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1. Introduction

Given an integer s ->_ 3, write el, e., es for the s coordinate vectors
(1, 0, 0), (0, 1, 0), (0, 0, 1), spanning the s-dimensional
lattice of points with integral coordinates, and let s denote the position at
time n (= 0, 1, 2, .-.) of a particle performing the standard s-dimensional
random walk according to the following rule" fixing the first n 1 steps
sl, s2, s_l, the particle starts afresh at s_, jumping next to one of the
2s neighbors s s_l 4- e, sn_ 4- e2, s_l 4- es of Sn_l, the chance of
landing at a particular neighbor being (2s) -1.
Given a set B of lattice points, the probability p, that the random walk

hits B at some time n < -t- , as a function of the starting point of the walk,
is excessive in the sense that GpB _--< 0, where G is Laplace’s difference operator:

(Gp)(a) (2s)-l__<.=.p(a + (-)’e) p(a).

B. H. Murdoch [1, pp. 13-19] proved that if p >- 0, and if Gp 0, then p
is constant, and, with the help of this result, it follows, as Murdoch himself
noted, that pB is the sum of the potential Ke. and the constant p,( ), where
e. -Gp. (>= 0), Ke, is the expectation of -’>__0 eB(s,), as a function of
the starting point of the walk, and p,( is the (constant) probability
P. (B) of the event B that s e B for an infinite number of integers n.

P. (B) is either 0 or 1. When P. (B) 0, p, is the greatest potential
p =< 1 such that Gp 0 outside B, and, on the strength of the example of
the Newtonian potential in 3 dimensions, it is natural to think of e. as the
electrostatic distribution of charge on the conductor B and to introduce the
total charge (of e,) as the capacity C(B) of B.
Given a set B, it is an interesting problem to decide whether P.(B) 0 or

1; the solution is

2-’(-)C(B1.2 P. (B) 0 or 1 according aS En >__0 n) < or - o0

where B is the intersection of B and the spherical shell 2 <- a[ < 2"+.
Wiener’s test for the singular points of the Newtonian electrostatic potential
(see Courant and Hilbert [1, p. 286]) served us as a model, and for this reason
we call 1.2 Wiener’s test also. B.H. Murdoch [1, pp. 45-47] came close to
proving 1.2 and used his method to compute P. (B) for sets B similar to those
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figuring in the last example of Section 6. Similar results hold for the Brownian
motion and Newtonian potentials in s (>= 2) dimensions and for stable
processes with exponent < 2 (< 1) and Riesz potentials in s _-> 2 (__> 1)dimen-
sions; for the identification of hitting probabilities and electrostatic poten-
tials, see J. L. Doob [2] and G. Hunt [1, 2]; the proof of Wiener’s test runs
along the lines of Section 5. G. Hunt [1, 2, 3] showed the full scope and
power of the connection between Markov processes and potentials, and most
of the (nonclassical) results of Sections 3 and 4 are from his papers [1, 2] or
from B. H. Murdoch. The present paper is based on lectures given at KySto
and Fukuoka in April, 1958, in which we tried to present Hunt’s things in
the simplest setting.
We thank J. L. Doob, N. Ikeda, and D. Ray for spotting several misprints.

2. The random walk
Write W for the spce of pths w’n 1, 2, -- s,(w) with vlues

from the s-dimensional lattice, wE for the stopped path s,(w) s^,(w),
+w for the shifted path s,(w) s,+,(w), C for the class of Borel subsets of
W, and, for C measurable m m(w) >= O, write C for the Borel algebra of
sets

A (w:w- C), C C;

let P.(C) denote the probability of the event C e C for the standard random
walk as a function of the starting point of the walk; note that P. (w+ e C/C)
P(C) for each n >__ 0 and each C e C; and let E.(f) fP.(dw).
m m(w) 0, 1, 2,... isa Marhov time if (w’m > n) eC for each

n >__ 0; for example, given a set B of lattice points, m n, rain (n" s e B)
is Markov.

