr.

LemMA.  Suppose the function f above satisfies:

(1) f(pr) = f(r) + 1, where ©» + 1 =
(i) f(ur) = f(r), where u s a unitin I, ;

@) f(r) > f(r') implies f(r + ') = f(r').

Then there exists a reduced torsion-free I,-module M of rank s containing an
ordered basis z, , - - - , ¥, such that k(X rix;) = f(re, -+ , 1), forallriel,.

Proof. Let V be an s-dimensional vector space over  with ordered basis
Zr, 2. LetM =[yeV|y= (1/p%) 2 rix:,wherek < f(ry, -+, 7]
Note that M is the set consisting of precisely these elements, and is not, a
priori, the I,-module they generate. In particular, (/P D riws ¢ M if
k> f(ry, -, m).

We shall now prove that M is an I,-module. Suppose y and y' are nonzero
elements of M. Theny = (1/p )Z r;x; and ¥y = (l/p NI rian , where
k<fr), K £f0'),andk K. Alsoy+y = (1/p%) X (ri + p" ™ 1))

Case 1. f(r) < f(p*™7). Then k < f(r) = f(r + p*7'), by (iii).
Hence y + ¢ ¢ M.

Case 2. f(r) > f(p*™'"). By (i), f(r + ™) = f(p**r'). Sup-
pose k > f(p* 1) = f(') + k — I, by (1) Then 0 > f(r') — k', contra-
dicting &’ £ f(+'). Againk £ f(r + p" r)andy—l— y eM.

Lety e M,and let ' % ObeinI,. Then? = up”, where w is a unitin [, .
Hence r'y = (1/p") X riup™x:. But k < f(r) = f(ur) < f(up™r) by (i)
and (i). Hence r'y ¢ M.

Thus M is an I,module. By our earlier remark, h(D_ riaz;) =
J(re, ooy m).

TurEOREM 2. Let f: P X I' — nonnegative integers and o satisfy the fol-
lowing conditions:
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(i) f(p, pm) = f(p, m) + 1, where » + 1 = oo
(i) f(p, nm) = f(p, m) where (n, p) = 1;
(iii) f(p, m) > f(p, m") implies f(p, m + m') = f(p, m").
(m denotes an s-tuple of integers.) Then there exists a torsion-free abelian group
G of rank s containing a basis xy , - -+ , X, With hp(z m;x;) = f(p,my, -+ ,Ms)
Sor all p and m, .

Proof. Let V be an s-dimensional vector space over @ with ordered basis
Zy, -+ ,% . For each prime p, define a new function g,:I; — nonnegative
integers and « as follows. Let r, --- , r, be elements in I, , and let n be
the product of their denominators. Set g,(ry, -+ ,75) = f(p,nry, -+, nrs).
By the lemma, let G, be the I,-module with basis «; , - -+ , z; having g, as its
height function. Repeat this construction for all p using the same 2’s in the
same order. Set G = N, G,. G is a torsion-free group of rank s containing
Z1, - -, . Further,in G,,considered as a group, hy(D_ m; z;) = o for all
primes ¢ 5 p, while h,,(z m; ;) = f(p,m) by (ii), where the m; are integers.
Hence the p-height of D m, z; in G must be precisely f(p, m).

A group is decomposable in case it can be written as a direct sum of two of its
proper subgroups. Theorems 1 and 2 immediately give the following result.

CoroLLARY. A forsion-free group G of finite rank is decomposadble if and
only #f G contains a basts 1, -+ , s, Y1, *** , Y: such that

ho (2o mi s + Do myy;) = min (b (20 mi 2:), hp( 22 mj y,))
for all primes p and all integers m; and m; .

These results are now used to produce new examples of indecomposable
groups of any finite rank.

TurorEM 3. There exist indecomposable groups of any finite rank.

Proof. For simplicity of notation, we shall only give an example of an in-
decomposable group of rank 2, but the generalization to any finite rank is
straightforward from the construction. The basic idea is to define a height
function f such that given any basis and a partition of it into ordered disjoint
subsets, there will be some linear combination of those elements whose height
will not obey the “min rule” for some prime p.

