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1. Introduction

Let z(¢, ) be a separable one-dimensional Brownian motion process with
(0, w) = 0. We suppose that, if necessary, a set of sample points of measure
zero has been discarded so that all the sample functions of the process are
continuous. Then for every ¢ and w a measure u(- , ¢, w) is defined by taking
w(4, ¢, w) to be the Lebesgue measure of the set {r:0 < 7 < ¢, (7, ) e 4}.
In this paper we prove the following result.

TueoreM. With probability one, u(- , t, ») has a continuous density function.
That 1s, for almost all w, there exists a function f(x, ¢, ) which s continuous in
x and t such that

W, 0 = [ S, 60 do

for every Borel set A.

The proof occupies Sections 2 and 3. Explicit bounds for the moduli of
continuity of f are given by (2.1) and (2.3).

This theorem represents a partial extension of results of P. Lévy connected
with the notion of “mesure du voisinage” (of the set of zeros of a Brownian
motion sample function) introduced and investigated by him [5, 6]. Let
F(x, w) = u([— oo, 2], {, w). Then one of Lévy’s theorems may be para-
phrased as follows: For any fized &, F'(£) exists with probability one, and s
equal to (w/2)"" times the “measure du voisinage” of the set

A: = {7 S ¢, 2(r, w) = E}.

QOur result is stronger on the one hand, in that we show that with probability
one, F'(£) exists for all ¢ simultaneously and is continuous. On the other
hand, we do not show any connection between F’(£) and the set A;.

We have stated the theorem for the case of Brownian motion, but it can
be extended to a very general class of one-dimensional diffusion processes.
Let z(, w) be a process such that the infinitesimal generator of the associated
semigroup [1] has the form [2]

_ a4

T dmdz’

where m is an arbitrary strictly increasing function. Then u(: , ¢, w) can be
defined as before, and the conclusion is that for almost all w there is a con-
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tinuous f(x, {, ») such that

F'(A’ ¢ w) = Lf(xv A O)) dm(x)-

This generalization is an immediate consequence of results of Itd and McKean
(not yet published), which show that all such diffusion processes can be de-
rived from Brownian motion by suitable modification of the time-scale.

I am indebted to H. P. McKean for very helpful discussion, and particu-
larly for pointing out a serious error in my original version of Lemma 1.

2. Proof of the theorem

For any r > 0, define f,.(z, ¢, w) to be the step-function having the value
7 'u(lér, (G + 1)r), t, ») on the interval [sr, (¢ + 1)r) for every integer s. Thus
f» 1s an approximate density function for u. The function f. will have dis-
continuities at the integral multiples of r; define §,.(f, w) to be the maximum
of these discontinuities, so that |f.(z, ¢, ©) — f(&', ¢, @) | = &(, w) for
all z, 2’ with |2 — 2’ | £ r.

Lemma 1. For any T, there exists a constant K such that if r is sufficiently
small and r*d is bounded from zero,

Pr {6r(t7 w) = d} =< Kr_l exp (__r—1/2d)
Jorallt = T.

The proof of this lemma is rather lengthy and will be given in Section 3.
Let T be fixed, and define 4, to be the set of all integral multiples of 27"
between 0 and T + 1. Take r, = 27" and d,, = 312~ "> Define

Go = Uiy Uses, {038, ) 2 dil.
Provided that » is so large that r, is sufficiently small for Lemma 1 to apply,
Pr{G.} = 2%a (T + 1)2%Pr{wd,(f, ) = di}
< K(T + 1) 5. 2%
K(T + DX 2/0)%,
and since this last is a convergent series, it follows that
lim, .. Pr{G,} = 0.

We shall now write f.(z, ¢, ») for f,.(z, ¢, »). For every z and n, f,(z, ¢, w)
is obviously a monotone function of #. Furthermore,

|fn($, ) w) — fal, t, @) I = TZI I ¢ —t l ’
because of the step-function nature of f, and the fact that
f |f"(x’ tla OJ) —fn(x, t, w)]dx = |t’ - t‘.

Hence if # and t” are two adjacent members of A, and# <t £ ¢’,
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Fa(@, 8y @) — fulz, V', 0) = T;l(t” —t) =2
Consequently, unless » € G, ,
b, w) = 6, (t,w) + 227" = d, + 27"

for every ¢ between 0 and 7', since every such { lies between two adjacent
members of A, .

Now observe that f, can be obtained from f,,; by averaging over pairs of
adjacent ‘“‘steps’, so that

maxsg lfn+1(x; t,w) — falz, i, w) I = %6""+1(t) w).

