
MARKOFF PROCESSES AND POTENTIALS

BY G. A. HUNT

This paper will appear in three parts. Its purpose and scope are best dis-
cussed after the state of affairs in the simplest situation has been explained.
Let P(r, ds) be stationary Markoff transition measures on 5C, a separable

locally compact space, and suppose that the transformations Pr of functions
on ,

Pr f.(r) J P(r, ds)f(s),

leave invariant the Banach space of continuous functions vanishing at in-
finity and converge strongly there to the identity transformation as r-- 0.
The transition measures can be realized by Markoff processes whose sample
paths are continuous on the right and have limits from the left; the letter
X will denote such a process, X(r) the random point of obtained by fixing
the time as r, and X(r, ) the point of 5C obtained by fixing in addition the
element of the basic probability space over which the process is defined.
A set E in 5C is said to be nearly Borel if, for each process X, there are Borel

sets A and B such that A E B and such that, for almost all o and for
all r, the point X(r, 0) belongs to all three sets if it belongs to one. Such
sets form a Borel field; a function measurable over the field is said to be nearly
Borel measurable. The time T at which a process X hits a nearly Borel set
E is defined to be the infimum of the strictly positive r for which X(r, o)
belongs to E, or if there are no such r; it is a random variable, that is to
say, a measurable function on the basic probability space. If X starts at a
point, T vanishes with probability either 0 or 1. In the latter event the point
is said to be regular for E; for example, an interior point of E is certainly
regular for E. A point r and a nearly Borel set E determine a measure
H(r, ds), defined by the formula

H(r, A) {X(T(), ) e A, T(0) < },

where X is a process starting at r and (P/" stands for the probability of the
event within the curly brackets.
A few remarks on language and notation are needed. Let a be the Borel

field comprising the sets in 3C that are measurable for the completion of every
measure defined on the topological Borel field of 3C. A function on 3C is
understood to be measurable over a; a positive function may take on the
values 0 and a measure on 5C is understood to be defined on a and to be
the sum of countably many bounded positive measures. A kernel, say
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K(r, ds), is a family of measures on 3C, one for each point, which is subject
to slight conditions of regularity. It defines a transformation f-- Kf of
positive functions,

Kf.(r) =-- f K(r, ds)f(s),

and a transformation -- pK of measures,

:_ f t(dr)K(r, A).

Both P(r, ds) nd H,(r, ds) are examples of kernels.
The kernel for potentials is taken to be

U(r, A) =-- Jo P(r, A) dr,

and Uf or U is said to be the potential of the function f or the measure .
We shall assume U(r, F) to be bounded in r whenever F is a compact set,
although some of the assertions, notably (ii), are true without this hypothesis.
The properties of potentials are very easy to establish. It is nearly trivial,
for example, that an inequality a-- Uf >= Ug must hold everywhere if it
holds on the set where g does not vanish and if f, g, and the constant a are all
positive.
A positive function is said to be excessive if P increases to as r de-

creases to 0. Positive constants and potentials of positive functions are ex-
cessive. We shall list some of the properties of an excessive function ,
denoting by E and X an arbitrary Borel set and process. The relation to
more familiar statements from the theory of the Newtonian potential will
be explained after (vi).

(i) is the limit of an increasing sequence of potentials of positive func-
tions.

(ii) is nearly Borel measurable. For almost all , the function (X(r, ))
of is continuous on the right (in the topology of the extended reals), has
limits from the left, and is finite for greater than if (X(a, 0)) is finite.
The family of random variables (X(r)) is a separable lower semimartingale,
provided the expectation of (X(0)) is finite.

(iii) The function H is excessive. If (r) is finite, then Hh.(r) is
alternating of order infinity, in the sense of Choquet [3], when considered as a
function of E.

(iv) The function H coincides, except perhaps at the points of E not
regular for E, with the infimum of the excessive functions that majorize
on E.

The next assertion requires another definition and a special hypothesis. A
closed set F is said to be a determining set for an excessive function if
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Ha coincides with whenever G is a neighborhood of F. The hypothesis
is that Ha HFf HFf for every positive function f, whenever F is compact
and G a neighborhood of F.

(v) Let be everywhere finite. Then the infimum of the excessive func-
tions that majorize on some (variable) neighborhood of E coincides, except
perhaps at the points of E not regular for E, with the supremum of the ex-
cessive functions that nowhere exceed and have a compact subset of E for a
determining set.

The function has been assumed finite in order to keep the statement simple.
The supremum mentioned is an excessive function; it is precisely H if

is bounded and continuous.
A measure is said to be excessive if it is finite on compact sets and if

majorizes i’P for all r. A potential U is excessive if H is a bounded
measure whenever F is a compact set. The operation of passing from uU
to (tH,)U can be extended to a transformation LE of excessive measures.
The analogues of (i), (iii), (v) hold for excessive measures, and there is also
a representation theorem:

(vi) An excessive measure can be written in just one way as uU
with an excessive measure such that L a whenever the complement
of G is compact; reduces to U if and only if La .(F) - 0, for every com-
pact set F, as G runs through a decreasing sequence of sets whose comple-
ments are compact and exhaust

In order to clarify the meaning of these statements, especially the last two,
let us momentarily take C to be Euclidean space and the transition measures
to be those of Brownian motion. We may write, after choosing a suitable
scale for time,

dsU(r, ds)
p(r, s)

with ds the element of Lebesgue measure and p(r, s) the distance from r to s.
Since Uf is just the Newtonian potential of the measure f ds, the class of ex-
cessive functions coincides, according to (i), with the class of positive super-
harmonic functions augmented by the function which is identically infinite.
The phrase regular point, as defined above, turns out to have the same mean-
ing as in the theory of the Newtonian potential; H(r, A) is the harmonic
measure of A relative to r and E; and a positive superharmonic function has
the compact set F for a determining set if and only if it is the Newtonian
potential of a measure on F. It follows that (iv) and (v) reduce to well
known statements concerning superharmonic functions. Doob [6] has shown
that a strong version of (ii) holds in the present situation, and Choquet has
proved (iii). It is easily seen that there is a one-to-one correspondence

--> ds between positive superharmonic functions and excessive measures,



MARKOFF PROCESSES AND POTENTIALS 47

under which HE is associated with LE() ds). On using this correspondence
to state (vi) in terms of superharmonic functions, one obtains the criterion
that a superharmonic function be a Newtonian potential and the represen-
tation of a positive superharmonic function as the sum of a harmonic func-
tion and a Newtonian potential.

Other choices of the transition measures lead to statements concerning
superparabolic functions or the potentials of M. Riesz. It is pointless to
give details, and we resume the description of the more general situation.
A system of terminal times is the assignment of a positive random variable

R to each process X, certain conditions of compatibility being satisfied. Let
us suppose, to fix matters, that R is the time X hits a given Borel set B.
The transition measures relative to the system are

K,(r, A) (P{X(r)e A, R > r},

with X a process starting at r, and the kernel for potentials is

(1) V(r, A) =-- /i K(r, A) dr.