Let p <> (b;;) be a one-one correspondence between the primes p and the
2 X 2 nonsingular matrices (b;;) over . Let n, be the product of the de-
nominators of the b;; , and let k, be the maximal power of p dividing 7, O by .
Define a function f: P X I X I — nonnegative integers and « as follows.
Given p, set

J(p, np by npbie) = f(p, npba, npbn) = ky,
and set

F(p, X npba, 2 npba) = ky + 1.
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For fixed p, f may be extended over all pairs of integers so that (i), (ii), and
(iii) of the existence theorem are satisfied. (Generators and relations seem
to offer the quickest way to see this.) It should be emphasized that the b’s
in the above construction are the entries of the matrix corresponding to the
prime p. Since we have defined f at each prime p, we have constructed a
function satisfying the conditions of Theorem 2. Let G be the group deter-
mined by f, with elements 2; and a, such that h,(3_ m;2;) = f (p, m, Me).
Suppose @ is decomposable. By the corollary, there is a basis 21 and 3 of G
such that h,(D_ m; ;) = min; hy(m; x;) for all primes p and all integers m, .
But there exists a matrix (b;;) such that

I'(p, nmy , mmz) = f(p, 2 nm; by, D nm; bis)

(where f” is the height function determined by 2 and s , and n is the product
of the denominators of the b;;). In particular, f'(p, n,0) = f'(p,0,n) = k,
while f’(p, n, n) = k, + 1, for the prime p corresponding to (b;;). This
means hp(nxy) = hp(nx;), but h,,(nxi + nas) > h,,(nxﬁ), and so the min rule
is not obeyed. This contradiction shows that @ is indecomposable.

IV. A structure theorem for mixed groups

A KM group is a countable abelian group of rank 1 such that for any prime
P, hp(2) is infinite if and only if 2 has finite order prime to p. In a moment we
shall characterize a KM group in terms of certain modules associated to it.

LemMma 1. Let G be a group, x € G, and let p be a prime with (m, p) = 1,
m an integer. Then hy(x) = hy(mz).

Proof. This is immediate from the existence of integers a and b such that
amx + bpr = .

LemMA 2. Let G be a group, ¢ G, and p a prime. If h(1 ® z) = k in
I, ® G, then hy(z) = kin G.

Proof. 1® zep* (I, ® G) = [, ® p"G. Hencel ® 2 = 2.7 ® ¢,
g: € p'G.  Let m be the product of the denominators of the r;. Then
(m,p) =land1 @ me = 1 ® 2 (mr;)g;. But.1 ® t = 0 implies nt = 0,
where (n, p) = 1. Hence nma = », (nmr;)g; which implies h,(nmz) = k
But (nm, p) = 1, and so our result follows from Lemma 1.

CoroLLARY. Let G be a countable group of rank 1. G is a KM group if and
only if each I ,-module I, ® G has no elements of infinite height, for all primes p.

Lemma 3. Let M be an I,-module of rank 1 with no elements of infinite
height. Let S be a finttely generated submodule, z ¢ S. Then the coset z + S
contains an element of maximal height.

Proof. This is Lemma 3.8 in [10]."

'Lemma 3 is false if rank M > 1 [10, Example 5.9].
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Lemma 4. Let S be a finitely generated subgroup of the KM group G, x ¢ S
and px € S for some prime p. Then the coset x + S contains an element of
maximal p-height.

Proof. TFirst we show that 1 ® z ¢ I, ® S. Let z* denote z + S.
z* e ker (/S — 1, ® G/S)

if and only if #* has finite order prime to p. However «* has order p, and so
it is not in this kernel. Consider the commutative diagram with exact rows:

0 S G — G/8 — 0

| l |

0 1, ®S— 1, ® G s I, ® (G/S) —— 0,

where the downward maps are y —>1 ® y. Then f(1 ® z) = 1 ® z* which
we have just seen is nonzero. Butf(1® z) =1 ® 2 + [, ® S. Therefore
1®z¢l, ® S. By the above Corollary, I, ® G has no elements of infinite
height. Hence Lemma 3 implies the coset 1 ® z 4+ I, ® S contains an ele-
ment of maximal height, and so there are only finitely many different heights
occurring in it. By Lemma 2, there are only finitely many distinct p-heights
occurring in the coset * + S, and so there is an element of maximal p-height
in it.

LemMma 5. Let G and G’ be KM groups. Let S and S’ be finitely generated
subgroups of G and G’ respectively, and let f be a height-preserving isomorphism
of Sonto S'. Let x e G with px e S for some prime p. Then f can be extended
to a height-preserving isomorphism between {z, S} and a suitable subgroup of G’
containing S'.

