POTENTIALS AND THE RANDOM WALK

BY
Kivost It6 anp H. P. McKean, Jr.!

1. Introduction

Given an integer s = 3, write ¢, ey, ++ -, e, for the s coordinate vectors
(1,0,---,0),(0,1,---,0),---, (0,0, ---, 1), spanning the s-dimensional
lattice of points with integral coordinates, and let s, denote the position at
time n (= 0, 1, 2, --+) of a particle performing the standard s-dimensional
random walk according to the following rule: fixing the first n — 1 steps
S1, 8, ", 8,1, the particle starts afresh at s,_; , jumping next to one of the
2s neighbors s, = 8,1 = €1, Sn1 &= €, **+ , Sy1 == € Of 8,y , the chance of
landing at a particular neighbor being (2s) ™.

Given a set B of lattice points, the probability pz that the random walk
hits B at some time n < -+, as a function of the starting point of the walk,
is excessive in the sense that Gpz =< 0, where G is Laplace’s difference operator:

1.1 (Gp)(a) = (28)" Lligsmmr2 P(a + (=)"a) — pla).

B. H. Murdoch [1, pp. 13-19] proved that if p = 0, and if Gp = 0, then p
is constant,” and, with the help of this result, it follows, as Murdoch himself
noted, that pp is the sum of the potential Kep and the constant pz( « ), where
es = —Gpz (= 0), Kep is the expectation of ano es(s,), as a function of
the starting point of the walk, and pz(») is the (constant) probability
P.(B) of the event B that s, € B for an infinite number of integers n.

P.(B) is either 0 or 1. When P.(B) = 0, ps is the greatest potential
p = 1 such that Gp = 0 outside B, and, on the strength of the example of
the Newtonian potential in 3 dimensions, it is natural to think of ez as the
electrostatic distribution of charge on the conductor B and to introduce the
total charge (of ez) as the capacity C(B) of B.

Given a set B, it is an interesting problem to decide whether P.(B) = 0 or
1; the solution is

12 P.(B) =0orl according as D .02 "“?C(B,) < or = + =,

where B, is the intersection of B and the spherical shell 2" < |a| < 2"
Wiener’s test for the singular points of the Newtonian electrostatic potential
(see Courant and Hilbert [1, p. 286]) served us as a model, and for this reason
we call 1.2 Wiener’s test also. B. H. Murdoch [1, pp. 45-47] came close to
proving 1.2 and used his method to compute P.(B) for sets B similar to those
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1 Fulbright grantee 1957-1958.

2 J. Capoulade [1] also stated this result and S. Verblunsky [1] and R. Duffin [1, pp.
242-245] proved it. Murdoch’s results lie much deeper.
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figuring in the last example of Section 6. Similar results hold for the Brownian
motion and Newtonian potentials in s (= 2) dimensions and for stable
processes with exponent < 2 (< 1) and Riesz potentialsins = 2 (= 1) dimen-
sions; for the identification of hitting probabilities and electrostatic poten-
tials, see J. L. Doob [2] and G. Hunt [1, 2]; the proof of Wiener’s test runs
along the lines of Section 5. G. Hunt [1, 2, 3] showed the full scope and
power of the connection between Markov processes and potentials, and most
of the (nonclassical) results of Sections 3 and 4 are from his papers [1, 2] or
from B. H. Murdoch. The present paper is based on lectures given at Kydto
and Fukuoka in April, 1958, in which we tried to present Hunt’s things in
the simplest setting.
We thank J. L. Doob, N. Ikeda, and D. Ray for spotting several misprints.