All that has been said remains true, except for changes in wording, when
P,(r, ds) and U(r, ds) are replaced by these kernels, the space 3C by the set
of points not regular for B, and the inequality T < by the inequality
T < R in the definition of HE(r, ds). As one example of the changes to be
made, the continuity on the right asserted in (ii) holds only for r less than
R(o), the existence of limits from the left only for r not exceeding
If 3C is Euclidean space, the transition measures those of Brownian motion,
B a closed set,--then the density function of V(r, ds) relative to Lebesgue
measure is precisely the Green’s function of the complement of B, and the
assertions concern functions defined and superharmonic on this complement.
The preceding statements are proved in the first two parts of the paper, the

simplest terminal times being treated in this part, more general ones in the
next. The third part deals with the consequences of hypotheses stronger
than the ones mentioned above; a description of the results is to be found in
[11].
The relation of the paper to "potential theory" is discussed in 15. We

consider there a separable locally compact space 3, the Banach space
of continuous functions on 3 vanishing at infinity, the set 63 of continuous
functions with compact supports, and suppose given a linear transformation
S from 63 to e Saving the two following properties:

(a) Let a be a positive constant, f and g positive functions in 63. Then
the inequality a -t- Sf >= Sg holds everywhere if it holds on the support of g.

(b) The range of S is dense in C.

Such a transformation determines what may be called a theory of potentials
of functions in which a principle of the maximum is valid; the dual notion is a
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theory of potentials of measures in which a principle of proiection is valid.
Matters being so, take 3C to be 3 with a single point b adioined. It is pos-
sible to construct stationary Markoff transition measures on 3C, satisfying the
hypothesis at the beginning of the paper, in such a manner that Sf is pre-
cisely the potential Vf, the kernel V(r, ds) being defined by (1) with B re-
duced to the point b. The reader acquainted with potential theory may
prefer to begin with 15, supplemented by the note [4] of Choquet and Deny.
Markoff processes, it is now clear, form a natural basis for developing the

part of potential theory that can be derived from a principle of the maximum.
This part includes, as we shall see in the third installment, the notion of capac-
ity and a number of theorems usually associated with the notion of energy.
The introduction of energy itself apparently requires more structure than we
shall impose; the definition by an analytical expression is obvious, provided a
certain symmetry holds, but the probabilistic interpretation is not clear.
Problems dominated by the notion of energy are therefore not discussed.
The omission of boundary value problems is a more serious limitation in

scope. Statement (ii), phrased for Brownian motion and the relative theory,
is the starting point of Doob’s treatment of superharmonic and superpara-
bolic functions near the boundary of the domain of definition. The treat-
ment carries over in large part to the situations we consider, and Doob’s
papers form a helpful complement to the present one.
The examples found in this paper are all trivial; they are introduced only

to illustrate exceptiona.1 behavior. Brownian motion in space or in space-
time is thoroughly treated in Doob’s papers, and the reader should have no
difficulty in writing down the details for the processes corresponding to the

iesz potentials.

REGULAR PROCESSES

1. Hypotheses
Let P(r, ds) be stationary Markoff transition measures on 3C, a separable

locally compact Hausdorff space. That is to say, P(r, A) is defined for r

strictly positive, r a point of 5C and A a Borel set in 5C; it is a probability
measure when considered as a function of A with r and r fixed; it is Borel
measurable in the pair (r, r) for A fixed; and the relation

(1.1) P(r, ds)P,(s, A) P+,(r, A)

holds identically.
Throughout the paper it is assumed that the transition probabilities can be

realized by well behaved processes. The remainder of the section will be
spent explaining this assertion.
We suppose a basic probability field (gt, 5:, (9), with a completed measure,

to be chosen once for all. It is sometimes necessary, however, to consider a
derived probability field (2’, if’, (9’), with t’ a set in ff having strictly positive
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probability, 5’ the trace of on gt’ (the field of subsets of t which belong to
), and (9’[A the conditional probability (9/A }/(91t’}. A random point
defined over the smaller field will be spoken of as a random point over t’.
The symbol do always stands for the element of measure
A random point of 5C is a function from t to 3C which is measurable relative

to and the topological Borel field of 5. The field generated by a set of
random points is the least completed subfield of over which each of the ran-
dom points is measurable.

The first assumption on the transition probabilities is this" For each prob-
ability measure on the topological Borel field of , there is a Martcoff process on

3, with that measure as initial distribution and the P,(r, ds) as transition meas-
ures, whose sample functions are continuous on the right and have limits from the

left.
The name process is reserved for a iV[arkoff process having these properties.

A process is a family (X(v))__>0 of random points of 5C; it is usually denoted
by the single letter X, or by X if the initial point X(0) is identically the point
r. The sample path corresponding to o is sometimes denoted by X(o),
for there is little danger of confusion with the random point X(r) of
The initial distribution and the transition measures by no means determine a
process, but they do determine the distribution of every function of sample
paths with which we shall be concerned.
The other assumptions are expressed in terms of stopping times. Let X

be a process; T a positive random variable, taking on infinite values perhaps;
and a subfield of ff which is independent of X. Then T is said to be a stop-
ping time for X (with g as auxiliary field) if, for every , the subset {T
of f belongs to the least completed subfield of ff which includes both and the
field generated by the random points X(r) for r less than . This is the same
as saying, for every strictly positive a the set {T =< a} belongs to the least
completed subfield of ff which includes both and the field generated by the
X(r) for r less than q- a. The field is somewhat arbitrary, for it may be
replaced by any larger field which is also independent of X. A positive ran-
dom variable independent of Xin particular, a constant--is a stopping
time. A less trivial example is the infimum of the r for which X(r) belongs
to a certain subset of C; it will be discussed in the next section.

Suppose that T is a stopping time for the process X, that is the auxiliary
field, and that f’, the set on which T is finite, has strictly positive probability.
For every strictly positive a define the family (Y,(r)),>=o of random points of
5C by the formula

X(r, o) for r < T(o) -k a,
Y,(r,

X(T(o) -]- a, o) for - >= V(oo) -t- a,

and let (, be the least completed subfield of 5 which includes both and the
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field generated by the Y,(r). Finally, suppose W to be a random point of
some space and measurable over (, for every strictly positive a. Speaking
loosely, the dependence of W on the process X extends only up to and in-
finitesimally past the random time T.

The second assumption on the transition probabilities is that processes
have the extended Markoff property" Under the conditions of the preceding
paragraph, the family of random points Z(r), defined over (’, ’, (P’) by

Z(, ) X( + T(), ), => 0, a’,
is a Markoff process with the P(r, ds) as transition probabilities; moreover, this

Markoff process and the restriction of W to ’ are conditionally independent rela-
tive to the random point Z(O).

It follows that Z is a process in the strict sense explained above, for the
sample paths are continuous on the right and have limits from the left.
The extended Markoff property implies a zero-one law for a process X

starting at a point r. Let A be a subset of t which, for every strictly positive
a, belongs to the field generated by the Xr(r) for r less than a. On taking
the stopping time T to vanish identically and the auxiliary field g to be
trivial, we see that A is independent of the field generated by all the X().
Since A belongs to that field,

(P{A n A} (P{A}(p{A}.

It is now clear that the probability of A must be either 0 or 1.

The third assumption on the transition probabilities is this" If (Tn) is an
increasing sequence of stopping times for the process X, the auxiliary field being
the same for each Tn, then

lira X(Tn(o), ) X(lim T(),

for almost all o for which the Tn(o) are bounded.