Proof. By Lemma 4, we may assume z has maximal p-height in z + S.
Precisely as in [6], one may find an element o’ ¢ G’ such that 2’ ¢ S, pz’ € S,
2’ has maximal p-height in the coset 2’ + S, and h,(x) = h,(2’). In order
to complete the proof, one need only verify that if (m, p) = 1, then

ho(ma + ) = ho(ma’ + f(s))

for all primes gand all s e S. If ¢ = p, then the fact that x and 2’ are ele-
ments of maximal p-height in their cosets modulo S, respectively §', yields
the desired result. If ¢ 5 p, then, by Lemma 1,

ho(mz + s) = hy(pmz + ps) = h(pma’ + pf(s)) = hy(ma’ + f(s))
since f is height-preserving. The lemma now follows.

TuEOREM 4. Let G and @ be KM groups. G is tsomorphic to G’ if and
only if there exist elements of infinite order x ¢ G and =’ ¢ G’ such that hy,(mx) =
hp(ma') for all integers m and primes p, and G and G’ have isomorphic torsion
subgroups.
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Proof. Let A be the subgroup generated by z, A’ the subgroup generated
by 2/, and let f:A — A’ be defined by f(z) = 2’/. fis height-preserving, by
the choice of x and 2’. This isomorphism is now extended stepwise to an
isomorphism of G and G’ by Lemma 5. To ensure catching all of G and G’, we
take fixed lists of elements of each and alternate between adjoining an element
of @ and an element of G’. Since the elements of G and G’ have finite order
modulo 4 and A’ respectively, we can suppose that at each step we are adjoin-
ing an element x such that pz lies in the preceding subgroup. This is precisely
the situation of Lemma 5.

CororLLARY (Cancellation Theorem). Let T be a countable torsion group
with p-primary components T, , and suppose that the Ulm invariants of each
T, are finite. Let G and G’ be KM groups. IfT®@G@~T ® G, thenG G

Proof. Since the groups are isomorphic, there is an x ¢ T @ @ and an
2’ ¢ T @ @, each of infinite order, such that h,(mz) = h,(ma’) for all primes
p and all integersm. Nowz =t4+ ganda’ =t + ¢, t, ' e T, g ¢ G, and
g’ e G’. Since ¢ and ' have finite order, we may assume each is zero. Hence
g and ¢’ satisfy the height equation. By Ulm’s Theorem, we may cancel T
from either side to obtain that the torsion subgroups of G and G’ are iso-
morphic. Therefore G and @’ are isomorphic, by Theorem 4.

One may object to our formulation of Theorem 4 for the same reason as he
objected to Theorem 1; the “‘invariants” given are not really invariants of the
group @ since the collection of heights h,(mx) depends on a choice of element
z. Any z € @ of infinite order determines a function f: P X I — nonnegative
integers and « by f(p, m) = hy(mz). (o is a value only when m = 0,
since G is a KM group.) By Lemma 1, this function is completely deter-
mined if we know f(p, p*) for all primes p and integers k& = 0. In other
words, each z of infinite order determines a family of sequences of integers,
one sequence for each prime p. In examining modules over complete discrete
valuation rings (in which rings there is a unique prime), Kaplansky and
Mackey saw that two modules are isomorphic if and only if they have iso-
morphic torsion submodules and equivalent height sequences. Our theorem
is thus the true analogue of their theorem; we have one sequence for each
prime. To understand this collection of heights even better, recall the
situation in torsion-free groups of rank 1. There each nonzero element
determines a characteristic, i.e., its p-height for each prime p. Thus each
element determines a ‘“horizontal’”’ collection of numbers; in modules, each
element determines a ‘“vertical” collection of numbers. We have seen that
in mixed groups, each element of infinite order determines a “two-dimensional”’
array of numbers; call such an array the Ulm tower of x, and denote it Uz.
The problem of dependence on choice of element arose in both the module
and torsion-free group cases; the way to solve it is via an appropriate equiva-
lence relation. We proceed to do this here.

Let {ox} and {8:} be strictly increasing sequences of nonnegative integers.
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{ar} ~ {Bi} in case there are nonnegative integers m and n such that
Qptm = Brsn for all k. Let A and B be families of such sequences: A consists
of sequences {af} ; B of sequences {8f}. A ~ Bincase {a;} = {87} foralmost
all p, and {ax} ~ {BF} for the others.

