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1. Introduction

Let x(t, ) be a separable one-dimensional Brownian motion process with
x(0, 0) 0. We suppose that, if necessary, a set of sample points of measure
zero has been discarded so that all the sample functions of the process are
continuous. Then for every and o a measure (. t, o) is defined by taking
(A, t, 0) to be the Lebesgue measure of the set {r:0

_
r A t, x(r, ) e A }.

In this paper we prove the following result.

THEOREM. With probability one, (. t, ) has a continuous density function.
That is, for almost all , there exists a function f(x, t, o) which is continuous in
x and such that

#(A, t, ) f f(x, t, ) dz

for every Borel set A.
The proof occupies Sections 2 and 3. Explicit bounds for the moduli of

continuity of f are given by (2.1) and (2.3).
This theorem represents a partial extension of results of P. L4vy connected

with the notion of "mesure du voisinage" (of the set of zeros of a Brownian
motion sample function) introduced and investigated by him [5, 6]. Let
F(x, 0) t([--, x], t, ). Then one of Lt!vy’s theorems may be para-
phrased as follows: For any fixed , F’() exists with probability one, and is
equal to (r/2)/ times the "measure du voisinage" of the set

A {r:’r =< t, x(r, 0) }.

Our result is stronger on the one hand, in that we show that with probability
one, F’() exists for all simultaneously and is continuous. On the other
hand, we do not show any connection between F’() and the set A.
We have stated the theorem for the case of Brownian motion, but it can

be extended to a very general class of one-dimensional diffusion processes.
Let x(t, o) be a process such that the infinitesimal generator of the associated
semigroup [1] has the form [2]

d d
dmdx

where m is an arbitrary strictly increasing function. Then (. t, 0) can be
defined as before, and the conclusion is that for almost all there is a con-

Received August 11, 1957.
Research supported by the Office of Ordnance Research.

425



426 H.F. TROTTER

tinuous f(x, t, o) such that

(A, t, o) f. f(x, t, dm(x).

This generalization is an immediate consequence of results of It6 and McKean
(not yet published), which show that all such diffusion processes can be de-
rived from Brownian motion by suitable modification of the time-scale.

I am indebted to H. P. McKean for very helpful discussion, and particu-
larly for pointing out a serious error in my original version of Lemm 1.

2. Proof of the theorem
For any r > 0, define fi(x, t, ) to be the step-function having the value

r-l([ir, (i 1)r), t, ) on the interval [ir, (i 1)r) for every integer i. Thus
f is an approximate density function for . The function f will have dis-
continuities at the integral multiples of r; define ,(t, ) to be the maximum
of these discontinuities, so that [f,(x, t, ) fi(x’, t, )[ ,(t, ) for
all x, x’ with ]x x’[ r.

LEMMA 1. For any T, there exists a constant K such that if r is suciently
small and r-/d is bounded from zero,

Pr [(t, ) d} Kr-1 exp (-r-/d)
for all T.

The proof of this lemma is rather lengthy and will be given in Section 3.
Let T be ed, and define A to be the set of all integral multiples of 2-"

between 0 and T + 1. Take r 2 and d 3n2-’/. Define

=. U,,, {:,,(t, ) d,}

Provided that n is so large that r is sufficiently small for Lemma 1 to apply

Pr

K(T + 1)2e-K(T + 1), (2/e)’,
and since this last is a convergent series, it follows that

lim** Pr {G 0.

We shall now write f(x, t,
is obviously a monotone function of t. Furthermore,

A(z, t’, ) A(x, , ) rlt 1,
because of the step-function nature of f and the fact that

f IA(x, t’,

Hence if t’ and t" are two adjacent members of A and t’
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r-1 ,,
f(x,t,o) -f(x,t’,o) < (t t’) 2-.

Consequently, unless o e G,
t#(t, o) r(t’, W) + 2"2 d + 2-+

for every between 0 and T, since every such lies between two adjacent
members of A.
Now observe that f can be obtained from f+ by averaging over pairs of

adjacent "steps", so that

max A+:(x, t, ) A(x, t, )i < +l(t, ).

Then unless e G, for any m, p with m n,
re+p--1

A+(x, t, ) A(x, t, )1 [f+(x, t, ) f(x, t,

< d + 2-+

Kin2-/.