2. The random walk
Write W for the space of paths win = 1, 2, -+ — s,(w) with values
from the s-dimensional lattice, w;, for the stopped path s,(wn) = spam(w),’
w}, for the shifted path s,(wh) = suym(w), C for the class of Borel subsets of

W, and, for C measurable m = m(w) = 0, write C,, for the Borel algebra, of
sets

A = (wiwy, eC), CeC;

let P.(C) denote the probability of the event C ¢ C for the standard random
walk as a function of the starting point of the walk; note that P.(w, ¢ C/C,) =
P, (C) for each n = 0 and each C ¢ C; and let E.(f) = [ fP.(dw).
m=m(w) =0,1,2,--- is a Markov time if (w:m > n) ¢ C, for each
n = 0; for example, given a set B of lattice points, m = np = min (n:s, ¢ B)
is Markov.
Given a Markov time m,

2.1 P.(P.(w} eC/Cyp) = P,,(C)) = 1, C eC;

in short, s,:n = 0 starts from scratch at time n = m at the place s,, .

The proof is simple: (w:m = n) e C, for each n = 0, and therefore
P.(wh e CH i e C7) = Dz Pu(wf e CF,wr eCT,m = n)
2.2 = ano E.(Psn(C“L), w, eCT,m = n)
= E.(P,,(C*), wn eC), C, C*eC.
Given apoint § = (8, 0z, - -+ , 0,) of the s-dimensional torus [—, 7)°,
Ey (") = Bo(B,,_, (")) = Ea(e™"")f(6) = ¢™'f(8)",
f(e) = S_IZkgs cos 6., n = 0.

2.3

3m A n means the smaller of m and n.
4 §,-0 is the inner product of the vectors s, and 6.
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and inverting 2.3 proves the result of G. Pélya [1, pp. 151-153]:

24 Pu(s, = b) = (20)™ f £C0% ()" do, nz0
Summing 2.4 forn = 0, 1, 2, - -+ proves
K(b) = 3 Pu(s, = 1) = ()" [ &0 0
g(0)
2.5
and using the Borel-Cantelli lemma, we infer that
2.6 P.(limpg 4o $n = ) =

B. H. Murdoch [1, pp. 23-32] and (for s = 3) R. Duffin [1, pp. 238 —240,
245-251] estimated K(a, b) for |a — b|T 4+« up to terms of magnitude
la — b

We will want the following simpler result:

lim |b— a|""K(a,b)
|b—a] 1 4o

_ . _ §—2 —8 t(b-—a) '] do
2.7 = dm 1~ a7(2m) o =

+-o0
ki = s f (2mt) PV 1.
0
Consider, for the proof, the modified Bessel coefficients

In(t) — 21__‘7r einoetcoso d0

2.8

t T
=2 [ ¢TI0 g = 0, 1, 2, -,
27!' T
introduce the (positive) Fourier coefficients
s(2m)™* [ €% dp

2.9

T ™
— ) —2¢3in2(01/2, -1 i140s —2t3in2(0,/2;
S(27l') 1 [ ezllﬁle 2¢sin2(61/2) d01 . (21‘_) ez afs 3in2(0,/2) dﬁs
w

s

Se_tIll(t)e_tIlz(t) t ‘e_tIl,(t), = 0: [ (l17 l27 Tty ls):
and note that

(2m)™

zco do — hee

—s ic-0 —stg(6)
0} dt s(2w) fe e do

2.10 N
=3 f et dt Ty, (8) - - -1, (1)
0

5k, k2, -+- denote positive constants.
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Given 6 ¢ [—m, 7)°, g(8) > ki 6 °, so that

2.11 g eIl o@leD o pmathal01 t=20, 6e[—mcl|,mc])’,
and
-i'w .
c|? s(2w)”" ™D do dt
[e]
kylc|? [—m,m)¢
400