It is easy to check that we have defined an equivalence relation, and that if
z and y are elements of infinite order in a KM group, then they determine
equivalent Ulm towers. Hence the structure theorem can be restated as
follows:

TueoreEM 4’.  Let G and G’ be KM groups. G =~ @' if and only if they have
1somorphic torsion subgroups and the same equivalence class of Ulm towers.

V. An existence theorem and applications

A strictly increasing sequence {a;} of nonnegative integers has a gap at k
in case apy1 > ap + 1.

Lemma (Kaplansky). Let {on) = [hy(p*2)}, where ze¢G. {ai} has a
gap at k implies the axt™ Ulm invariant of the p-primary component of the torsion
subgroup of G is nonzero.

Proof. See [5, page 58].

Motivated by this lemma, we define a notion of compatibility. Let {au}
be a strictly increasing sequence of nonnegative integers, and let {n,} be its
subsequence of gaps (this subsequence may be finite); let T' be a primary
abelian group. {a.} and T are compatible if the a,;** Ulm invariant of T' is
not zero for each <.

THEOREM 5. For each prime p, let there be given a strictly increasing sequence
of nonnegative integers {an} and a countable p-primary group T, with no elements
of infinite height such that {an} and T, are compatible. Then there exists a KM
group G with torsion subgroup YT, and which contains an element x with
hp(p"x) = an , all p and n.

Proof. We divide the proof into two steps: The first step constructs certain
“building blocks” whose invariants depend on only one prime; the second
step puts the building blocks together to form the desired group.

Our building block shall have torsion subgroup 7, and shall contain an
element x such that h,(¢"x) = n if ¢ £ p, = ay if ¢ = p. In this step we
omit the superscript p on the o’s.

Let H have generators z, @y, @y, - - - and relations p™z, — p"z, i.e., F is
free on the a’s, S is the subgroup generated by the relations, and H = F/8.
Clearly H is a countable group of rank 1; let 2* be the image of x in H.

(1) hp(p"2*) = an.

By our construction, h,(p"2*) Z «,. Suppose this inequality were strict.
For notational convenience, we shall denote p* by [k]. In F

(1) 1+ ay — nlz = 2 b([owlar — [klz).
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Lety = ax + D_a;z;. Then we have the equations
(2) 0+ ana; = bifa] and [1 + aJa — [n] = — 2 bildl.
Since the height of the left side of (1) is n,
b (3 bi([aile: — [de) = min hy(bfade;) and k(3 bifilz) = n.
By (2), hp(bdaidz:) > n. Hence h,(D_ bifilz) = n. Now
Dobfile = Diga bilile + Do bilila,

and clearly the height of the second term > n. Butif ¢ < n, o; £ @, and so
bi = adl + an — a. Hence 3 ign blile = Doizn ail + an — a: + il
But @, — a; 2 n — ¢ which implies 1 + o, — a; + 72 > n.
Hence hp(zi <n biilz) > n, a contradiction. Hence h,(p"z*) = an.

(i) If ¢ # p, ho(¢"2*) = n.

If this height > n, we have in F, ¢""'y — ¢"z = 2 by(laie: — [ilx).
Again y = ax + D a; ; and we obtain ¢"a — ¢" = — 2 bifi]
and ¢""'a; = bfa]. Since ¢ #= p, b; = ciq""" for all 7, ¢; an integer.
Therefore Y by([eiles — [dz) = 2, ¢i ¢" ™ ([ailes — [¢]z) which implies the
g-height of the right side of the original equation = n + 1, while the g-height
of the left side = n (x being a basis element of the free group F).

(iii)  The torsion subgroup of H is p-primary.

Calculations similar to those in (ii) show that if ¢ is a prime 5 p, qy ¢ S
implies y € S.

(iv) H has no elements of infinite p-height.

By (i) and (ii), it suffices to look at an element z* of finite order; by (iii)
we may assume the order is p. Lifting to F, pz = > bi([ades — [z) and
z = ax + D a;xz:. Hence pa; = bja;]. Suppose also that [kly — z =
Z c¢i([asle; — [2]x), where y = max + Z m; ;. Then [klm; — a; =
cilas). For large k, a; = [klm; — ci{e] = [as] d;, some integers d;, and also
pa; = bja;]. Hence b; e (p) for all £ and z € S, since F is torsion-free.

Let L be the torsion subgroup of H. We have almost proved that H is a
building block; we have not yet shown that L is isomorphic to T, . Let C;
be a cyclic group of order [a,, + 1]. It seems reasonable that L = > C.,
but the calculations appear tedious. Therefore we resort to another ap-
proach.