(Here, and subsequently, we use K to denote sufficiently lrge positive
constant, depending in general on and T, whose particular value is im-
material.) Hence, if G the sequence {f(x, t, w)} converges uniformly to a
limit, which we shall call f(x, t, ). Furthermore

K-/If(x, t, ) f(x, t, ) Kin2-/ r [log r

for every m n. It is clear that the measures having f(x, t, ) as density
functions converge at least weakly to u(., t, ), and consequently f(x, t, )
is a density function jor (., t, ). The continuity of f remains to be estab-
lished.
Take an arbitrary pair of numbers x and x’, and define m by the require-

ment

x x’[ < r x x’[.

Then if G and [x x’] is so smull that m n,

If(x, t, ) f(x’, t, )l If(x, t, ) f(x, t, )l

+ f(x, t, ) f(x’, t, )

+ f(x’, t, ) f(x’, , )
(2.1) 1/2r logr]

This assertion involves the assumption that Ix x’l r, but it is now
clear that for each e G, a K may be found sufficiently large that (2.1) holds
for all x, x’.
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Turning now to the modulus of continuity with respect to t, we have, for
CGandanym >_- n,

(2.2)

If(x, t, oo) f(x, t’, 0) If(x, t,

+ f (x, f (x,

4" f,,(x, t’, o) f(x, t’, )[

=< Kr/]logr,[ + Krj t’

This expression is approximately minimized by choosing m so that rm is as
near It t’ [2/3 log t’ll-m as possible. This m will be greater than n
if It t’[ is sufficiently small. Substituting in (2.2) gives

(2.3) If(x, t, o) f(x, t’, w) <- Kit t’ [/ logl t’ m.
As before, by choosing K sufficiently large (2.3) can be made to hold for all
t, t’ between 0 and T without the restriction that It t’ be small. Note
that if f satisfies both (2.1) and (2.3), it is continuous in x and jointly.
The results (2.1) and (2.3) hold for all 0 e fn G, that is, for almost all o,

since the sets G form a monotone sequence and lim Pr G 0. Hence
f(x, t, o) is continuous with probability one, for -< T. Since the set of
sample points for which f(x, t, o) is defined and continuous for all is the
(countable) intersection of the sets on which f(x, t, o) is defined and con-
tinuous for =< n, the proof of the theorem is complete, except for Lemma 1.

3. Proof of Lemma
Throughout this section we shall write x(t, oo) for a standard Brownian

motion which starts with x at 0. If is a multiple of r, the dis-
continuity of fr(x, t, oo) at will have the same probability distribution as
--1r times the absolute value of

(3.1) R(, t, o) Jo V(x(r, o)) dr,

where

V(x) 1 on (-r, 0)

-1 on (0, r)

0 elsewhere.

We shall investigate the distribution of R by examining its Laplace transform

(3.2) m(, u, t) E{exp (-uR(, t,

To avoid interruption of the main argument at a later stage we prove two
preliminary lemmas.
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LEMMA 2. For u > 0 and >= O, m(, u, t) is an increasing function of t.

Proof. There is no loss of generality in taking u 1. Since

exp (-R(, , o)) 1 -t- V(z(r, o)) exp (-R(, r, o)) dr,

m((, 1, ) 1 -t- N{-V(z(r, o)) exp (-R(, r, o)) dr,

by gaking expeetagions of bogh sides and using Fubini’s gheorem. I-Ienee
will be suffieieng go prove E{-V(z(t, o))exp (-R(, t, oo))1 >- O.

If z(r, o) 0 for some r -< , define t*(o) go be ghe greagesg such r nog
exceeding , and ogherwise define *(o) . Leg

t* fttRx(o) V(x(r, w)) dr and R.(o) V(x(r, dr,

so that R(, t, ) R + R.
From considerations of symmetry, the conditional distribution of

givent* Tandx(t) X depends only on Tand ]X],if T < t. Also,
R. has the same sign as -x(t), so that

E{-V(x(t, o)) exp (-R(o)) x(t) X, t* T}

-t- E{-V(x(t, o)) exp (-R(co)) x(t) -X, t* T} >= O.