In particular, for each the point X(r, ) tends to X(, ) with probability
1 as r increases to through a sequence of values. Since the sample paths
have limits from the left, the convergence to X(, ) holds with probability
1 as r increases to without restriction. It follows that a process has no
fixed discontinuities.
The three statements in italics, referred to as hypothesis (A), are assumed

throughout the paper. They are fully discussed in [1, 12], which together
give various sufficient conditions in terms of the transition probabilities.
It is enough to suppose, for example, that the transformations P,,

P f.(r) fc P,(r, ds)f(s),

leave invariant the Banach space (3C) of functions which are continuous on
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3 and vanish at infinity, and that P, converges strongly on e(3) to the iden-
tity transformation as r -- 0. Detailed references for the steps of the proof
will be given in 15. At the moment, only observe that most familiar tran-
sition measures satisfy the hypothesis.
The following examples not only indicate the behavior that is ruled out

but also show that, even when (A) is satisfied, the topology of 3C may not be
the one best suited to discussing processes. Let be the interval 0 -< r <
and let S be a random variable which is either identically null, identically
infinite, or exponentially distributed. A particle starting from the origin
remains there until time S and then moves to the right with uniform velocity;
a particle starting from any other point immediately begins the uniform
motion to the right. The sample paths are obviously continuous. Now
consider a process starting at the origin and take S to be the stopping time.
The second statement in italics is false if S has an exponential distribution,
true if S is identically null or infinite. Also, the transformations P, send
continuous functions into continuous functions only if S is identically null.
Matters can be set right by slightly modifying 3C. If S is exponentially dis-
tributed, one should split the origin into two points a and b, with a isolated
and b taking the place of the origin. A particle starting from b immediately
begins the uniform motion to the right; one starting from a stays there until
it occupies the point b at the moment S and begins the uniform motion to
the right. Both hypothesis (A) and the proper behavior of the transforma-
tions Pr are now secured; it has been necessary to strengthen the topology,
and then to complete the new space (by a.dding the point b) so that the sample
paths can be taken continuous on the right. The same modification pre-
serves (A), if S is identically infinite, and again secures the proper behavior of
the transformations Pr.
There are some analytical consequences of (A) that will be used without

particular mention. First, P, f approaches f boundedly as r --+ 0, provided
the function f is bounded and continuous. This assertion follows at once
from the continuity of sample paths on the right.

Second, the usual problems of measurability are trivial. Let 63 be the topo-
logical Borel field of 5e. Given a bounded measure on 63, let 63, be the com-
pletion of 63 with respect to 9; and let be the intersection of all the fields
63,. Consider also the product set I X f, where I is the interval 0 -< r <
let be the completed product of (P and Lebesgue measure; and let be the
field of definition of . The right continuity of the sample paths implies
that a process X, considered as the function (r, o)-- X(r, oo) from I
to 5C, is measurable relative to the fields and 63. Let be the measure on
63 induced by and this function; then X is measurable relative to and 63,,
so also relative to and 6. Thus, if f is a real function, defined on 5 and
measurable over fi:, then f(X(r, 0)) is a function on I X 2 which is measur-
able over . The same proof holds if Lebesgue measure on I is replaced by a
bounded measure defined on the Borel sets of I.
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From now on a real function on 5C is understood to be one measurable over
(, and a measure on is understood to be a positive measure which is de-
fined on a and which is the countable sum of bounded measures. A measure
is determined by its restriction to the field (g. The transition measures, for
example, are now supposed extended to (; it is easily verified, by an argu-
merit like the one of the next four paragraphs but much simpler, that P(r, A)
is measurable over ( when considered as a function of r with fixed and A
a set in a. A set in 3C is understood to belong to a, except during the re-
mainder of this section.
Another kind of measurability must be proved in order to use the extended

Markoff property freely. Let 9C be the sample space for processes--that is
to say, the set of all functions x from I to 3C which are continuous on the right
and have limits from the left, I being again the interval 0 =< r . Let
0 be the ring of sets, closed under complements and finite unions, which is
generated by the sets defined by a single relation x(r) A, with A in (; and
take to be the least Borel field including 0. Given a probability measure
on 5C, one can construct a measure on 0 by means of the customary formula

using , as the initial measure and the P(r, ds) as the transition measures;
hypothesis (A) implies that this measure can be extended to the field
Denote the completion of the measure by m and its field of definition by
or by mr and r if is the unit mass placed at the point r.
We shall now prove the following assertions concerning a set C in .

For all r outside a set which belongs to the field (g defined before and which
has measure null, the set C belongs to r we may therefore think of mr(C)
as a function of r defined up to a null set relative to the completed measure. The function mr(C), after being defined arbitrarily for the exceptional
values of r, is measurable over (gv, and m(C) is given by the formula

(1.2) m(C) fc mr(C),(dr).

The assertions are trivial for a set in e0. It is clear also that the assertions
hold for the limit of a monotone sequence of sets if they hold for each set in
the sequence. They are therefore true for a set in e, because this field is the
least monotone class of sets including e0. Now, if C is only known to be in
e, choose A and B in e so that

A C B, m(A) m,(C) m,(B).

The validity of (1.2) for A and B implies at once all the assertions concern-
ing C.

This result, or rather an obvious generalization, will be used frequently in
the following way. Let f be a positive real function defined on SC and meas-
urable over every field e,. Define the function g on 5e to be

g(r) =-- f f(x)mr(dx).
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Then one has the formula

for all measures v.
field ( defined above.
notation, as

fg f(x)m(dx) fc g(r)v(dr)

It follows in particular that g is measurable over the
The last two equations are usually written, in another

do,,

where Xr is a process starting from r and X is a process with initial distribu-
tion v. The hypotheses on f imply that the distribution of the random vari-
able f(X()) is determined by the initial distribution and the transition
measures of the process; the formula may not hold if one only assumes that
f(X(o)) is measurable over if, for then f need not be measurable over e.
A more difficult problem of measurability is treated in the next section.

2. Hitting a set

The purpose of this section is to establish some properties of the time a
process first hits a given set in 3C. In the next few paragraphs X is a fixed
process and J a fixed compact interval [a, t]. If E denotes a subset of C
then E denotes the set of such that X(r, 0) belongs to E for some r in J.
We sha.ll prove that/ belongs to ff when E is open or compact and that ( //},
considered as a function of such simple sets, is a capacity to which Choquet’s
extension theorem applies.

First of all,/ increases with E and the operation E -+/ preserves unions.
Accordingly, if E is the union of an increasing sequence of sets E. and if each
/ belongs to if, then/ also belongs to ff and the probability of n increases
to that of/.

Suppose that /, /1, /n all belong to fi;, and define

A(i... l) =- EuEu ...uE, 1 <= i < < <-_ n.

Then

(P{l E (--1)kE(P{z(il"’" ik)}

is defined an4 lies between 0 and 1, for it is the probability that the point
X(r) meets each of the sets E, but not the set E, as r ranges over J. In the
languuge of [3], the function (9{/I of E is alternating of order infinity on the
class where it is defined.

If the point X(r, o) belongs to a certain open set G, then so does

X(r q- , oo)

for all sufficiently small positive , because the sample paths are continuous
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on the right. Hence G is the union of the subsets {X(r) e G} of [t, with r

ranging over fl and the rationals in J. It follows that G belongs to Y, for
each set {X(r) G} does so.

Define T(o) to be the infimum of the r in J for which X(r, ) belongs to
the open set G, or fl q- 1 if there are no such . The argument of the preced-
ing paragraph, slightly modified, shows that T is measurable over 5: and that
it is indeed a stopping time for X, the auxiliary field being trivial. Also, the
point X (T(o), ) belongs to the closure of G unless T(0) has the value/ if- 1.
Now consider a compact set F. Choose a decreasing sequence of open

neighborhoods G of F, whose closures are compact and shrink to F, and de-
fine Tn as in the preceding paragraph but in terms of Gn. The Tn increase
with n to a limit T; the set t’ on which T does not exceed fl belongs to ff and
obviously includes/. On the other hand, P includes t’ up to a set of prob-
ability null, because the point X (T(o), o), being almost certainly the limit of
X(T(<.o), o), belongs to F for almost all 0 in ft’. It is now clear that/7 be-
longs to : and that the probability of decreases to that of .
The argument also proves that 5)[/}, considered as a function of compact

sets, is continuous on the right. That is to say, for every compact F and every
strictly positive i, there is an open neighborhood G of F such that

for every compact set E lying between F and G. Indeed, G may be taken to
be one of the G, of the preceding paragraph.