LeEMMA. Let {a,} be a strictly increasing sequence of nonnegative integers, and
let {ns} be its subsequence of gaps. Let T, be the direct sum of cyclic I ,-modules
of order ([on; + 1]). Then there exists a countable I ,-module M of rank 1 with
no elements of infinite height whose torsion submodule is T, and which contains
an element x such that h(p"x) = o, . Further, M is a direct summand of any
other countable I,-module of rank 1 with no elements of infinite height which
contains an element whose heights give the sequence { o).
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Proof. See the corollary to Theorem 6.2 in [10].

Let us return to the building blocks. H is contained in 7, ® H, and the
torsion submodule of I, ® H is still L. By the lemma, L = V ® »_ C,, and
V is a module direct summand of I, ® H; a fortiori, V is a group direct sum-
mand of H. Hence H = V ® H’, where H’ has torsion ), C;. By com-
patibility, > € is a direct summand of T, ,ie., T, = B ® D, C;. Hence
H' ® B is the building block we are seeking.

Now that the first part of the construction is over, we abandon all previous
notation and start afresh. For each prime p, let G, be a building block with
torsion T, and which contains an element z, with h,(¢"z,) = nif ¢ # p, = ah,
if g = p. Set G = (3_G,)/S, where §is generated by the elements 2, — 2,
for all primes p. Clearly G is a countable group of rank 1. Let «* denote
the common image of z, in G.

(i) hp(p'z*) = af.

Clearly this height = a? . Set a? = a. Suppose p'™y* = pz*. Lifting
this equation to D Gy, p' ™y — p'zp = O ag(x, — 2), where y = D y,.
Looking at each coordinate gives p'™%y, = a, 2, if ¢ # p, ¢ # 2. Hence
ag € (p'), by the height condition on z,. Further p' %y = — D a, 2,
and so 2 a,e(p'™®). Hence aye(p'™). But p'™y, = px, + apa,
which implies i, (p‘c,) = 1 4+ o > a, a contradiction. Hence h,(p'z*) = of .
A similar argument is necessary (and easy) for the case p = 2.

(ii) The torsion subgroup of Gis ) T, .

Clearly S is a torsion-free subgroup of Y G,. We claim it is a pure sub-
group. Supposep’z = D a,(x, — ), paprime. Nowz = D, z,. There-
fore p'z, = a,x, if ¢ # 2. Hence a, e (p') for ¢ # p. Further P =
(3_ a,)z, implies that > a, ¢ (p'). Hence a, ¢ (p°), and so, for all g,
a, = p'b, , for integers b, . Therefore p*(D by(x, — 22)) = X ag(xy — 22),
and S is pure.

Let 7: 2 G, — (2 G,)/S be the natural map. Since S is torsion-free,
(X T, =~ > T,. Suppose nz* = 0, ie., nzeS. By purity, there
exists an s e S such that nz = ns. Therefore z = s + t, teT = 2, Tp,
since T is the torsion subgroup of > G,. Hence z* = t* ex(T), so that
w(T) is the torsion subgroup of G. This completes the proof of Theorem 5.

Let us now return to Ulm towers {ah}. We introduce a partial order
among Ulm towers by {an} < {84} incase as < @5 forall p andn. Let us
call an equivalence class of Ulm towers a castle. This partial order on towers
does not in general induce a partial order on castles, as we shall presently see.

TuroREM 6. Let G and H be KM groups. G is almost tsomorphic to a sub-
group of H if and only if there exist elements of infinite order x ¢ G and y e H
with Uz = Uy.
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Proof of necessity. We may assume G is a subgroup of H by enlarging the
torsion subgroup of H. The result is now trivial.

Proof of sufficiency. The inductive construction of Theorem 4 may be
repeated here, with the difference that we do not alternate between the fixed
lists of generators.

CorOLLARY.? There exist KM groups G and H, each almost isomorphic to a
subgroup of the other, and yet G and H are not almost isomorphic.

Proof. Let G have torsion subgroup 7' = 2L, C (2%) (€C(2°) is the cyclic
group of order 2'), and let G contain an element x with h,(p"z) = n

if p 5 2, he(2"2) = 2n; let H have torsion subgroup 7" and contain an element
y with h,(p"y) = nif p # 2, he(2"y) = 2n + 1. Uz and Uy are not equiva-
lent, so that G and H are not almost isomorphic. On the other hand,
Uz < Uy, and Uy = U2z so that Theorem 6 implies each of G and H is
almost isomorphic to a subgroup of the other.