Since the conditional distribution of x(t, o) given t* T is symmetric when
T < t, it follows that

(3.3) E{-V(x(t, )) exp (-R.(o)) t* T} >= 0

when T < t. On the other hand, t* implies that the sample function
does not reach the origin before time t, and since __> 0, -V(x(t)) must then
be nonnegative, and E{ V(x(t)) exp (- R()) It* t} >__ 0. When con-
ditioned on t* T t, Ra is independent of x(t) and R, so that

E{-V(x(t, o)) exp (-R(, t, o)) t* T}

E{-V(x(t, o)) exp (-R.()) It* T} .E{exp (-Rl(o))lt* T} >= O,

and integrating over the distribution of t* gives the desired result.

IEMMA 3. For u > 0 and >--_ 0,

E{sinh (-uR(, t, ))} -> 0.

Proof. As in Lemma 2, there is no loss of generality in taking u 1.
Define t*(o) to be the least value of r for which x(r, o) 0, or t, which-
ever is smaller. Define R1 and R as in Lemma 2, using this new value of
t*. When conditioned by t*, R1 and R. are independent, and consequently
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E{sinh (-R((, t, )) t* T}

--E{sinh RI() cosh R2() t* T}

-E{cosh R1(o) t* T}.E{sinh R.(0) t* T}.
By symmetry, E{sinh R()lt* T} O, and since _>_ 0,

sinh R(o) cosh R2(o) _-< 0

for all w. Integrating over the distribution of t* completes the proof.
We now consider the Laplace transform

(3.4) F(, u, s) fo e-Stm(’ u, t) dr,

which we can calculate explicitly, using a method due to Kac [3, 4]. Let
?(x) V(x) + 1, and define/0(, u, s) by (3.1), (3.2), and (3.4), using
in place of V. The function V is nonnegative, and we may apply the results
of [3]. It follows that for s > 0,

(0, u, s) I: b(x) dx,

where k(x) is the unique function such that

(3.5) --1/2b" -[- {s -t- u?(x)}b 0

except at the origin and the discontinuities of V, and
(i) k -- 0 at infinity,
(ii) k’ is continuous except at the origin,
(iii) ’(-0) ’(+0) 2.

Thus b is the Green’s function with singularity at x 0 for the equation
(3.5). Writing k(x, ) for the Green’s function with singularity at x ,
we have

(, u, s) J_ (x, ) dx.

This, however, says that/ is the result of transforming the constant function
1 by the kernel (x, ), and hence is the solution of the inhomogeneous equa-
tion

" + {s + u?(x)}f
I am indebted to the referee for pointing out that Che uniqueness proof indicated

in [3] tacitly assumes that V is continuous and (3.5) holds everywhere except at the
origin. The gap is easily filled. Formula (4.7) of [3] implies that ’(x) is continuous
(for x 0) and not merely bounded. With this additional condition the integration
by prts called for in the uniqueness proof is legitimate, and the proof is valid. Note
that there is a misprint in the footnote on page 9 of [3]; in the next to the last line "by

’" should read "by ".
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which has a continuous first derivative and is bounded at infinity. Since
ud(x) uV(x) + u, (, u, s) F(,u, s-l- u). Replacings + ubys
in the equation above gives F(, u, s) as the solution of

(3.6) --1/2F" + {s z7 uV(x)}F 1

which has continuous first derivative and is bounded at infinity.
The function s uV(x) is piecewise constant, and the solution of (3.6) is

made up piecewise of linear combinations of exponentials and constants.
These combinations must be matched at -r, 0, and r so that F and F’ are
continuous.

It will be convenient to describe F in terms of the functions

C(s, u, x) cosh (23 z7 2u)/x
S(s, u, x) sinh (23 + 2u)i/2x/x(28-- 2U)1/2

Q(s, u, x) (cosh (23 - 2U)1/2X 1)//X2(8 -- U)

and ((s, u, x) C(s, -u, x), S(s, u, x) S(s, -u, x), and Q(s, u, x)
Q(s, -u, x). Note that since the hyperbolic cosine is even and the hyper-
bolic sine odd, these functions are even functions of x and single-valued
analytic functions of all three arguments, in spite of the appearance of square
roots in the definitions. Of course, C, S, and Q are defined to have the
value 1 when (s -t- u)x O.
Now letting F(0) q and F’(O) p we have