Given a Markov time m,

2.1 P.(P.(w+ e C/Cm) P.(C) 1,

in short, s:n >_- 0 starts from scratch at time n m at the place s,.
The proof is simple" (w’m n) e C for each n -> 0, and therefore

2.2

CeC;

2.3

P.(w+ e C+, vo e C-) -’>=o P.(w+ C+, wg e C-, m n)

.,,>_oE.(P,(C+), w-e C-, m n)

E.(P,,(C+), w- e C-), C-, C+ C.

n_>_ 0.

Given a point 0 (01,0., 0,) of the s-dimensional torus [-r, ),
Ea(ei,") Ea(Es,_,(eil"o)) Ea(ei-l"e)f(O) eia’Of(O) n,

f(O) -, COS ,
3m/ n means the smaller of m and n.
Sn’O is the inner product of the vectors s and e.
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and inverting 2.3 proves the result of G. PSlya [1, pp. 151-153]"

2.4 Pa(sn b) (2r)-s f ei(b--a)’Of(O) n_>0.

Summing 2.4 for n 0, 1, 2, proves

K(a, b) Pa(Sn b) (2r) f dOvi(b--a).O
>_o g(O)

2.5

f_< (-" - < +, (0)- _- (o,

and using the Borel-Canelli lemma, we infer

2.6 P.(lim,+ ) 1.

B. H. Murdoeh [1, pp. 2g-a2] and (for g) . Dun [1, pp. 28-240,
24g-291] esgimaged K(, b) for a b + up go germs of magnitude
I_bl--.
We will wan he following simpler result:

lim b i"-K(, b)

lim b al-2(2)--f j-a>. dO
2.7 --a+ g(O)

k (2)-ze-z d.

Consider, for ghe proof, he modified Bessel eoeeiens

2.8

1 f einOeteOSOI,(t) dO

einOe--2tsin2(0/2) dO,
2r

introduce the (positive) Fourier coefficients

2.9

n 0, -+-1, =i=2, ...,

f eiC’e-Stg() dOs(2-)

- (t)se I t)e- I. .e I,(t) > O, c (11, 12, ..., ls)
and note that

(2r)_ f eiC.o dO
g(e)

2.10

kl k2 denote positive constants.
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2.11

Given 0 e [-r, r) *, g(0) > lc. 012, so that

and

2.12

t>0,

_<_ s(27r)-" dt
0[-<lcl

this implies

lim

2.13

ei(c/Icl)’e-(t12)ll= dO dt

c -2 s(27r) eiC’e-tg() dO dt

dt s(27r) eile-(t/2)ll dO

s(2rt)-’/e-x/t dt

" s (2rt)-/e-x/zt dt 135 O;

and to complete the proof, it is enough to check that

2.14 lim lim sup ]c - dt s(2r) eiC’e-"t() dO O.

But, as is clear from 2.8 and 2.9,

2.15
lim sup [c dt s(2r)-" ft- ,,),

e’e-() dO
kas2n

_--< s- lim sup n"-" f e-tI,(t)(e-Io(t))"- dt,
+ .0

where n is the greatest of the integers 111 I, l’. I, l, ], and since, in view
of 2.13,
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lim nS-2s e-tI, (t) (e-rio(t) )8-1 dt
W s2n2

2.16 lim nS-2s (2r)-8
+

i is enough o show

2.17 lim sup- e-I() (e-Io())- d.
+

Wigh the help of

2.18 1 e-I0() e-’(/ dO (2)-/,

and of

einle-Stg() dO dt

t$+,

fo" fo ,1 e
dO <e-tI,,(t) dt

1 --2rsin2(O/2)

2.19
e

2 sin (0/2)

n T q-, -t- > r >= 0,
our task now simplifies to showing that

2.20 kl _>- lim sup nS-s e-tI,(t)(2-t)-(8-)/

and, eonsulging A. Erd61yi [2, p. 196 (8) and 1, p. 164: (20) ], i is seen that

2.21 s f e-I,(t) (2rt)-(8-)/ dt /cl

which eompleges he proof.