— v 0 — 2
_ s(21) sf G Cel1eD-0 =101 g0 0y
18] <7l

k3

lIA

sy [ "

k3

; 0 — 2
f gielleD 0 —stlcl20@/ 1) 3
[—mlcl,rlc])®

. ] . \
212 _f e@(cllcl) 06 (¢/2)10( do
18 Z7le]

o0
—_— — 2 —
s(2r) sf di [f | gmetielPoled _ (t/2)1012 [ db
k3 6] smel

IIA

-

e—stlc2|012 do

— 0, [e|T+e;
this implies

o0
lim |[c|7 f s(2m)”" / ¢’ dg dt
lel 74w k3lc|? [—m,m)8

-0
- fk
—+00
=f s(2at) %7 dt
k

3

j:rlcl<lﬁl <sli2x|c|

dt s(2x)"° 0121012 g

RS

+o0
Ts f (2mt) e dt = Ky, ks ] 0;
o
and to complete the proof, it is enough to check that
balel? ic-0 —stg(@
214  lim lim sup | ¢ [ f di s(27)”° f el dg = 0.
k3 L0 el oo 0 [—m,7)¢
But, as is clear from 2.8 and 2.9,

k3lel? ‘
lim sup | ¢ ls‘zf di 6(27(-)““’[ IO
215 o 0 [ )t

k3s2n?
< 7' lim sup #°° f ¢ () (e To(2)) " dt,
n | +w 0

where n is the greatest of the integers | Iy |, | L |, - -, | & |, and since, in view
of 2.13,
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o0
lim s [ T T(0)
k

n 1 4o 382n
400
2.16 = lim »°% f (2m)~* el
n 1+ kgs2n? [—m,m)e
T kl ) k3 l 01
it is enough to show that
+o00
2.17 ky = lim sup n* s f L) (et To(8)) ™ d.
n T 40 0
With the help of
27
218 12 00 = o [ POV~ 2 o] e,
o
and of

2 —2rsin2(8/2
1 winel_ersm(/) e

T
= - <
fo ehLdt =g | T g oz PET

nl 4w, 4o >rz=0,

2.19

our task now simplifies to showing that

+-c0
2.20 Bz limosup nls [ 60 (200 0
n |4 0

and, consulting A. Erdélyi [2, p. 196 (8) and 1, p. 164 (20)], it is seen that
+o0

221 s f e~'L,(t) (2at) PP dt ~ k™, n 1 + o,
(1]

which completes the proof.

3. Potentials

Write e for nonnegative functions defined for the points of the s-dimensional
lattice, and consider the Green operator K defined in

(Ke)(a) = Eu(2inzoe(sa))
= 2 [Xz0Pa(sn = b)]Je(b) = 22 K(a, b)e(b).
—G is inverse to K; for, if Ke < 4 o, then
—GKe = E.(2nz06(s.)) — B Eoy(Dnzoe(sn))
= EB.(Xnz0e(s1)) — E.(Xnzoe(snta))
= F.(e(%)) = e.

A nonnegative function p is excessive if Gp < 0; it is a potential if p = Ke
withe = 0;if p = Ke (¢ = 0, p < + =), then, as the reader will check,
Gp = —e = 0, so that potentials are excessive.
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Given an excessive function p,
p = E.(Xign (p(si1) — p(s1)) + p(sn))
= 2z B.(p(s11) — By, (p(1))) + E.(p(ss))
= E.(2izn —(Gp)(s121)) + E.(p(s4)),
and, after putting —Gp = e and p, = limag 40 £.(p(84)), it results that
3.2 p =Ke + p.,.

P 1s constant; indeed, it is nonnegative, Gp, = 0, and, as B. H. Murdoch
proved, such a nonnegative harmonic function is constant.

J. L. Kelley’s proof® that a compact convex set is the convex hull of its
extreme points served us as a model for the following simple proof of Mur-
doch’s result.

