
ON WEIERSTRASS PRODUCTS OF ZERO TYPE ON THE REAL AXIS

BY

J. P. KAHANE AND L. A. Rv

1. Introduction
Let be the class of even entire functions W(z) of exponential type, with

real zeros only, and such that W(0) 1. It follows readily from the Hada-
mard factorization theorem that is identical with the class of all Weierstrass
products W(z) I-I(1 z/) with0 < 0 -< 1 -< 2 =< ""andn/
bounded. For a given function T(r) > O, let r be that subclass of con-
sisting of those W e for which W(r)l 0(1) exp (T(r)). If T(r) does
not grow too fast as r -- and W e r, then (see (2.4)) the sequence
I),} must have density D, and on each nonhorizontl ray z re through
the origin, W(z)l grows like sin (vDz)] and if W1, W2 e %r and

W(z) W (z) W (z)

is their product, then (see (2.6)) type (W) type (W1) W type (W2). The
weakest known hypothesis on T that guarantees these conclusions is

fo r-T(r) dr < oo.

Our main result says that if T violates this hypothesis, then the conclusions
will no longer hold.
That the types need no longer add has particular significance for generalized

harmonic analysis. Since a class r corresponds to the collection of Fourier
transforms of generalized distributions in a class fir, multiplication in r
corresponding to convolution in fir, and the type of W er corresponding
to the support of the corresponding F e fir, our main result shows, inde-
pendently of the recent work of Roumieu [5], the impossibility of extending
the "theorem of supports" to certain classes of generalized distributions.

This paper is essentially self-contained, but a knowledge of the general
background material, as discussed, say, in Chapters I, II, and V of Boas’s
book [1] is probably indispensable.

2. Notation, history, and statements of results

With the Weierstrass product

W(z) II:=0 (1 ),
(2.1)

0 < ,0 =< -< h <= "", n/h bounded,
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we associate the functions

n(t)
x_t
y 1, D(t) n(t)/t, )(t) -[1 fot D(u) du,

h(O) lim sup r-- log W(re)l, x(0) lim inf r-1 log W(re)l

In addition, we use the notation

h h(r/2) type (W(z)),

D" lim supt_ D(t), D. lim inft_ D(t),

We state some known results.

(2.2)

(2.3)

(2.4)

(2.5)

forO =< 0 <2r.

D" lim sup D(t).

h(O) 0 if and only if h(O) r/" sin Oilor all 0 [6, p. 4281.
/f W(z) Wl(Z)W2(z), then (trivially) h >= max (hi, h2).

/f

f log+ W(r) dr <r-2

then D. D" and h(O) x(0) rD’lsin Oilor 0 O, r [3, p. 769].

(2.6) COROLLtRY. If W(z) WI(z)W2(z) and W(z) or W2(z) satisfies
(2.5), then h h + h2.

Our main result, announced in [7], is that (2.3), (2.4), and (2.6) are es-
sentially best possible. That the conclusion D. D" of (2.4) is no longer
valid if (2.5) is weakened to the condition h(0) 0, is contained in [4,
Theorem V].

THEOREM. Let T(r) be a positive increasing function defined for r > ro with
T(r)/r decreasing and T(r)/log r increasing, and such that

(2.7) r-T(r) dr

Then there exist, given any h, h2 > O, Weierstrass products (2.1), W(z) and
W:(z), whose types are hi and h2 respectively, satisfying

(2.8) W(r)[ 0(1)er(r) i 1 2

but such that {f W(z) W(z) W2(z) is their product, then

type (W) max (h, h2).

In addition, fori 1,2, hi rD, D. 0, and(0) OforO 0,r.

Remarks. The conditions T(r)/r and T(r)/log r " are regularity condi-
tions on T(r) and do not affect the convergence or divergence of the integral
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in (2.7). It would be nice to eliminate these conditions, but we have not
found a way to do this. The condition T(r)/log r can be replaced, with
certain changes in the proof, by any one of several somewhat related condi-
tions of which three examples are

(i)
(ii)
(iii)

T(r)/log (r/T(r) "r1/2 _-< T(r) --< r/log r,
the function r(r), defined by r(r) T(r)/r, is slowly oscillating in
the sense that r(ar)/r(r) ---. 1 as r ----> for each positive a.

There is no difficulty in modifying the proof of the theorem to give a con-
struction of an infinite set W(z),j 1, 2, 3, of products (2.1) satisfying
(2.8) such that

II--1 W(z) (sin 7rz)/7z II:=l (1 z2/n),
but such that for each W(z) and each product W(z) of a finite number of
the W.(z), we have hi h2 h 7. To do this, one need only re-
place the pair of functions A1, A of Section 4 by an infinite set having similar
properties, and replace the constant k there by a function k(t) that decreases
extremely slowly to 0 as -- .The first two lemmas are interesting in themselves, and we state them here.
Lemma 1 states that if D(r) is slowly oscillating in the sense of (2.9), then
for each 0 # 0, 7r, W(rei)l imitates the behaviour of D(r). Lemma 2
enables us to make the passage from continuous mass distributions to discrete
ones. As a corollary of Lemma 1 it is easily seen that if (2.9) holds, then
h(0) 7rD" sin 01for # 0, 7, and by the well-known continuity of h(t)
that h(0) 0, thus giving another proof of a result of Redheffer [4, Theorem
II].
LEMMA 1. If

limr_ {D(rt) D(r)} 0
(2.9)

uniformly for in any interval 0
then for O, r

log W(re)l 7rrD(r)l sin 01 + o(r).