3. Potentials

Write e for nonnegtive functions defined for the points of the s-dimensional
lttice, and consider the Green operator K defined in

(Ke)(a) E(,>=oe(s,))
3.1

E [En__>0 Pa(sn b)]e(b) g(a, b)e(b).

-G is inverse to K; for, if Ke < q- , then

-K E. (E>__0 e()) E. , (Eo_0 e())
E. (E>=0 ()) E. (Eo0 e(+))
E.(e(s0)) e.

A nonnegtive function p is excessive if Gp =< 0; it is potential if p Ke
with e >= 0; if p Ke (e >__ 0, p < -F ), then, as the reder will check,
Gp -e __< 0, so that potentiMs re excessive.
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Given an excessive function p,

p E.(z<_,, (p(sz_l) p(s)) + p(sn))

<= E.(p(s_) E_l(p(s))) - E.(p(s,))

E. (=< (GB)(s_)) -[- E.(p(s=)),

and, after putting -Gp e and p lim. + (p(s,)) it results that

3.2 p Ke+p.

p is constant; indeed, it is nonnegative, Gp 0, and, as B. H. Murdoch
proved, such a nonnegative harmonic function is constant.

J. L. Kelley’s proof that a compact convex set is the convex hull of its
extreme points served us as model for the following simple proof of Mur-
doch’s result.
Write C for the class of nonnegative p with p(0) 1 and Gp 0, label

the points c (l, l, l) of the s-dimensional lattice c 0), c, c,
and, using the compactness that the estimate

3.3 p(l, l:, l) < (2s)I11+11+"+1’I pC,

provides, put ml 1, C C, m maxp p(c.), C C (p’p(c) m),
m maxc p(c), C C (p’p(c) m), etc., andselectp, e n>_ C,
p,(=i=e) is then > 0, p,(=i=e)-lp,(. =i= e) e C for each lc < s, and

3.4 p, (2s)-p,(( )e) p*(" -[- (-)e)
<=.,=. p,((-)ne)

Since -’<=.=. (2s)-lp,((-)nea) p,(0) 1, the definition of p,
--1now implies that p,(-+-e) p,(. -+-e) e>= C for each ]c =< s; in short,

p,(-+-eo)-Ip,( -+- e) p, for each k __< s, and we infer that

But

3.6 1 p,(0) Eo(p,(s)) (1/s)<=1/2(p,(e)- + p,(e)),

proving that p,(e) 1 for each lc <__ s; therefore p, 1; since c was chosen
at pleasure, each p e C is -< 1; and since, for p e C, Gp 0, p 1 is the sole
member of C.

Keeping this result in mind, it is clear from 3.2 that, with the notation
p( lim inf p(c),

3.7 p() >= p- lim,+E.(p(s)) >= E.(liminf+p(s,)) >= p(o),

and 3.2 goes over into

3.8 p Ke + p(), p( lim+ E.(p(s,,)).

See P. T. Bteman [1, pp. 14-15].
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Given a set B of lattice points, let n. denote the hitting time min (n" s e B)
and p, the hitting probability P.(n, < ).
p, is excessive;in fact,

e. -Gp. p. E.(p.(sl)

3.9

P.(n. < +, n.(w+) + ) >- O,

and it follows from 2.6 and 3.9 that e. 0 off the points off OB neighboring
the (connected) part of the complement of B reaching out to .