If G is open, the probability of G is the supremum of the probability of
F as F ranges over the compact subsets of G. For, an open set in 5 is the
union of an increasing sequence of compact sets.

Consider (P{/} as a function of E, defined for sets which are either compact
or open. The facts already proved show that this function is a capacity to
which the extension theorem in 30 of [3] may be applied. Precisely, every
analytic set E has a compact subset F and an open neighborhood G for which
the probabilities of/ and G differ by an arbitrarily small amount, so that/
itself belongs to ft. Hence 5){/} is defined at least on the class of analytic
subsets of 3C, and it is alternating of order infinity and continuous on the right
there. It is also clear, now and later on, that the probabilities we are speak-
ing of depend only on the initial distribution and the transition probabilities
of the process X.
For the moment let E’ denote the set of 0 for which either X(r, o) or

X(r-, ), the limit from the left, belongs to E for some r in J. Clearly
E’ includes /; at times we shall need the fact that both sets have the same
probability. This is certainly true if E is open, for then E’ exceeds/ by at
most the set on which X(a-, o) differs from X(a, o), where a is the left end-
point of J. The assertion for an analytic set E is proved by observing that
G’ includes E’ whenever G is a neighborhood of E and that the probability
of G’ can be made close to that of /.
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Let J now be an interval open at one end or both, and define/ and E’ as
before. The results above imply that both sets belong to ff and have the same,

probability, provided of course E is an analytic set. It is also easy to see
that there is an increasing sequence of compact subsets F of E such that the
probability of/n increases to that of/. The sequence may depend upon the
initial distribution of the process X unless more hypotheses are made; for
example, let all processes be constant in time and let E be a set which is not
the countable union of compact sets. A decreasing sequence of open neigh-
borhoods of E with similar properties does not generally exist, as one can see
by considering uniform motion on a line; this fact explains the restrictions
made in the next paragraph.
Let J be the interval 0 < r <- and let E be an analytic set to which the

initial distribution of X attributes no mass; then there is a decreasing se-
quence of open neighborhoods Gn of E such that the probability of ( de-
creases to that of/. First suppose E to have no point in common with the
closed support A of the initial distribution. According to Choquet’s exten-
sion theorem, there is a decreasing sequence of open neighborhoods Gn of E
such that the probability of X(r) belonging to Gn for some r in the closed in-
terval 0 =< r =< decreases to the corresponding probability for E. The
desired sequence of neighborhoods is obtained by taking the intersections of
the G, with the complement of A, for X(0) can belong to one of the new neigh-
borhoods only with probability null. In dealing with the general situation,
consider an increasing sequence of closed sets Ak, in the complement of E,
whose union bears all the mass of the initial distribution, and let fk be the set
of 0 for which X(0, ) belongs to A. By what has already been proved,
for each/c there is a sequence G,I, G,2, which serves for the restriction
of the process X to fk one may also assume that G, decreases as either ]c

or increases. Matters being so, the sequence G1,1, G2. ,-.. meets the re-
quirements.
The notation introduced so far will not be used permanently. However,

F usually stands for a closed set and G for an open set. We shall now inter-
pret the preceding results in terms of the time a process first hits a set.
Given a process X and an analytic set E, define T, the time X hits E, by

taking T(0) to be the infimum of the strictly positive r for which X(r, o) be-
longs to E, or if there are no such r. Clearly X(T(o), o) belongs to the
closure of E if T(0) is finite. The results above show that T is measurable
over ff and that it is indeed a stopping time for X, the auxiliary field being
trivial. Note that T coincides, except on a set of probability null, with the
infimum of the strictly positive r for which either X(r) or X(r-) belongs to E.

In the next two propositions, which merely restate what has already been
proved, the symbols X, T, E have the meaning just given them.

PROPOSITION 2.1. There is an increasing sequence of compact subsets Fn
of E such that the time X hits Fn decreases to T with probability 1.
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PROPOSITION 2.2. If the initial distribution of X attributes no mass to E,
then there is a decreasing sequence of open neighborhoods Gn of E such that the
time X hits G, increases to T with probability 1.

The sequences may depend upon both the set E and the process X.
Let X be a process starting from a point r and T the time it hits the ana-

lytic set E. The zero-one law implies that T vanishes with probability
either 0 or 1. The point r is said to be regular for E if the probability is 1;
this definition does not depend upon the choice of the process starting from r.
An interior point of E is certainly regular for E but not regular for the comple-
merit of E. If the transition probabilities define uniform motion on a line
and if E is a bounded interval, open or closed but not reduced to a point,
then just one endpoint of E is regular for E. A sufficient condition for r
to be regular for a set E is that

lim sup P(r, E) > O.
-0

This criterion is useful in discussing simple examples; it follows at once from
the zero-one law. Regular points in Brownian motion are treated thoroughly
in [6, 7].
The set E is said to be negligible if T is infinite with probability 1 for every

r. This amounts to saying, no process hits E in finite time with strictly
positive probability.

PROPOSITION 2.3. Let T be the time the process X hits the analytic set E and
let ’ be the set on which T is finite. For almost all in ’ the point X(T(o), o)
either belongs to E or is regular for E.

Denote by A the set of points which neither belong to E nor are regular for
E. The last paragraphs of 1 and the definition of regular imply that the
time a process hits E is strictly positive with probability 1, if the initial dis-
tribution of the process is concentrated on A. This being so, let 2" be the
subset of t’ on which X(T(), 0) belongs to A, and suppose that the probabil-
ity of t" is strictly positive. Take Z to be the process

Z(r, ) X(r + T(), 0), r -> 0, we 2",

defined over Y’. For every in [ttt the point X(r, w) lies outside E for

0 < -< T();

and by the first remark, for almost all in 2" there is a strictly positive num-
ber a() such that the point Z(r, ) lies outside E for 0 < r < a(w). These
assertions are in contradiction with the definition of T, so that the probability
of gt" must vanish.