LEMMA 2. Suppose that v(r) is a continuously differentiable function for
0 <= r < ,thatO v’(r) <__ q < ,andthat

(2.10) v(r) >= n(r) > v(r)- K for some constant K and all r.

Then

(2.11) log W(r) <- fo log] 1 r/t ,’(t) dt + 0(log r) as r .
3. Proofs of Lemmas and 2

2i0/.2
Proof of Lemma 1. Write logW(re) logII(1 re /^)

2i0..2 r.eiO/tlog(1 re /^) 01og(1 )dn(t). For O # 0,rwemay
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integrate by parts. The "integrated terms" drop out if the branch of the loga-
rithm is conveniently chosen because n/k is bounded (see (2.1) ), and we get,
after a multiplicative change of variables,

2e2i
log W(rei) r

e2O t D(rt) dt.

Hence the familiar formula

(3.1) log]W(re) r fo P(t,O)D(rt) dt,

where

P(t,O) Re
e;o_t

1 cos 20
1 2t cos 20 + 4"

For each 0 0, r, P(t, ) is a bounded and Lebesgue integrable function of
on (0, ), and it is well known that . P(t, ) dt ]sin 0 Thus

log lW(reo) rr D(r) sin 0 r f0 tD(rt) D(r) }P(t, O) dt.

By breaking the range of this last integral into three parts,

+ -t-

it is easy to see that {D (rt) D (r) P(t, O) dt -- 0 as r -. (but not
uniformly in 0 0, r), and the lemma is proved.

Remark. The hypothesis (2.9) can be replaced by the following, apparently
weaker, hypothesis:

limr_..{D(rt) D(r)} 0 for each te(0, ),

since a frequently discovered result asserts that if (2.9’) holds for a Lebesgue
measurable function D (r), then (2.9) actually holds. (The history of this
result is too complicated for us to unravel here, and we give only the reference
[2, .4].)

Proof of Lemma 2. For fixed r, we write, as in the proof of Lemma 1,
log lW(r)l .L(t) dn(t), where L(t) log 1 r2/tl. We point out
that L(t) is Lebesgue integrable on (0, ),

L(O+ --}- L(r-- L(r+ L( o O,

and that L(t) is decreasing and continuous in (0, r) and increasing and con-
tinuous in (r, ). We must compare

Y L(t) dn(t) and Z L(t)d(t).

We will prove that Y < Z + O(log r) where n(r) may be replaced by any
increasing function (r) satisfying (0) 0 and (r) => (r) > (r) K for
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some constant K. We assume that ’(t) >_- p > 0. This involves no loss of
generality since if we replace (t) by (t) -t- t, and (t) by ($) t, we change
Z and Y not at all because j’ L(t) d O. We may suppose without loss
of generality that (0) 0 since suitably redefining on the interval [0, 1]
changes the value of the integral in the conclusion (2.11) only by 0(1). The
additional 0(1) is negligible compared to O(log r), which is the discrepancy
allowed in (2.11).
With each large r we associate the numbers rl and r2 such that

(rl) (r) (r) K.

Since ’(t) >- p, we will have r- rl <- r: rl <= Kip.
equalities hold, as can be readily verified"

(3.2) L(t) dry(t)

_
L(t) d(t),

The following in-

(3.3) L(t) d(t) <= L(t) d(t).

From these inequalities we deduce that Y <-_ Z -t- X, where

log ll r/t[d(t),

and we shall prove that X =< O(log r). Clearly,
r2

X

_
log

t--r d(t).

Since r r <-_ Kip and ’(t) =< q, we have
r2

X q log-
r

dt

_
q(r= r) log r2 q

so that X <- (qK/p) log (r + K/p) + 2q.

log- r[dt,

4. Proof of the theorem

Let us first illustrate the method of proof with a simple example to show
that one may have h(0) h(0) 0, but not h h - h.. Put

n(r) {1 -t- sin (log log t) dt

n(r) {1 -t- cos (log log ) d

and leg W() and W() be ghe Weiersgrass produegs (2.1) over ghe segs
whose eounging funegions are () and (), respeegively. he slow
oscillations imply (by Lemma 1 and he continuity
h(0) h(O) O. Lemma 1 shows gha W(ig) behaves very much like
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exp {ry(1 - sin (log log y))}, and W.(iy) like exp {ry(1 -t- cos (log log y))}
as y - . But since sin and cos are out of phase, we get not

h 2r -t- 2r 4r,

but h (2 + 2/) instead.
Beginning now the proof of the theorem, we will suppose without loss of

generality that T(r) is continuous and that lim.= T(r)/r 0 because a
function T(r) satisfying the hypotheses of the theorem certainly has a con-
tinuous minorant T*(r) satisfying the hypotheses with lim..= T*(r)/r O.
Also, (2.7) implies that T(r)/log r -- since we have supposed that
T(r)/logr ". We will not prove the "in addition" part of the theorem
since it will be amply clear from the proof that each of the functions
W(z), W.(z) will satisfy the requirements of the second part. To construct
these Weierstrass products W(z) and W(z), we take two functions A(t) and
A.(t) satisfying the following simple conditions"

(4.1) A(t) and A(t) are nonnegative continuously differentiable periodic
functions of period 2r for < < .