Writing B for the event, [’nl (W*nB(WWn) < -c that s e B for an in-
finite number of times n, it results from

3.10 p.( lim. + E.(p.(s,)) lim. += P.(n.(w+) < -t- P.(B)

and from

P.(B) lim+ P.(n. < - n.(w.+) < +
3.11 lim+ E.(n. < + Ps.(n.(w+.) < + ))

p.P.(B)

that p.( P. (B) is 0 or 1.
Using these results, it is not difficult to prove that, for excessive

p Ke -t- p(),

3.12 P.(lim + p(s,) p( 1;
indeed, p _>- p(), and if a > p(), if A is the set where p >= a, and
if p() P.(A) 1, then

3.13 (w" <- n/ n.) e C, >= 1,

and

3.14

p-- E. [<=^, (p(s_) p(s)) - p(s,)]
E. [-’<=,^ne(s-)] + E.(p(s,),n. <- n)

+ E. (p(s,), n < n)

violating a > p( ), and we infer that P. (A) 0 for each a > p( o ), com-
pleting the proof.
We give the proof of the general maximum principle of which 3.14 is a

special case.

OB is the set of points of B not all of whose neighbors belong to B.
P.(B) 0 or 1 is a special case of the 0-or-1 law of Hewitt and Savage [1, pp. 493-

494].
3.12 is a special case of the result of J. L. Doob [1, pp. 324-326] that a nonnegative

lower semimartingale converges.
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Given excessive pl Kel - p( ), p Ke2 -t- p2( ), if p _>_ p on the
support B of o, and if p2( p( in cse P.(B) 0, then p p on
the whole of the s-dimensional lattice; in fact, e(s.) 0 for n < n, nd by
using the fact that, for excessive p, p p() nd lim+ E.(p(s,)) p(),
it develops that, for a e B,

p:(a) E[, (p2(st-1) p2(st)) + p2(SnAnB)]

3.15
-+" Ea(pe(s.), n <-- E.[’__<, e2(8/-1)] - Ea(pe(S.B), n, < -t-

+ p( )Pa(n, ->= Ea[E,<_nB e1(8/-1)] -- Ea(pl(s,), n, < +- p( )Pa(nB -p(a).

We learn from 3.15 that p, is the greatest excessive p Ke + p( with
e 0offB, p -<_ lonB, andp() _-< P.(B).

Also (and this will be useful for us in Section 4), p, 1 on B, so that, if,
for two potentials p and p2, p. -> p on B and el e 0 off B, then, writ-
ing ep for b, e(b)p(b),

3.16 e(B) ep, e,p >= e.pl ep, el(B);

in short, e(B) >= e(B), a fact due to Gauss [1, pp. 37-39] for the case of
Newtonian potentials.

4. Capacities
Given a set B of lattice points for which P.(B) 0, its capacity C(B) is

the total charge

4.1 C(B) e,(B) EaeoB P.(n,(w+ -t-

of the electrostatic distribution e,.
When B[ (= the number of points of B) -t-, C(B) -- for, if

C(B) -- , then (use 2.7) p. converges to 0 at , and, since p, 1 on B,

We shall therefore confine our attention to the capacities of finite sets B.
The following rules are helpful for computing C(B):

4.2 C(B) C(OB),

4.3 C(BI) C(B), BI B,

4.4 C(B) maxe(B)" e >= 0, e 0offB, p Ke_<_ 1,

4.5 C(B1 rl B) -t-C(B u B) <__ C(B) + C(B2).
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4.2 is clear. B1 B2 means that BI is congruent to B (with respect to
orthogonal transformations with integral entries). 4.3 is then clear.
p "b K(a, b,)e(b) _<_ 1 implies pB p =>- 0, and using 3.16 to compute
the (nonnegative) total charge C(B) e(B) of eB e proves 4.4. 4.5 gets
a similar proof: the inclusion

(w’nlu2 < -t-- , n. -- c (w’n, < -- , n,n, -implies Pu P <- P, P,n now compute the (nonnegative) total
charge of el + e2 e,u2 en
Given B, B, B2, .-., B,, let us write m for subsets of 1, 2, ---, n,
m for the number of points in m, and B U . B it is clear from

c)

that
0 <= P.(n -+-, nu < -+-, <- n)