Then unless w € G, , for any m, p with m = n,

m+p—1
I fm-H’(x’ t: w) - fM(x) t? w) l é Z | fi+1(x7 t) w) - fz(-’l;, t? w) l
< Z dq, + 2—-i+1
t=m+1
< Km2™"

(Here, and subsequently, we use K to denote a sufficiently large positive
constant, depending in general on w and T, whose particular value is im-
material.) Hence, if w ¢ G, , the sequence {f.(x, t, w)} converges uniformly to a
limat, which we shall call f(x, t, w). Furthermore

| f@, t, @) — fu(z, b, 0)| < Km2™ < Kril’|log rm |

for every m = n. It is clear that the measures having f,.(z, {, ) as density
functions converge at least weakly to u(-, ¢, w), and consequently f(z, ¢, w)
28 a density function jor u(-, ¢, w). The continuity of f remains to be estab-
lished.

Take an arbitrary pair of numbers z and z’, and define m by the require-
ment

jle — 2| <rp £ |z — 2.

Then if w ¢ G, and |z — 2’| is so small that m = n,

If(xy 1’7 w) - f(x,7 t) w)l é lf(x) t) w) - fm(xy ty w)l
+ |fm(xy L, O)) - fm(x,, ta w)l

-+ |fm(x,’ t} w) - f(l',, t} w) 1
Knrl? [log 7' |

< K|z — 2 ["|log|z — 2'|].

(2.1)

IIA

This assertion involves the assumption that |z — 2’| = r,, but it is now
clear that for each w ¢G, , a K may be found sufficiently large that (2.1) holds
for all z, o',
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Turning now to the modulus of continuity with respect to ¢, we have, for
w ¢ @, and any m = n,

[f@, t, 0) — flx,t,0)| S |flz, 8, 0) = fulz,? o) ]
+ | fulz, b @) — fulz, ¥, @) |
+ [fule, ', @) — f&, ¥, ) |
< Knl*|logra | + Krit |t — ']

This expression is approximately minimized by choosing m so that r, is as
near | £ — ¢ |**|log | ¢ — ' ||7** as possible. This m will be greater than n
if |t — t'| is sufficiently small. Substituting in (2.2) gives

2.3)  |flx, t, w) — flx, ¢, 0) | S K|t — ¢ ["|log|t — ¢ [[*".

As before, by choosing K sufficiently large (2.3) can be made to hold for all
i, ¢ between 0 and 7' without the restriction that | # — # | be small. Note
that if f satisfies both (2.1) and (2.3), it is continuous in x and ¢ jointly.

The results (2.1) and (2.3) hold for all w ¢N, G, , that is, for almost all w,
since the sets G, form a monotone sequence and lim,.. Pr {G, } = 0. Hence
f(z, t, w) is continuous with probability one, for £ £ 7. Since the set of
sample points for which f(z, f, ») is defined and continuous for all ¢ is the
(countable) intersection of the sets on which f(z, ¢, ») is defined and con-
tinuous for ¢ £ n, the proof of the theorem is complete, except for Lemma 1.

2.2)

3. Proof of Lemma 1

Throughout this section we shall write z:(f, w) for a standard Brownian
motion which starts with x = £at ¢ = 0. If £is a multiple of r, the dis-
continuity of f.(z, {, w) at £ will have the same probability distribution as
7" times the absolute value of

t
@3.1) R 1, ) = [o V(er, ) dr,
where
Vi) = 1 on (—r0)
= —1 on (0,7)

= 0 elsewhere.
We shall investigate the distribution of R by examining its Laplace transform
(3:2) m(E, u, 1) = E{exp (—uR(§ 1, w))}.

To avoid interruption of the main argument at a later stage we prove two
preliminary lemmas.
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LEmMMA 2. Foru > 0 and £ = 0, m(¢, u, t) is an increasing function of t.

Proof. There is no loss of generality in taking v = 1. Since

exp (—R(E) ¢, OJ)) =1+ 'l)‘ - V(xE(T, w)) €xXp (—R(Ey 7, O))) dT,

e 1,0 = 1+ [ B{=V(lr, o) exp (=R( 7, ) dr,

by taking expectations of both sides and using Fubini’s theorem. Hence it
will be sufficient to prove E{—V (z:(, w)) exp (—R(&, t, »))} = 0.

If 2¢(7, @) = O for some 7 = ¢, define *(w) to be the greatest such 7 not
exceeding ¢, and otherwise define t*(w) = ¢. Let

Ri(w) = »/o‘t‘ V(ze(r, w)) dr and Ry(w) = j: V(xi(r, w)) dr,

so that R(¢, ¢, w) = R1 + R».