(3.7) F(x) qC(x) -t- pxS(x) xQ(x) on (-r, 0),

and

(3.8) F(x) q((x) -t-- px(x) x((x) on (0, r),

as my be checked by substitution in (3.6). The condition that F be bounded
at infinity implies that

F(x) s- + c exp (-(2s)x), x => r
--1

C
1/2x X < rs + exp ((23) ),

for some constants c, c’. Hence

F’(r) -(2s)l/{F(r) s-},
and there is a similar matching condition at -r. Applying these conditions
to (3.7) and (3.8) yields two equations for p and q, which after collecting
coefficients become

( + (2s)l/2r)p-- ((28)1/25 -" 2(8 u)r)q (2//8)1/2 -- 2r + (28)1/2r ,
(C + (2s)rS)p -- ((2s)/C -- 2(s -{- u)rS)q (2/s)n -t- 2rS -- (2s)/-’r,

vhere S, C, etc., stand for S(s, u, r), C(s, u, r), etc.
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The determinaat of this system of equations is

D 2(2s)1/2(C + (2s)I2r(C + S) + 2sr2S)
(3.9)

2ur(CS- CS),
and the solution is given by

Dp 2u(2s)-1/2{2r(S + ) -- 4(2s)1/rS -- 2sr(Q + S)}

+ 2(C ) - 2(2s)/r(S- - C S)

+ 2sr(CQ- Q) + 2s(2s)i/era(SQ Q),
Dq 28-1/2(C - ) - 2r(C - S - S - )

These formulas show that for each fixed x and u, the F defined by (3.6)
is an analytic function of s in the right half-plane, except at the zeros of D.
Since m(, u, t) is nonnegative and (3.4) holds for s > u, it follows from a
well-known theorem on the Lplace transform [7, p. 58] that (3.4) remains
true for s greater than or equal to the largest real zero of D.
We shall be interested in the asymptotic behavour of F as u -. and

r - 0 while ur remains bounded. Suppose s

_
u. Then (s :i: u)r -- 0

and C 1 - (s + u)r/2 - o(ur2), S 1 - (s -u)r/6 + o(ur),etc.
Using these approximations we get

D 2(2s)/ ur - o(ur).
We shall now fix ur 1. Then it is clear that if r is sufficiently small,
Dhasno zeros foru >= s _>- 1. On the other hand, since C, S, , and
are all positive for s >= u, formul (3.9) shows that D > 0 for s __> u. Hence,
if we take F to be defined by (3.6), the relation (3.4) is valid for s >- 1, pro-
vided ur 1 and r is suigiciently small.
Now suppose that s remains fixed as r -- 0. Then we obtain

q-- 8-1(1 --O(u2r)) 0(1)

and p 2urs-(1 + O(ur)) O(ur) O(r-I). It follows that

F(0, u,s) s- 0(1),

F(r, u, s) 8
-1 q + pr -r Q 0(1),

F(x, u, s) s-1 exp (-(2s)/x).O(1), x >- r.

F(x, u, s) s- fo e-.*(m(x, u, t) 1) dt

=>_ e’-’t(m(x, u, t) 1) dt

>-_ s-e-r(m(x, u, T) 1),
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provided x is positive, since then m is monotone by Lemma 2. From this,
by setting s 21/2, we obtain

m(x, u, t) 1 <= K exp (-2x)

forx _>_ 0, T, andu r-3/2.

Lemma 3 now gives

E{cosh r-3/2R(, t, ) 1}

m(, t, ) 1 Elsinh (-r-/:R(, t,
(3.0)

m(,t,w) 1

__< K exp

This has been proved under the assumption >- 0, but since (3.10) is sym-
metric with respect to , it holds in general.
Denote the discontinuity of f(x, t, ) at nr by A. Then

Pr{A >__ d} Pr{r-l[R(,t,)l >= d}

Pr {r-/2lR( t, )[ >= r-i/d}
-< (cosh r-1/d 1)-lE{cosh r-/R(, t,

-< K exp (-r-I/d) exp (-rln[)
provided r is sufficiently small for (3.10) to be valid and r-/2d is bounded
from zero. Finally,

Pr {r(t, o) d} <= Pr {A __> d}

__< Kr- exp (-r-2d).
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