4.7

and by using 3.16 to compute the (nonnegative)
--eB El_<n (--)lEIml=l eB[JBm, it results that

total charge

4.8 C(B) + C(B u B.,) < 0

of

G. Choquet [1, pp. 147-153] proved the counterpart of 4.8 for Newtonian
potentials. 4.7 imitates G. Hunt [1, p. 53]. 4.5 is special case of 4.8
(n 2, B BB).
The following technique for estimating C(B) is useful for Section 6. Given

B, if A is the sum of n (= B I) solid cubes [0, 1] centered at the points of
B, and if ((A) is the Newtonian capacity"

4.9 ((A) max (A)" >- 0, 0 offA, ib() jil n I:-(dn) -< 1,

then

4.10 k O(A) <= C(B) <= 1 O(A),
with lc, ] depending on the dimension number s, but not on B.
To prove the overestimate, choose lc such that, for ( in the cube centered

at a, the integral ]1( n d extended over the cube centered at b is
<__ k K(a, b), let O(dv) e,(b) dv on the cube centered at b, and estimate
() ]-]l nl-e(dn) in terms of p, the result is ib -< 1, and we
conclude that

4.11 C(B) e,(B) $(A) <- k (A).
0 4.6 is dual to the classical inclusion and exclusion formula.
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To prove the underestimate, choose/c4 such that, for in the cube centered
at a and in the cube centered at b, k4 K(a, b) =< I 12-8, let e(b) be the
charge that the Newtonin electrostatic distribution places on the cube
centered at b, and estimate p 14 b K(a, b)e(b) in terms of

f
the result is p 1, and we conclude that

4.12 C(B) k e(B) k e(A) k (A).
Given compact A R,

4.13 (aA) a-(A), a > O,

where aA is the set of points ax with x e A.
We will use 4.13 for getting underestimates of C(B); for example, if B is

the disc

(, ,..., ). ( + ) n, 0,

then C(B) k n- for n + .
5. W]ene’s

Given set Q of lattice points, clustering to , let Q denote the intersection
of Q nd the spherical shell 2 a] < 2+, and let us prove Wiener’s test"

2-(-2)C5.1 P.(Q) 1 or 0 according as (Q,) or < +
When

2-t(-2)C

(a) K(a, )() ]
5.3

2 2-->C(Q), + ,
is the general term of convergent sum, and n application of the first Borel-
Cantelli lemma implies

5.4 P.(nQ +, l +) ;
2.6 implies P.(U Q) 0 for ech n 1; nd we infer that

P.(Q) 0.5.5

When

5.6 2-/(s-2)’>=1 C(Q)

2-(4l+k)(s-2)C_>_1 (Q4+k) + for k 0, 1, 2, or 3, and if we suppose, as
2-(41+1) (s-2)

we can, that >__1 C(Q4+1) -t-, it is clear that, if m is the
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crossing time11 min (n:2 =< s. < 2 -t- 1), and if, for the moment, st stands
for the crossing place s,l, then for $ + ,

P841(no41+ < m,+4) po**+(s**) E[po4,+(s4+)]

+ (K(s,, b) E**[K(s,+, b)])eo,,+(b)
5.7

> . ro4+ 24)- 24+ 24+ -]C8L% ( (Q+,)

k 2-(+1)(’-)C(Q4+) t,
which implies

5.8
_<_ (1 t)(1 tt+l)(1 t+)

07
and we conclude that

5.9 P. (no( +win41) < +) E.(P4I(n +)) 1,

which completes the proof of 5.1.

6. Thorns
Given nonnegative i(1) _-< i(2) _<_ let Q denote the thorn

Pl(n + <-_ El[nl+ >-_ m4+, Pl+4(n -t- )]

<--_ Ei[nQ1+ >= m+, E.,l+4(nl+ m+s, P1+(no. +))],
etc.

/T+.