Write C for the class of nonnegative p with p(0) = 1 and Gp = 0, label

the points¢ = (I, Lz, « - - , ;) of the s-dimensional lattice ¢; (=0),¢:,¢3, -+,
and, using the compactness that the estimate
3.3 p(h S, L) = (28)|l1'+”2|+u.+”a|, peC,

provides, put m; = 1, C; = C, me = maxyee, p(c2), Co = Cin (pip(ce) = my),
My = MaXpec, P(C3), C3 = Can (pip(cs) = ms), ete., and select ps € Ny, C, .
px(=e;) is then > 0, ps(Fer) 'ps(+ & ) e C for each k < s, and

3.4 Py = Z (28)—11)*((—)”610) P*(' + (—)") i

E<om=l2 Px ((—)"ex)

Since D r<omatz (28) px((=)"e) = px(0) = 1, the definition of ps«
now implies that ps«(zzer) 'Px(- %= ex) €Nnzy Cr for each k < s; in short,
ps(£e) 'ps(- £ &) = px for each & < s, and we infer that

3.5 p*(ll yl, e l) = p*(ﬁ)lll)*(ez)lz T p*(es)l'.
But

36 1 = px(0) = Eo(ps(s)) = (1/8) 2igs ¥(palen)™ + paler)),

proving that p«(ex) = 1 for each k < s; therefore psx = 1; since ¢; was chosen
at pleasure, each p e C'is < 1; and since, forp e C, Gp = 0, p = 1 is the sole
member of C.

Keeping this result in mind, it is clear from 3.2 that, with the notation
p() = lim infe.. p(c),
3.7 p(®) Z po = limMyt 40 B.(p(ss)) 2 E.(liminfry 40 p(sa)) 2 p(),

and 3.2 goes over into
3.8 p=Ke+ p(=), p(x)=Ilim.;sE.(p(sh)).

¢ See P. T. Bateman [1, pp. 14-15].
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Given a set B of lattice points, let nz denote the hitting time min (n:s, ¢ B)
and pp the hitting probability P.(ns < —+ «).

Ps is excessive; in fact,

es = —Gps = ps — E.(ps(s1))
3.9 = P.(ng < + ) — P.(ng(wi) < +)
= P.(ns < +o,np(wi) = +0) =0,

and it follows from 2.6 and 3.9 that ez = 0 off the points of? 4B neighboring
the (connected) part of the complement of B reaching out to .

Writing B for the event, 0,51 (w:ns(wi) < + ) that s, ¢ B for an in-
finite number of times n, it results from

3.10 pa(0) = limug o B.(ps(82)) = limpt 4o Po(na(wh) < 4+ ) = P.(B)
and from
P.(B) = lim, { 4o P.(nz < 40, np(Whyin) < + )
3.11 = limpt 10 B.(ns < 40, Py, (ny(wy) < +))
= ps P.(B)

that pp(©) = P.(B)isOor 1.8
Using these results, it is not difficult to prove that, for excessive
p = Ke + p(),

3.12 P.(limnt 400 p(80) = p(0)) = 1
indeed, p = p(x), and if « > p(=), if A is the set where p = «, and
if pa(x) = P.(A) = 1, then
3.13 (w:l £n A na) eCy, =1,
and
p= E [Zlgn/\ru_ (P(Sl—1) - p(sl)) + p(sn,\nA)]
- = E. [Qiznpnse(s10)] + E(p(sn,),na £ )
' + E. (p(sa), n < na)

gaP(nAén) TapA:a: nT+°°!
violating a > p( ), and we infer that P.(A) = 0 for each & > p( ), com-
pleting the proof.

We give the proof of the general mazimum principle of which 3.14 is a
special case.

7 3B is the set of points of B not all of whose neighbors belong to B.

8 P.(B) = O or1is a special case of the 0-or-1 law of Hewitt and Savage [1, pp. 493-
494].

9 3.12 is a special case of the result of J. L. Doob [1, pp. 324-326] that a nonnegative
lower semimartingale converges.
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Given excessive p; = Ke; + pi( ), p2 = Kes + po( ), if po = p; on the
support B of e;, and if ps( o) = pi( ) in case P.(B) = 0, then p, = p, on

the whole of the s-dimensional lattice; in fact, ei(s,) = 0 for n < np, and by
using the fact that, for excessive p, p = p() and lim, 1 . B.(p(s,)) = p(),
it develops that, for a ¢ B,

P2(a) = Eo[21cnpns (P2(511) — p2(81)) + pa(Supns) ]
= Eu[ 2 12npnp €(s10) ] + Ea(p2(8a5), n 2 np)
+ Eu(p2(sn), n < np)
= Bo[ Xz ex(51:2)] + Ea(pa(saz), ns < + )
+ p(®)Pa(ne = +)  (nT +w)
= Ea[ZlgnB ei(si1)] + Ea(pr(sng), ns < + )
+ pi(©)Po(np = 4 )

3.15

= p(a).