We remark that if each of G and H is almost isomorphic to a pure subgroup
of the other, then G and H are almost isomorphic.

The example above shows that the partial order on Ulm towers induces a
relation among castles which may fail to be antisymmetric. On the other
hand, if we do have a collection C of castles which is partially ordered under
this relation, we shall call C' unrelated. Thus a set C of castles is unrelated
in case the following condition holds: Let ¢ and ¢’ be castles in C. If there
are Ulm towers « and Bin ¢, o’ and 8’ in ¢’ such that a < o' and 8/ < 8, then
c=c.

THEOREM 7. Let G = D i=1 Gy, each G; a KM group. Suppose the collec-
tion C of all castles arising from elements in G is unrelated. Then any two
decompositions of G into groups of rank 1 have isomorphic refinements.

Proof. Let [Ux] denote the castle of an element z ¢ G. We have the
following arithmetic in C.

I. If x and y are dependent, [Uz] = [Uy].
II. [U(z + y)] 2 [Ux].

III. If ¢ has finite order and x € G, then [Ut] = [Ux].

For any castle ¢ ¢ C, let G(c) denote all elements of G whose castle = ¢,
and let G’(c) denote the subgroup of G generated by all elements whose
castle > ¢. Since C is unrelated, these sets are well-defined; further, G(c)
is a subgroup which contains the torsion subgroup of G.

If ¢ e C, let (for notational convenience) Gy, - -, Gi be those summands
whose castle = ¢. We claim G(¢) = 2_5_1 G; plus the torsion subgroups of
the other summands. Clearly G(c) contains this subgroup; we must show it
contains no more. Let x ¢ G have infinite order, and choose z; € G; of infinite

2 This example was inspired by correspondence with Ti Yen.
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order. By I, we may assume 2 = 2 j.;a;2;. Hence[Uz] £ [Uzi] forall 4.
But ¢ £ [Uz]. Thus ¢ £ [Uz;] for ¢ > k, a contradiction. In a similar
manner, one may see that G’(¢) consists of those summands whose castle > ¢
plus the torsion subgroups of the other summands. Hence the number of
summands with castle = ¢ is the rank of G(¢)/G’'(c), which is an invariant
of G. Thus, at any rate, the castles occurring in any decomposition of @
into groups of rank 1 are uniquely determined. Suppose Y H; is another
decomposition of G into groups of rank 1. We may now assume that the
castle of G; = the castle of H; for all 7. Hence we may find elements of
infinite order z; ¢ G, y; e H; which have identical Ulm towers. By Theorem
5, there exist groups K of rank 1 such that G; ~ K; ® T;and H; ~ K, @ T
and such that all the Ulm invariants of the torsion subgroup of K; are finite.
Hence G = 2. K; ® > T:~ 2. K;: ® >, T:. If T is the torsion sub-
group of > K;, then T @ E T, ~T®® 2, T:. Since there are only
finitely many K’s, all the Ulm invariants of T are finite, and so Ulm’s Theo-
rem allows us to cancel T and conclude D T; &~ > Ti. Since these groups
are countable with no elements of infinite height, they are the direct sum of
cyclic groups. But it is well known that any two decompositions of such
groups have isomorphic refinements. This completes the proof of the theo-
rem.

Suppose G = Y G, each G; a KM group; suppose further that the set of
castles of the G,’s is unrelated, i.e., it is not the case that two distinct G,’s
are each almost isomorphic to a subgroup of each other. I conjecture that G
satisfies the hypotheses of Theorem 7, but I have been unable to verify this.

TueorEM 8. Let G and H be KM groups such that G @ G =~ H @ H. Then
G~ H.

Proof. Let z ¢G have infinite order. Then there exists an element
(y, 2) e H @ H which has the same Ulm tower as (z, 0). We may assume
(y, 2) = (aw, bw), where a and b are nonzero integers. Hence

hp(p"x) = min {hy(p"aw), hy(p"bw)]}.

This second tower is equivalent to the Ulm tower of w. Hence G and H have
the same castle. Let T be the torsion subgroup of G, and let V be the torsion
subgroup of H. Then T @ T =~ V @ V. By Ulm’s Theorem, T =~ V.
Hence G &~ H, by Theorem 4.
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