We use Wiener’s test to prove that for s __> 4 dimensions

6.1 P.(Q) 1 or 0 according as ]>=1(2-i(2))- or < +;
as an example, if 1, and if i(n) n(lg n lg: n (lg n))-/-,13 then
P.(Q) 1 (0) fora =< 1(>1).
When lira sup + n-i(n) > a > 0, 2-’i(2) > a/2 for an infinite number

of integers n; for such n, Qn contains the set Q of lattice points of a sphere of
diameter _-> min(1, a)2"; C(Q.) _-> C(Q); C(Q)is then => /02("-)’, and
the upshot is

6.2 -t- .>_ (2-ni(2"))-= 2n>__1
which checks with 6.1.

n ml < -k- for paths crossing from a =< 2to a > 21 + 1; for if

(t + t + +t,), =< z,
then (l :t: 1)-+ l + -t- 1] l + l + -? l :i: 2l-{- 1 _-< 21 + 2.21 -[- 1
(2 -- 1) .

a 6.1 is to be compared with Lebesgue’s thorn" see Courant and Hilbert [1, pp. 272-
2741.

lg lg and lg lg(lg_) for n >= 2.
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When

6.3 lim, += n-i(n) 0,

Q is long and thin, a sphere is not a good pproximation, and we consider

instead the ellipsoids Q c Q and Qn+ Q.

l + l +’’" + 12s_i + (is- 3" 2--n--l)Q: (11, l., 1,)" __-< 1,
i(2)2 22(n-l)

+ t +... + L+ (- 3.-)Q (1,,l,...,l)" 1
2.i(2+1) 2.2(-)

and compare the capacities C(Q), C(Q) to the Newtonian capacity of the
solid ellipsoid

1 X2 XsE (x,x, "’,x)" e +e + +e; < 1, el, e, ,e > O.

The Newtonian capacity of .E is known; up to a factor depending on the
dimension number, it is the reciprocal of the elliptic integral

+ dt
6. e /(e + t)( + t)...( + t)"

The reader will find a neat proof of 6.4 for s 3 in G. Chrystal [1, p. 30].
When

--v
--(s--I)/2/ --1/2e (a es + t) es + t) dt

=e8 (a + t) (1 + dt
6.5

2--s /2es -(s-i) dt

2--s (s--3)e (s-3)

by using 4.10, it is plain that

6.6
]11 2+n(s--2)(2--’i(2’)) 8-3 < C(Q-)

<= C(Q) <= C(Q+) </c12 2+’("-)(2-("+)i(2"+a))"-,

and aft application of Wiener’s test completes the proof of 6.1.
Whens 3, P.(Q) l even for the thinnest thorn Q U>=i(0,0, n);

C(Q,,) is then > k 2, and Wiener’s sum is -t- .
We consider, instead, the set Q (-Jnl (0, 0, i(n)) with integral

i(1) < i(2) < and prove that if

6.7 i(n) --i(n- 1) >_-lg i(n- 1), n "-+-,



POTENTIALS AND THE RANDOM WALK 131

then

6.8 P.(Q) lor0 according as ,>=li(n)- or < "t-;

as an example, if i(n) [n lg n lg n... (lgk n)"],14 then P.(Q) 1 (0)
for a -< 1 (>1).

Granting

6.9 k4 O =< C(Q) =</c Q I, n " --,it is clear that

6.0 ]c_<,(,)<.,.+ i(1)- lc 2- Q

and an application of Wiener’s test proves 6.8. C(Q,) Q. with
1 K(0, 0)- is immediate from 4.5, and to complete the proof, it is enough
to use 6.7 and 2.7 to check the estimate

K(a, b) lc s,,o, (ln lg 2)-6.11
< n-lg[Q] lclg2, a eQ, n +,

and to infer, from 4.4, that

6.12 C(Q) Ic, ]Q l, k4 (]17 lg 2) -1 n +
Problem. When i(n)’n 1 is the set of prime numbers, is P.(Q) 1

Were Gauss’s law n/lg n for the number of primes n exact, we could assert
that + > ks K(a, b) for a e Q and conclude, as in 6.12, that
C(Q) lc]Q kn-2 and that .2-C(Q) +.
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