PROPOSITION 2.4. Let X be a process and E an analytic set for which no
point is regular. Then, for almost all o, the point X(r, o) belongs to E for at
most countably many values of -.
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The proof is omitted since it is the same as the latter half of the proof of
Theorem 7.2 of [7].
We shall now sketch how one can prove the measurability of certain stop-

ping times used later. Let f be a real Borel measurable function on
which we assume finite for ease of exposition, and let X be a process. Define
T(o) to be the infimum of the r for which

sup f(X(O, o)) f(X(r, oo)) >- 1,

or if there are no such r. If X is a process starting from the point r, then
T is just the time it hits the set where f differs from f(r) by at least 1. If
X has an arbitrary initial distribution, the application of the preceding results
is not so obvious. The set on which T exceeds a given r is precisely the set
where the inequality above fails to hold. Let B,,,,k be the set of 0 defined by
the inequalities

_]c __< f(X O o ) _< k q- 1
n n

inf f(X(, oo)) > k q-- 1_ 1,
O_<<r

<
o<<, n

The Bn,k are measurable, since each inequality defines a measurable set; the
last one, for example defines the complement of the set of such that X(,
belongs, for some in [0, r], to the subset of 3C where f is at least kin + 1.
Now, the set on which T exceeds is just the union of all the
The notion of Borel measurability must be extended slightly, in order to

avoid hampering restrictions in later discussions. A function g is said to be
nearly Borel measurable if, for every process X, there are Borel measurable
functions f and h such that the inequalities f -_< g _-< h hold everywhere and
such that for almost all the equations

hold for all r. A set is nearly Borel if its characteristic function is nearly
Borel measurable. The nearly Borel sets form a Borel field, and a function
is nearly Borel measurable if and only if it is measurable over this field.
A set B is said to be nearly analytic if, for every process X, there are ana-

lytic sets A and C such that A c B c C and such that for almost all 0 the three
assertions

A, B, C,

have the same truth value for every r. The set B is obviously nearly Borel
if A and C cn always be chosen as Borel sets. Observe that a nearly analytic
set is mesumble over the field a.
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The results of this section have been phrased for Borel measurable functions
or analytic sets, but we shall use them for nearly Borel measurable functions
or nearly analytic sets, as they carry over trivially. The need of the exten-
sion will appear in 5.

3. Notation and conventions

The conventions regarding measures and real functions on 3C have been
explained at the end of 1, where a was defined to be a certain extension of the
topological Borel field of 3C. The functions considered are positive, except
in a few sections, and they are usually permitted to take on infinite values.
A kernel, say H(r, ds), is a function of a point in and a set in a which

is a measure, when considered as a function of the set, and a positive function
measurable over a, when considered as a function of the .point. The kernel
defines a transformation f-- Hf of positive functions by the formula

(3.1) Hf.(r) fc H(r, ds)f(s).

It also defines a transformation t-- tH of measures,

(3.2) tU.(A) =---- fc t(dr)H(r, A),

under certain conditions of finiteness, which are verified in all instances arising
iu this paper. Either transformation determines the kernel. The kernel
or one of the transformations will sometimes be denoted simply by H. If
K(r, ds) is a second kernel, then HK, HKf, tHK have the obvious meanings.
Equation (1.1) could be written P Pr P+r, for example.
The notation of the preceding sections for random elements will be used

with a good deal of freedom, in an effort to reduce the complexity of expres-
sions occurring frequently and so avoid a bewildering number of abbrevia-
tions. The principal abuses are the suppression of the argument o; the de-
n.oting a function and one of its values by the same symbol, the two notions
being distinguished by a qualifying phrase; and a suggestive, rather than
correct, notation for composite functions. The following examples should
make matters clear. Let X be a process, T a positive random variable,
t’ the set on which T is finite. Then X(T) stands for the function

o -- X(T(o), )
defined over It’. The random point X(- T) of 3C similarly means the func-
tion w -- X(r T(), ) over t’, with understood to be fixed; whereas the
process X(r + T) means the process Z defined over gt by the formula

(3.3) Z(r, o) X(r + T(w), o), r ->_ 0, toe 2’,

with r now variable. An integral

j f0
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is usually written as

From now on most quantities defined will depend upon a positive, usually
strictly positive, parameter X. It is seldom necessary to vary the parameter,
so that the symbol h is ordinarily omitted from the notation; it appears as a
superscript when it must be indicated.

Let S be a strictly positive random variable which is independent of all
processes considered and which has the density function e for z positive.
The terminal time S is the random variable S/h; it has the density function
he-x for positive z if h is strictly positive, and it is identically infinite if X
vanishes. The variation of many quantities with the parameter is obvious,
because the terminal time increases as the parameter decreases. The reason
for speaking of S as the terminal time will become clear in the next few sec-
tions.

It is worth spending some time on the following situation, which will arise
frequently. T is a stopping time for the process X; the terminal time S is
independent of the pair (X, T); the set ’ where T is less than S has strictly
positive probability. Matters being so, let S’ be the restriction of S T to
a’, let Z be the process X(r + T) defined over ’ by (3.3), and let H(ds) be
the measure

(3.5) H(A) {’ < S, X(T)cA}, A c .
An easy calculation shows that the pair (Z, S’) behaves over the field ’precisely as a pair (Y, S) behaves over the original field , where Y is a proc-
ess with the ini.tiM distribution H(ds)/{’]. Furthermore, S’ is independ-
ent of the restrictions of T and X to ’. If S is identically infinite, the asser-
tions are of course included i the statement of the extended Markoff property
in 1.
These properties are often used to transform integrals like (3.4). Define

the function by

where X is a process saring from he poin r. Then, by he remarks above
and he lasg par of 1, ghe ingegral (3A) can be wriggen

(a.)

J H(ds),(s) +
the dots standing for two other integrals which must be discussed in another
wy.

If T is the time X hits nearly nalytic E, then the measure H(ds) is called
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the distribution of (first) hits of E (before time S) by the process X, the words
in parentheses usually beiag omitted.
The following notation is frequently used. E is a nearly analytic set,

Xr a process starting from a point, Tr the time Xr hits E, and fb the set on
which Tr iS less than the terminal time S. Both the point r and the set E
are variable, subiect to the restrictions of the moment. H(r, ds) is the dis-
tribution of hits of E starting from r, that is to say, the measure

(3.7) HE(r, A) =-- (P T. < S, X(T) e A }, A c 5C.

It is clearly a kernel in the sense explained before, so that HEf and uH have
the meanings given in (3.1) and (3.2).
The transition probabilities relative to the terminal time S are denoted

by H(r, ds),

(3.8)
H(r, A) (P < S, Xr(T) . A

e-XP(r, A ).

The equation H H, H+, follows at once from either form of the definition.
Observe that the equality S T can hold only with probability null, if

T is independent of the terminal time. This remark is needed in several
passages to the limit.

It will be noted that many propositions are stated only for ) strictly posi-
tive. The extension to vanishing parameter may take on another form and
usually requires an additional hypothesis; the discussion is deferred until

12-14.
In 10 the simple terminal time S, which serves only to render certain

integrals convergent, will be replaced by a system of terminal times which
depend upon the processes. Probabilistic arguments are only slightly modi-
fied by the extension, whereas alternative analytical arguments often become
more complicated. This fact explains why a proof is sometimes conducted
using the terminal time S rather than the explicit, convergence factor e-x.

EXCESSIVE FUNCTIONS

4. Potentials of functions

The relative transition probabilities H(r, ds) defined in (3.8) give rise to the
dual notions, potential of a function and potential of a measure. The kernel
for either one is U(r, ds),

A) =-- ] H(r, A)dr, AU(r,
’0

For each r the kernel is a measure of total mass I/X, and U(r, A) is Borel
measurable in r if the set A is Borel measurable.
The potential of the positive function f is the function Uf. For example,
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1/, is the potential of 1, so that a positive constant is a potential if is strictly
positive. Fubini’s theorem implies at once that

(4.1) Uf.(r) fa d foSf(Xr(’))d",

where Xr is a process starting from r. This interpretation is the source of
many proofs. It is clear that the potential of a positive function increases
as h decreases.

PaOeOSTON 4.1. A bounded continuous function f is determined by its
potential, provided is strictly positive.

For, Hf tends boundedly to f as a 0, according to a remark toward the
end of 1, so that

1 (Uf H Uf) Hfd

approaches f as r 0. he proposigion is wihoug much ineresg.

(4.2) g Uf N f,

and equality holds if f vanishes outside E.