(4.2) A(t)Az(t) O, i.e., A(t) vanishes where A(t) does not, and
vice versa.

(4.3) maxA(t) h maxA(t) h.

For example, we might choose

A(t) h{max (sin t, 0)} and A.(t) h{min (sin t, 0)} .
Now define u(t) (where, as throughout this section, i 1, 2) by

i(t) Ai(l(s) ds,

where l(s) is the continuous function defined by

l’(H(t)) tclg for t>= t0=max(r0,e),
(4.4)

l(t) klgtot for 0 <t <H(t0),
to

where H(t) T(t)/log t, and the constant k will be chosen later in a way
that depends only on the choice of the functions A(t) and A(t).

Finally, we define W(z) by

log W(z) f log (1 z/t) dn(t),

where n(t) [(t)].
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:LEMMA 3. limr_. {A(l(rt)) A(l(r))} 0 uniformly for in any in-
terval 0 < <= <= 1/.

The proof follows from the estimate

A(l(rt)) d(l(r))l -< A II{maxr,_<_<r ()}r(1 t)

if < 1, where I1 denotes the supremum of the indicated function.
There is a similar estimate if > 1. But from (4.4), provided that
r >__ H(to)/t (then H-l(rt) >__ e), we have l’() k(log H-I())/H-(),
and for such r we then have

rl’() kr
log H-() < kr

log H-(rt)
g-() H-l(rt)

k_ (rt) log H-(rt)
U-(rt)

k H(y) log y k T(y)

’ y y

where y H-(rt). But (k/t)(T(y)/y) -- 0 uniformly for __> > 0 since
T(y)/y -- 0 as y - .LEMA 4. D(r) A(l(r) -b o(1) as r -- and the hypothesis of Lemma
1 is satisfied by D(r).
We have to prove the first part, from which the second follows, by Lemma

3. The proof is immediate, on noticing that Di(r) r-,(r) -b o(1), so that

D(r) A(/(r)) {A(l(rt)) A(l(r))} dt + o(1),

and by Lemma 3 the second member is o(1).

LEMMA 5. r as r

It is precisely at this point that the condition (2.7) enters the picture.
We write

l(H(r) >- l’(H(s) dH(s).

By (4.4) we may write this last integral as

l’(g(s)) dg(s) k log____s d T(s)
8

k ft log s 1 T(s)
ds - 0(1)

s log s

on integrating by parts. Since the divergence of the last integral is an easy
consequence of (2.7), we are done.
From Lemma 4 and Lemma 1, we conclude that
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log lWi(re)l-- rrAi(l(r)) -[-o(r),

and therefore that for W W1 W2

log lW(rei) 7rrlA(l(r)) q- A.(l(r))} -[- o(r).

Since, by Lemma 5, l(r) -+ , it is clear that

type (Wi) hi,

and that because of (4.2) and (4.3)

type (W) max (h, h.).

It remains only to verify that the Wi satisfy (2.8), which we now do. By
Lemma 2, if we show that

(4.5) Zi -f0 Ig 1 r/tl&,i(t) <- T(r)

for large r, we will be done except for the trivial enlargement of the 0(1) of
(2.8) to exp (O(log r)), that is, to a term of polynomial growth. We leave
it to the reader to verify that by simply dropping a finite number of terms
from each of the products (2.1) for Wi(z), the additional factors of poly-
nomial growth are cancelled without affecting the other conditions.
To prove (4.5), write it as

Zi f ,(t/r)t (t) dt,

where

Thus

i 0t,p(t) - log
1

du log
1 1+ -log

Zi fo ,p(t/r)tl’(t)A’i(l(t) dt

where H H(r) T(r)/log r as before. Now

(t/r)tl’(t)A’i(l(t) dt <= A I1 tl’(t) (t/r) dt.

It is easy to verify that f (t/r) dt <= 3H log (r/H) <= 3T(r) and to show
that tl’(t)[[ <= kT(to)/to, so that

i" <- kK T(r),

where K is a constant that depends only on the choice of the functions
Now for sufficiently large the function tl’(t) is decreasing, and thus, for
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lrge r, we hve the estimate

q(t/r)tl’(t)A(l(t)) dt <= A’ ]l gl’(g) (t/r) dr.

But HI’(H) kT(r)/r and f;($/r) dt <= r]c(t)dr. Hence

; <- kK. T(r),

where K also depends only on the choice of the A.
Having chosen the A then, we select k so that k(K -t- K.) < 1 and con-

clude that Z <-_ T(r) for all sufficiently large r, and the theorem is proved.
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