From considerations of symmetry, the conditional distribution of | R; |
given * = T and 2(!) = X depends only on T and | X |,if T < ¢ Also,
R; has the same sign as —z(#), so that

E{—=V(x:(t, ) exp (—Re(w)) | 2(t) = X, t* = T}
+ E{—V(z(, »)exp (—Re(o))|2(t) = =X, t* = T} = 0.

Since the conditional distribution of z:(f, w) given ¢* = T is symmetric when
T < t,it follows that

(33) E{—V (2, ) exp (—Re(w)) | #* = T} 2 0

when T < ¢. On the other hand, * = ¢ implies that the sample function
does not reach the origin before time £, and since £ = 0, — V(x(¢)) must then
be nonnegative, and E{ — V(z(#)) exp (— R(w)) |t* = ¢} = 0. When con-
ditioned on * = T < ¢, R, is independent of z(f) and R, , so that

E{—=V(2:(t, w) exp (R 8, w) | 1* = T}
= E{—V(z:(t, w)) exp (—Ry(w)) | t* = T} -E{exp (—Ry(w)) | * =T} 2 0,
and integrating over the distribution of #* gives the desired result.
Lemma 3. Foru > 0and £ = 0,
E{sinh (—uR(t, t, w))} = 0.

Proof. As in Lemma 2, there is no loss of generality in taking v = 1.
Define #*(w) to be the least value of 7 for which z¢(7, w) = 0, or ¢, which-
ever is smaller. Define R; and R, as in Lemma 2, using this new value of
t*. When conditioned by #*, R, and R, are independent, and consequently
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Efsinh (=R, ¢, o)) | t* = T}
= —FE{sinh Ri(w) cosh Ry(w) | t* = T}
—E{cosh Ry(w) | #* = T} -E{sinh Ry(w) | * = T}.
By symmetry, E{sinh Ry(w) |t* = T} = 0, and since £ = 0,
sinh R;(w) cosh Rx(w) = 0

for all w. Integrating over the distribution of ¢* completes the proof.
We now consider the Laplace transform

(34) F(E} U, 8) = j:o 3—stm(£) U, t) dtr

which we can calculate explicitly, using a method due to Kac [3, 4]. Let
V(x) = V(z) + 1, and define F(§, u, s) by (3.1), (3.2), and (3.4), using V
in place of V. The function ¥ is nonnegative, and we may apply the results
of [3]. It follows that for s > 0,

F(Oy U, S) = fw 30(:13) dx,

where ¢(z) is the unique’ function such that
(3.5) - + {s+ uV(@ly =0

except at the origin and the discontinuities of V, and
(i) ¢ — 0 at infinity,
(ii) ¢ is continuous except at the origin,
@iii) ¢'(=0) — ¢¥/(+0) = 2.
Thus ¢ is the Green’s function with singularity at £ = 0 for the equation
(3.5). Writing ¢(z, £) for the Green’s function with singularity at x = §,
we have

F(& u,8) = f : Y(z, &) du.

This, however, says that I is the result of transforming the constant function
1 by the kernel ¢/(z, £), and hence is the solution of the inhomogeneous equa-
tion

—1F" + {s + uV(@)}F = 1

2T am indebted to the referee for pointing out that the uniqueness proof indicated
in [3] tacitly assumes that V is continuous and (3.5) holds everywhere except at the
origin. The gap is easily filled. Formula (4.7) of [3] implies that ¢¥'(x) is continuous
(for z £ 0) and not merely bounded. With this additional condition the integration
by parts called for in the uniqueness proof is legitimate, and the proof is valid. Note
that there is a misprint in the footnote on page 9 of [3]; in the next to the last line by
@'’ should read “‘by ¢’’.
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which has a continuous first derivative and is bounded at infinity. Since
uV(x) = uV(x) +u, F(& u, s) = F(§u, s + u). Replacing s + u by s
in the equation above gives F(¢, u, s) as the solution of

(3.6) —3F" + {s + uV(@)}F =1

which has continuous first derivative and is bounded at infinity.

The function s + uwV(x) is piecewise constant, and the solution of (3.6) is
made up piecewise of linear combinations of exponentials and constants.
These combinations must be matched at —r, 0, and r so that F and F’ are
continuous.

It will be convenient to describe F in terms of the functions

C(s, u, z) = cosh (2s + 2u)"*x
S(s, u, ) = sinh (2s + 2u)"’z/x(2s + 2u)"*
Q(s, u, ) = (cosh (2s + 2w’z — 1)/2°(s + u)

and C(s, u, ) = C(s, —u, ), S(s, u, ) = S(s, —u, x), and Q(s, u, ) =
Q(s, —u, ). Note that since the hyperbolic cosine is even and the hyper-
bolic sine odd, these functions are even functions of x and single-valued
analytic functions of all three arguments, in spite of the appearance of square
roots in the definitions. Of course, C, S, and Q are defined to have the
value 1 when (s + w)x = 0.