Express the right member of (4.1) as the sum of three integrals,

where T is ghe gime X his N and ,. is he se on which i is less han S.
he las wo integrals are positive, and ghey vanish if f is null ougside . The

firsg ingegral is usg H Uf.(r) according go (g.6). The expression makes ig

clear ghag H Uf increases with E.

PoPosIION 4.. e f be positive and vanish oide he earlg analytic
e N. Then Uf i deermieed bg i rericion o . The inequalig Uf U
hold everywhere if i hold on N and i positive.

he proposition follows a once from he preceding one if N is closed, for
ghen each measure H(r, d) is eoneengraged on E. If is nog closed, consider
he funegion h which coincides wigh f on a closed subseg F of N and vanishes
elsewhere. or each r ghere is an increasing sequence of closed subsets of E
wigh ghe propergy ghag Uh.(r) increases go Uf.(r) as F runs ghrough ghe se-
quence. Ig follows ghag Uf.(r) is ghe supremum of H Uf.(r) as F ranges over
ghe closed subsegs of N, and he proof is complete.
One sees as a corollary hag Uf has ghe same supremum on as on .

This is an immediate consequence if X is sgriegly positive, for hen 1 is a poen-
gial. The resulg carries over go vanishing X, since UXf increases go Uf as
X0.
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Potentials of positive functions are instances of excessive functions, which
are studied in the next two sections. In the remainder of this section we ex-
hibit a method of defining potentials to be used later on.

Let h be a positive function, Z a positive random variable which has the
density function e for z positive and which is independent of the terminal
time S as well as of all processes considered. To each process X assign a
stopping time R by taking R(0) to be the infimum of the r for which

(4.3) h(X(z, oo))d(r >= Z(o),

or if there are no such . Observe that R decreases as h increases. The
system of times assigned in this way to the various processes is said to be de-
termined by h, the variable Z being only auxiliary. It is an instance of the
systems of terminal times discussed in 10; the simple terminal time S, or
rather an equivalent one, is obtained when h is the constant h. The reader
may find 10 helpful in reading the next few pages, but no part of that section
is needed in the proofs.

Let be a positive function on 5C, and define the function k by the formula

(X(R))dw,

where X is a process starting at the point r, the time R is the one just defined,
and t* is the set where R is less than S. Note that (r) becomes the prob-
ability that R is less than S, if is taken to be the constant 1.

PROPOSITION 4.4. Let be strictly positive, let be bounded, and let h have
the property that, for every process X and every finite r, the integral

is finite with probability 1. The function defined by (4.4) is then the potential
of the function ( b)h. If is the potential of a positive function, then b
increases with h and the difference b is positive.

In the proof we shall use the abbreviations

a(r) (X(r)), b(r) h(X(r)),

,-) exp h(x( l)a

wigh X a process sarging at he poin r, and the relation

1 c(O, r) b()c(,

which is verified by integragion by parts.
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Since the conditional probability that R exceeds r, given the path X(), is

we may write

(4.5) Z d 1S a(r)b(r)c(O, r)d,

Z dw ia(r)b(r)dr- Z d ISa(r)b(r)[1 -c(O,r)]dr.

The secondThe first integral in the last member is the potential of
integral is

f do fos a()b(r)dr fo b()c(, r)d

(4.6)
dw fo b(z)dr z a(r)d, c(a, r)

that is to say, the potential of he. The last equality in (4.6) is justified by the
simple Markoff property of processes, the independence of S and X, and the
exponential distribution of S. The reader will observe, on reading 10, that
the last step is also valid if S is replaced by a system of terminal times.
The full force of our working hypotheses was not used in the proof; the

proposition holds, in fact, for transition probabilities that can be realized by
measurable processes. Also, the terminal time may be taken identically
infinite if the integrals all converge.

If is the potential of a positive function, say f, then

(4.7) /(r)

where X is a process starting from r and 2" is the set on which R, the time
signed to X, is less than S. This representation shows that nowhere ex-
ceeds and that it increases with h, for R decreases as h increases.
The following remarks will be needed when the proposition is used.
Let A be the set where h is strictly positive. On comparing the expression

of (r) in (4.4) with the third member of (4.5), which shows that may vary
arbitrarily outside A without changing 6, one sees that the point X(R(o),
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belongs to A for almost all such that R() is less than S(o), so also for almost
all o such that R(w) is finite, because R and S are independent. It is easily
shown that the point X (R(o), o) is regular for A for almost all such , assum-
ing the notion to make sense for A, and the assertion remains valid even if h
does not satisfy the hypotheses of the proposition.

Suppose now that E is a nearly analytic set having the property that the
sample paths of a process starting at a point of E remain in E for an initial
interval of time with probability 1. Let X be an arbitrary process, T the
time it hits E, a a strictly positive number, and B() the set of a in the interval
(T(), T() + a) for which X(a, 0) belongs to E. For almost all 0 such that
T() is finite, the point X(T(o), o) either belongs to E or is regular for E and
the Lebesgue measure of B() is strictly positive, according to the hypotheses
on E. Let h run through an increasing sequence of functions which vanish
outside E and tend to infinity at every point of E; the preceding remark im-
plies that, for almost all 0 such that T() is finite, the time R(0) assigned by
h to a sample path of the process X decreases to a limit which is less than
T() + a. Since a is arbitrary and R is never less than T, the time R de-
creases to T with probability 1. Equation (4.7) now shows that b increases
to H, if is the potential of a positive function.

Finally, suppose that h is bounded above by a and that is the potential of
a function f which is bounded below by the positive constant . In the nota-
tion used in (4.7)

4(r) (r) 8o f(X(r))dv > R doa >--X-"
Specialize h to x, with : the characteristic function of a set A; we see that

lim inf a( ) _>_

everywhere on A. We have observed before that increases with a; when
is taken to be the constant 1, the limit of (r) as a becomes large is just the
probability that the numbers r in the interva.1 (0, S(w)) for which X(r, o)
belongs to A form a set with strictly positive Lebesgue measure.

5. Excessive functions

A positive function on 5C is excessive (relative to the terminal time S)
if it is measurable over the field ( and if Hr increases everywhere to as r

decreases to 0. If the parameter vanishes and the transition probabilities
define Brownian motion in three dimensions, the class of excessive functions
is just the class of positive superharmonic functions augmented by the func-
tion which is identically infinite; this statement is an easy consequence of [6]
or of Proposition 5.3.
A function is excessive for one value of }, if and only if it is excessive for every

greater value. If is excessive, then Hrb decreases as increases and as
increases.
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A positive constant is excessive. So also is the potential of a positive func-
tion f, for

The limit of an increasing sequence of excessive functions is itself excessive.
The most important excessive function we shall study is the probability of

hitting a nearly analytic set E. As usual, let Xr be a process starting from the
point r and let Tr be the time it hits E. Then(r) is defined to be the prob-
ability that Xr(a) belongs to E for some a in the open interval (0, S) or, equiva-
lently, the probability that T is less than S. By the last few paragraphs of
1, this function is measurable over a, and Hq.(r) is the probability of the
joint event that S exceeds r and X(a) belongs to E for some in the open in-
terval (r, S). So q) is indeed excessive. If X is strictly positive, a point r
is regular for E if and only if (r) is 1.
Another example of an excessive function is H Uf, with f positive. Given

r and r, let T be the infimum of the a greater than r for which X(a) belongs
to E, and let ft’ be the set where T is less than S. Clearly, T decreases to T
as r --* 0, so that

HH Uf.(r) do f(X(a))do-

increases to

H Uf (r) do f(Xr() ) dr,

with ft the set where T is less than S. The calculation proves again that
(r) is excessive, at least when X is strictly positive and constants are poten-
tials, for H(r, 3C) is another way of writing (r).