We learn from 3.15 that ps is the greatest excessive p = Ke + p( ) with
e=00ff Bp = 1onB,and p(») £ P.(B).

Also (and this will be useful for us in Section 4), ps = 1 on B, so that, if,
for two potentials p; and p;, p: = pr on B and e, e, = 0 off B, then, writ-
ing ep for D ses e(b)p(b),

3.16 e(B) = eaps = eppa = expr = €1 ps = e1(B);
in short, ex(B) = e(B), a fact due to Gauss [1, pp. 37-39] for the case of
Newtonian potentials.

4, Capacities

Given a set B of lattice points for which P.(B) = 0, its capacity C(B) is
the total charge
41 C(B) = es(B) = 2 acon Pa(na(wi) = + )

of the electrostatic distribution eg .

When | B| (= the number of points of B) = +», C(B) = + «; for, if
C(B) < 4 =, then (use 2.7) ps converges to 0 at «, and, since p = 1 on B,
|B| < 4.

We shall therefore confine our attention to the capacities of finite sets B.

The following rules are helpful for computing C(B):

4.2 C(B) = C(oB),
4.3 C(Bl) = C(Bg), Bl = Bz ,
4.4 C(B) = maxe(B): ¢e=0, e=00ff B, p=Ke =1,

4.5 C(B; n By) + C(Biu By) £ C(By) + C(Be).



POTENTIALS AND THE RANDOM WALK 127

4.2 is clear. B; = B, means that B, is congruent to B, (with respect to
orthogonal transformations with integral entries). 4.3 is then clear.
p = Y nsK(a, b)e(d) < 1implies ps — p = 0, and using 3.16 to compute
the (nonnegative) total charge C(B) — e(B) of ¢z — e proves 4.4. 4.5 gets
a similar proof: the inclusion

(w:nBLUBZ < +°°7n82 = +°°) c (w:nBl < +°°5 NBinBy = +°°)

implies ps,us, — Pr, = Ps, — Prinss ; NOW compute the (nonnegative) total
charge of es, 4+ es, — es,us, — €50, -

Given B, By, By, ---, B,, let us write m for subsets of 1, 2, --- | n,
| m| = I for the number of points in m, and By = U i B, ; it is clear from™
4.6 P.(Ni<nC) = =D icn (=) 2 imimt P.(C)
that

0% Pu(na =+, nous <+, < n)
= —P.(npg < + ) + P.(npys, < +o,l = n)
= —P.(na<+0) = D1z (=) 2 imi=t P-(npus, < +)
= ps — 2oizn (=)' 2 imi=t PrUB »

and by wusing 3.16 to compute the (nonnegative) total charge of
—eép — Zlgn (—)lZm]:z esus, , it results that

48 C(B) + Xicn (=)' 2w~ C(Bu B,) £ 0.

G. Choquet [1, pp. 147-153] proved the counterpart of 4.8 for Newtonian
potentials. 4.7 imitates G. Hunt [1, p. 53]. 4.5 is a special case of 4.8
(n =2,B = BynBy).

The following technique for estimating C'(B) is useful for Section 6. Given
B, if A is the sum of n (=| B|) solid cubes [0, 1]° centered at the points of
B, and if C(A) is the Newtonian capacity:

49 C(A) = max #(4):2 2 0,6 = 0off 4, (@) = [ [ — n["e(dn) < 1,
A

then

4.10 ki C(A) £ C(B) £ ks C(A),

with k4, ks depending on the dimension number s, but not on B.