Now letting F(0) = ¢q and F’(0) = p we have

3.7) F(z) = ¢C(x) + paS(x) — 2°Q(x) on (—r,0),
and
(3.8) F@) = ¢C@) + pz8@) — Q) on (0,1),

as may be checked by substitution in (3.6). The condition that F be bounded
at infinity implies that

Fx) = s 4+ cexp (—(28)"x), x = r
= s 4+ ¢ exp ((28)"2), x = —r
for some constants ¢, ¢’. Hence
F'(r) = —@29)"{F(r) — s},

and there is a similar matching condition at —r. Applying these conditions
to (3.7) and (3.8) yields two equations for p and ¢, which after collecting
coefficients become

€ + 29)"*r8)p + ((25)"*C + 2(s — w)rS)q = (2/s)”* + 2r8 + (25)"**Q,
—(C + 2)"*r8)p + ((25)°C + 2(s + u)rS)g = (2/9)"* + 2rS + (25)"%°Q,
where S, C, ete., stand for S(s, u, r), C(s, u, r), ete.
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The determinant of this system of equations is
D = 2(29)"*(CC + (28)"*r(CS + C8) + 2s°88)
— 2ur(CS — C8),

(3.9)

and the solution is given by
Dp = 2u(2s)*{2r(S + 8) + 4(2s)"*8S + 2°(Q8 + @S)}
+ 2(C — C) + 2@29)"r(S — 8§ + €8 — C8)
+ 2s°(CQ — CQ) + 25(28)"°(SQ — 8Q),
Dg = 2s*(C + C) + 2r(C8 + CS + S + §)
+ (28)"°(CQ + CQ + 488) + 25°(SQ + 8Q).

These formulas show that for each fixed « and u, the F defined by (3.6)
is an analytic function of s in the right half-plane, except at the zeros of D.
Since m(£, u, t) is nonnegative and (3.4) holds for s > wu, it follows from a
well-known theorem on the Laplace transform [7, p. 58] that (3.4) remains
true for s greater than or equal to the largest real zero of D.

We shall be interested in the asymptotic behaviour of F as u — o and
r — 0 while +*° remains bounded. Suppose s < u. Then (s = u)® — 0
and C = 1 + (s + wr’/2 + o(wr’), S =1+ (s + u)’/6 + o(ur’), ete.
Using these approximations we get

D = 2(2s)'* — $u% 4+ o).

We shall now fix «*»° = 1. Then it is clear that if r is sufficiently small,
D has no zeros for v = s = 1. On the other hand, since C, S, €, and S
are all positive for s = u, formula (3.9) shows that D > 0 for s = u. Hence,
if we take F to be defined by (3.6), the relation (3.4) is valid for s = 1, pro-
vided w*r® = 1 and r is sufficiently small.

Now suppose that s remains fixed as »r — 0. Then we obtain

¢ = s'1 + 0@r)) = 0Q1)
and p = 2urs (1 + 0@™®) = O(ur) = O(@"%). It follows that
F(0,u,s) — s = 0(1),
F(ryu,s) — s = ¢C + prS — 7@ = 0Q),
F(z,u,s) — s = exp (—(28)"’z)-0Q), x

1%
=

Now
Flz,u,s) — s = f e (mlz, u, t) — 1) dt
0

v

fT " e nle, u, £) — 1) d

= s (mx,u, T) — 1),
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provided z is positive, since then m is monotone by Lemma 2. From this,
by setting s = 2%, we obtain

mx, u,t) — 1 = K exp (—2z)
forx = 0,t =< T,and u = r ",
Lemma 3 now gives
E{cosh 7 *’R(£, t, w) — 1}
mg t, w) — 1 — E{sinh (=7 *R(g, 1, w))}
=m@E e — 1
= Kexp (—2]&]).

(3.10)

This has been proved under the assumption £ = 0, but since (3.10) is sym-
metric with respect to £, it holds in general.
Denote the discontinuity of f(z, ¢, ) at § = nr by A,. Then

Pr{A, = d} = Pr{r"|R(E ¢t w | = d}

Pr{r | R t, ) | 2 +d}

< (cosh r%d — 1)7'Ef{cosh 7 *"R(£, t, w)}
K exp (—r™"d) exp (=1 | n ),

provided r is sufficiently small for (3.10) to be valid and r*d is bounded
from zero. Finally,

IIA

Pr{s(, ) 2 d} £ > Pr{A, = d]

N =00

A

Kr" exp (—r%d).
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