There are two results of importance in this section, Proposition 5.3 and
Theorem 5.6. The one concerns approximation of an excessive function by
potentials, the other the composition of an excessive function with a process.

PROPOSITION 5.1. An excessive function is the limit of an increasing se-

quence of bounded excessive functions.
Let be the minimum of and the positive constant a. This function will

later be shown to be excessive, but at the moment only the inequality
is obvious. The inequality implies that H, b increases as r decreases. Let

}, the adjusted minimum, be the limit as r - 0. It is excessive, for H } is
the limit of H as z decreases to r, and it increases with a. As a tends to
infinity through a sequence of values

lim >= limH H,, r > 0,

by monotone convergence.
itself.

Since r is arbitrary the first limit must be



66 G.A. HUNT

PROPOSITION 5.2. Let be excessive and r a point such that H .(r) is finite
for all r and tends to 0 as -- . Then, at the point r, the potential of

( H)/
increases to O(r) as - decreases to O.

For, the value of the potential at r is

lim -1 [H . (r) HH .(r)ld

1 H 4.(r)d lim
1 + Hb.(r)dz

1

which obviously increases go
In particular, 4 is ghe limit of an inereasing sequence of pogengials of posigive

functions if all poings satisfy ghe hypoghesis of ghe proposigion. This is grue,
for example, if X is sgriegly posigive and 4 is bounded. The nexg proposition
follows from ghis remark and Proposition 5.1;
ealeulagion above and dominated convergence.

PROPOSITION g.a. If X i ricl positive, Chert everg excessive fncio i he
limit of an increasing sequence of bounded potentials of positive functions.

PROPOSITION 5.4. Let be strictly positive and let be a bounded excessive

function such that ( H)/ converges boundedly to a function f as r-- O.
Then is the potential of f.
Let E be a nearly analytic set and an excessive function. Then HE is

also excessive and it is majorized by , according to Propositions 4.2, 5.3, and
the remarks at the beginning of this section.

PROeOSITION 5.5. If is excessive and if r is regular for the nearly analytic
set E, then

(5.1) inf

If a is the infimum of on E and F a compact subset of E, then

(r)

because the distribution of hits of F is concentrated on F. The first inequality
in (5.1) is proved by letting F run through the sequence of Proposition 2.1
and observing that Hr(r, C) tends to 1 because r is regular for E.

In proving the second inequality we assume
remains excessive as h increases. Also, by Proposition 5.3, it is enough to
prove the inequality for the bounded potential of a positive function f.
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Let T be the time a process Xr starting from r hits the compact subset F of E,
and let. 2’ be the set on which T is less than S. Then Uf.(r) can be written

The first integral is H Uf.(r), which does not exceed the supremum of Uf
on E. As for he other two integrals, they pproaeh 0 s F runs through the
sequence of Proposition 2.1, because T tends to 0 with probability 1, th
probability of fl’ ends to 0, nd the finiteness of the integral in (4.1)
Mlows one to use dominated convergence.

THEOREM 5.6. An excessive function O is nearly Borel measurable. For
every process X and for almost all oo, the function (X(r, o)) of r is continuous on
the right, and it is finite for all r greater than r if (X(o-, o)) is finite.
The continuity is defined using the topology of the extended reals, since an

excessive function may take on infinite values.
The second sentence of the theorem will be proved first, assuming to be

nearly Borel measurable, and the result will be used in proving the first sen-
tence.

If X is a process starting at a point r, then (X(r)) approaches (r) with
probability 1 as r -+ 0. Indeed, let A be the set where $ exceeds $(r) +
and B the set where $ is less than $(r) a, with a strictly positive. (Take
B to be the set where $ is less than l/a, if $(r) is infinite.) The point r is
regular for neither A nor B, according to Proposition 5.5, so that the time T
at which X hits A u B is strictly positive with probability 1. Now,
lies between (r) + a and (r) a, or 1/a if (r) is infinite, for all r less than
T.
Let X be any process. The proof at the end of 2 shows that the stopping

time T, defined by taking T(o) to be the infimum of the r for which

sup (X(o’, o)) (X(O, o)) => a,
0_<<r

is measurable over , and the result iust proved, together with the argument
at the end of 1, shows that T is strictly positive with probability 1. The
continuity of (X(,)) on the right, with probability 1, is now established by
repeating the latter half of the proof of Theorem 7.2 of [7]. Alternatively,
one can give an indirect proof using a suitable stopping time; this method,
however, requires another proof of measurability.

Let E be the set on which is infinite. By Proposition 5.5, every point
regular for E belongs to E; so Proposition 2.3 implies that each measure
H(r, ds) is concentrated on E. Consequently, the measure H(r, ds)
vanishes if is finite at the point r, for H nowhere exceeds . Suppose r
to be such a point and T to be the time a process starting at r hits E. Clearly,
T cannot be less than S with strictly positive probability; it is therefore in-
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finite with probability 1, because T and S are independent. It follows quickly
from this fact, by an argument using conditional probabilities, that (X(r))
is finite for all r, with probability 1, if O(X(0)) is finite with probability 1.

Let X be any process and F a closed set on which is finite. By the pre-
ceding paragraph and the extended Markoff property, the function (X(r)) is,
with probability 1, finite for all greater than the time X hits F; and, by Prop-
osition 2.1, the set F may be replaced in this assertion by the set where is
finite. The proof of the second sentence of the theorem is now complete, for
an excessive function known to be nearly Borel measurable.

In proving that an excessive function is nearly Borel measurable, we assume,
as we may, that X is strictly positive. Consider first a bounded potential Ug,
with g a positive function, and let X be a process having initial distribution .
Choose Borel measurable functions f and h so that

f<=g<=h, fc U’(ds)f(s) fc tU.(ds)h(s).

These relations imply that, for every , the equation

(5.2) Uf.(X(r, )) Uh.(X(r, ))
holds with probability 1, because the first member cannot exceed the second
and the two have the same expectation, the measure tH U being majorized
by tU. By Fubini’s theorem, for every in a certain set of probability 1
equation (5.2) holds for all v outside a set of Lebesgue measure null, and so
for a set dense in the positive reals. Now, the properties of the transition
probabilities mentioned in the first paragraph of 1 ensure that Uf and Uh
are Borel measurable, so that the two members of (5.2) are continuous on the
right in v with probability 1, by what has been proved before. Matters being
so, for almost all equation (5.2) is true for all and the two members have
the common value Ug.(X(r, )). Hence Ug is nearly Borel measurable.
The extension of this result to arbitrary excessive functions is an immediate

consequence of Proposition 5.3 and the fact that the set on which a sequence of
Borel measurable functions converges is a Borel set. The proof of the theorem
is now complete.
We shall prove one more proposition before discussing the theorem.

PROPOSITION 5.7. The minimum of two excessive functions is itself excessive.

Let and be excessive, let (r) be the value of the minimum at r, and let
X be a process starting at r. As r -- 0,

lim fc H(r, ds) min {(s), (s)} lim fa e-x min {(X(v)), (X(v)) d

--> fa lim min (X(r)), (X(r))

(r),



MARKOFF PROCESSES AND POTENTIALS 69

by Fatou’s lemma and the preceding theorem. On the other hand, the limit
cannot exceed (r).