To prove the overestimate, choose ks such that, for £ in the cube centered
at a, the integral [ | & — 7 |*° dn extended over the cube centered at b is
< ks K(a, b), let é(dng) = es(b) dn on the cube centered at b, and estimate
p(&) = ki' [4|& — n [ e(dn) in terms of ps ; the result is p < 1, and we
conclude that

4.11 C(B) = es(B) = 4(A) < ks C(A).

10 4.6 is dual to the classical inclusion and exclusion formula.

4.7
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To prove the underestimate, choose k4 such that, for £ in the cube centered
at @ and 5 in the cube centered at b, ks K(a, b) < | £ — 57, let e(b) be the
charge that the Newtonian electrostatic distribution é places on the cube
centered at b, and estimate p = ks e K(a, b)e(b) in terms of

b= [1&— nlaan);

the result is p < 1, and we conclude that

4.12 C(B) = kye(B) = ki 8(A) = ks C(A).
Given compact 4 C R’,
4.13 Clad) = a*°C(4), a >0,

where aA is the set of points ax with z € 4.
We will use 4.13 for getting underestimates of C(B); for example, if B, is

the disc
(b, oy l): B+B)P2n b=L=--=1=0,
then C(B,) = ken' > forn T 4.
5. Wiener's test

Given a set @ of lattice points, clustering to o« let @; denote the intersection
of Q and the spherical shell 2' < |a| < 2", and let us prove Wiener’s test:

5.1 P.(Q) = 1lor0 according as D51 277P0(Q0) = or < + 0.
When

5.2 Zlgl 270(Q) < + o,
5 Pai(a) = Dovea, K(a, b)eq,(b) £ Dvea, kil a — b " eq,(b)
' < 21, 27°7P0(Qy), 1T+,

is the general term of a convergent sum, and an application of the first Borel-
Cantelli lemma implies

54 P.ng = +o,lT+») =1;
2.6 implies P.(U ;<. Q:) = 0 for each n = 1; and we infer that
5.5 P.(Q) = 0.
When
5.6 221 270770(Q)) = 40,

> 121 27WPEP0(Qu,) = o fork = 0, 1, 2, or 3, and if we suppose, as
we can, that 21_2_1 o~ WED Q) = 4+, it is clear that, if m; is the
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crossing time' min (n:2' < | s, | < 2' + 1), and if, for the moment, s; stands
for the crossing place s, , then for [ T + «,

Psu(nQaHl < m4l+4) = p04l+1(34l) - E84z[p04z+1(84l+4)]
Zb€Q4l+l (K(s4l; b) - E341[K(S4l+4 ) b)])eo4z+1(b)
z ks[%(24l+2 . 241)2—8 . %(2‘”4‘4 _ 24l+2)2—S]C(Q4l+1)
kg 2—(4l+l)(s—2)C(Q4l+l) — tl,

5.7

v

which implies
P84z(nQ = +°°) é E84z[n04l+1 g Mait4 PS41+4(nQ = +°°)]

= E84i[n04t+1 Z My, E84t+4(n04z+5 = Marys, PS4z+s(nQ = +°°))])

5.8 ete.
S (1 =)l = tia) (1 — bige) -~
— 0’
and we conclude that
5.9 P.(ne(wh,,) < + ) = E.(Py,,(ng < +»)) =1, 171 +.
which completes the proof of 5.1.
6. Thorns
Given nonnegative 7(1) =< 4(2) =< ---, let @ denote the thorn

by, l): GG+G+ - +E) =4, L =1

We use Wiener’s test to prove that for s = 4 dimensions

6.1 P.(Q) = 1or0 according as D ,51(27"3(2"))" " = or < +o0;"

as an example, if I = 1, and if i(n) = n(gnlg.n -+ (g n)*) ™" then
P.(Q) =1(0)fora =1 (>1).

When lim SUpat 407 i(n) > a > 0, 27"(2") > a/2 for an infinite number
of integers n; for such n, @, contains the set @, of lattice points of a sphere of
diameter = min(1, a)2"; C(Q,) = C(Qx); C(Q,) is then = k12" ®; and

the upshot is
6.2 oo = Dzt (279(2") 7 = ez 27070C(Q),
which checks with 6.1.
114y < + o for paths crossing from | a | £ 2! to | a | > 2! 4 1; forif
BG4 -+ 2,

then b 124+ 0L+ -+ l=0+5L+ - +hx2n+1=<224+22041=
2" + 12

12 6.1 is to be compared with Lebesgue’s thorn: see Courant and Hilbert [1, pp. 272~
274].

Blg, = lg and 1g, = lg(gs—1) for n = 2.
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When
6.3 lim, 1 1 7 'i(n) = 0,
Q. is long and thin, a sphere is not a good approximation, and we consider
instead the ellipsoids Q, < Q and Q} O Q:

BG4+ -+ 6 =327

Q; = (l17 lZa Tt ls): 7/‘(2")2 ''''' + 22(n—1) = 1’
N SR L4+ (L =32
Qn = (ll, by - ’ ls)- 2,,6‘(2n+1)2 + 2.92(n—1) =1

and compare the capacities C(Q,), C(Q}) to the Newtonian capacity of the
solid ellipsoid
2

2 2

L1 | X2 x
E = (2,2, -+, 2): _3—5+E§+ +é§§1, e, e, ~rr,6 > 0.
1 2 s

The Newtonian capacity of ¥ is known; up to a factor depending on the
dimension number, it is the reciprocal of the elliptic integral

6.4 _f+°° dt
' € Th VEFOE@E D (EFD)

The reader will find a neat proof of 6.4 for s = 3 in G. Chrystal [1, p. 30].
When a = e1/e, = ey/es = -+ = e, 1/es,

o0
e =f (B¢t + 1)~V 4 )2 gy

0

o0
= e?"sf (@ + )"+ 07
6.5 o

1
~ [ D gy
a?

~ € °5(s — 3)a Y, al0;
by using 4.10, it is plain that
by 27772 (2775(27))"7 < (@)
S 0(Q) £ C(QN) < k222727, +eo;

and an application of Wiener’s test completes the proof of 6.1.

When s = 3, P.(Q) = 1 even for the thinnest thorn @ = U,>:(0, 0, n);
C(Q,) is then > ki3 2", and Wiener’s sum is + o,

We consider, instead, the set @ = Un.z; (0, 0, i(n)) with integral
(1) < #(2) < --- and prove that if

6.7 i(n) —i(ln — 1) 2 lgi(n — 1), nT 4w,
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then
6.8 P.(Q) = 1or0 according as anlz’(’n)_l =or < 4 o;

as an example, if i(n) = [nlgnlg n -+ (g »)°," then P.(Q) = 1 (0)
fora =1 (>1).
Granting

6.9 k14anl = C0(Qn) = k15|Q» l, nl 4o,

it is clear that
6.10 kud m<iy<rmti(D7 S k2" | Qn |

S27C(Qn) S k27" | Qu] £ 2k iy <mtr (D)7
and an application of Wiener’s test proves 6.8. C(Q,) = k| Q.| with

ks = K(0,0)™" is immediate from 4.5, and to complete the proof, it is enough
to use 6.7 and 2.7 to check the estimate

611 2ovea, K(a,b) = ki Digision (Inlg2)™
. <k17n_11g]QnI§.kl7lg2) aeQn) nT+°°7
and to infer, from 4.4, that

6.12 C(Qn) = kul|Qnl, ku = (kulg2)7, nt +o.

Problem. When ¢(n):n = 1 is the set of prime numbers, is P.(Q) = 1?

Were Gauss’s law n/lg n for the number of primes < n exact, we could assert
that +0 > ki = Zbeqn K(a, b) for a €@, and conclude, as in 6.12, that
C(Q.) = kis | Q] = kwn 2" and that D ,2:127"C(Q.) = +.
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