It is worth spending a few minutes treating certain problems of measura-
bility related to Theorem 5.6, if only to show that the notion of nearly Borel
measurable function is not a thin generality; afterwards we shall discuss the
theorem itself.

First of all, an excessive function need not be Borel measurable. A trivial
example is given by taking 3 to be the reals and all processes to be constant in
time; a function is excessive if it is positive and measurable over the field
Indeed, there are good reasons for relaxing the measurability, and declaring
every positive function to be excessive. Simple translation in the plane is
practically the same example. A less trivial one is Brownian motion in the
plane, the motion being stopped the moment a particle hits a given curve;
here an excessive function is Borel measurable on the complement of the curve,
but perhaps not so on the curve.
Every excessive function is Borel measurable if the integral

fo "l(r) P(r, A)dr

is Borel measurable in r whenever A is a set in a and -/is Borel measurable on
the positive reals. For, if is excessive, then

lim -1 e-x P, d,
r--,0 T

and the integral is Borel measurable. The condition on the transition proba-
bilities is verified if all the measures U(r, ds), for one va.lue of X, are absolutely
continuous with respect to some one measure. Similar conditions on the
transition measures P,(r, ds) are more restrictive, ruling out uniform motion
on a line, for example. The condition at the beginning of the paragraph is it-
self undesirable, because it may be lost in forming Cartesian products. By
the way, the reason some propositions are stated for nearly analytic sets rather
than for nearly Borel sets is that in some applications it is necessary to pass
from a nea.rly Borel set in a product space to its projection on one of the factor
spaces.
Let us turn to the implications of the theorem. Doob proved the theorem

for certain processes, Brownian motion in space or in space-time being among
them, and he used it in studying boundary value problems. It will suffice
here to describe the consequences we shall use.

Let X be a process, the field generated by the random points X(r) for
r not exceeding a, and an excessive function. It is clear from the definitions
that the family of random variables e-Xr(X(r)) is a lower semimartingale
relative to the fields , provided the expectation of (X(0)) is finite. This
semimurtingale is separable, nearly all the sample functions being continuous
on the right according to the theorem; so the results of martingale theory may
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be used. In particular, with probability 1 finite limits from the left exist at
all values of r as well as a finite limit as r becomes infinite. The assertion
remains true, except for the finiteness, even if the expectation of the initial
variable is infinite and the family is not properly a semimartingale. To see
this, first observe that the proof of the existence of finite limits is immediate,
using conditional probabilities, when O(X(0)) is finite with probability 1. In
the general case, let E be the set where is finite, let T be the time X hits
compact subset F of E, and let fl’ be the set where T is finite. The existence
of finite limits from the left is proved for almost all 0 in tip and all r greater
than TP(o) by the extended Markoff property and the preceding remark. On
letting F run through the sequence of Proposition 2.1, we see that T may be
replaced by T, the time X hits E. This settles the existence of finite limits for
values of r greater than T. At other values, and at infinity if T is infinite, the
limit from the left is trivially infinite. It is the existence of limits from the
left, rather than continuity on the right, that is used in most proofs.
A set in 5C is said to be approximately null if it is a null set for each measure

U(r, ds), and an assertion concerning a variable point of 5C is said to hold ap-
proximately everywhere if it is true .except when the point belongs to a certain
approximately null set. These definitions do not depend upon the value of

PROPOSITION 5.8. The points belonging to a nearly analytic set E but not
regular for E form an approximately null set.

Let the parameter h be given a strictly positive value. The set of points
not regular for E is defined by the inequalityq) < 1, where is the excessive
function defined at the beginning of the section, so that the exceptional set
mentioned in the proposition is nearly analytic, being the intersection of two
nearly analytic sets. The proof will be completed by showing that some point
of a nearly analytic set A is regular for A unless the set is approximately null.
Suppose r chosen so that U(r, A) is strictly positive; then U(r, F) is strictly
positive for some compact subset F of A; by Proposition 2.4, some point is
regular for F, hence for A; and this point must belong to F, because.F is
compact.

It is sometimes useful to know that the set on which an excessive function
has infinite values is negligible, in the sense of 2, if and only if it is approxi-

matelynull. Only one implication need be proved, because a negligible set
is clearly approximately null by Fubini’s theorem. Suppose, then, that a
process X starting from the point r hits the set E where is infinite with strictly
positivg probability, and choose z and a, both strictly positive, so that with
probability a a sample path of the process meets E at some time after .
Define a new process Z by

+
where R is a random variable independent of X and distributed uniformly
over the interval (0, ). The initial distribution of Z is
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if0 (A) =-- P(r, A)d-, A c
o"

which is absolutely continuous with respect to U(r, ds), and the sample paths
of Z hit E with probability at least a. According to Theorem 5.6, this can
happen only if Z(0) belongs to E with the same probability, so that U(r, E)
is strictly positive.
The proper restriction to place on an excessive function is that it be in-

finite only on a negligible set. Then, for every process X, almost all the ran-
dom functions (X(r)) are finite for all strictly positive r.

Observe that an excessive function is determined once it is known approxi-
mately everywhere, for

lim -1 H d.
--.0 T

Similarly, n inequality between two excessive functions holds everywhere if
it holds approximately everywhere.

6. Characterization of H
In this section denotes an excessive function and E a nearly analytic set;

only the supplementary restrictions on or E will be mentioned.
Let h be an excessive function for which the inequality b >__ holds on E.

According to Theorem 5.6 and the definition of regular points, the inequality
is also true at all points regular for E, so thatH h, and hence h itself, majorizes
H everywhere. The next proposition now follows from the remark that
H 4) coincides with at the points regular for E.

PROPOSITION 6.1. If all points of E are regular for E, then H is the least
excessive function which majorizes on E.

In a sense the proposition cannot be bettered" If r belongs to E but is not
regular for E, take as the constant 1 then H .(r) is less than 1 for , strictly
positive. It is therefore necessary to consider similar propositions permitting
an exceptional set. The next two theorems prepare the way.

THEOREM 6.2. Let X be a process and T,) an increasing sequence of stopping
times for X whose limit is T, the time X hits E, with probability 1. Then
(X(r, o)) -- 1 as r increases to T(o), for almost all o such that V(oo) is finite

and greater than T,(o) for all n.

The function is, of course, the probability of hitting E before the time S.
We shall assume h to be strictly positive, for decreases as h increases; we
shall also assume X, 3, S to be independent for each n, where is the
auxiliary field used in defining T,. The terminal time is then finite, and the
sets

ll"T < S, T. Tforalln, ,’Tn < S, T, T,
(6.)

tl"T < S, T,. T for some n ,’T, < S, T, T,
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satisfy the relations

(6.2)
}.

By the extended Markoff property, with stopping time T,

({T < S} f, E(X(T,))do-(6.3) d{2}.

Now, E(X(r, )) has a limit (0), for almost all , as r increases to
and the preceding equation becomes

as n -- . Since b is bounded by 1 and since the left member is the prob-
ability of 2’ u 2", the function must have the value 1 almost everywhere on
2’. The proposition is now proved by letting k tend to 0, or by observing
that S may be chosen independent of all the other quantities mentioned.

THEOREM 6.3. Let X be a process whose initial distribution attributes no mass
to the set of points belonging to E but not regular for E. Then there is a de-
creasing sequence of nearly analytic sets En having the following properties:
Almost all sample paths of a process starting at a point of En remain in E for an
initial interval of time. Each point of E is regular for E t En. The time T
at which X hits E t E increases witb probability 1 to T, the time X hits E. For
almost all such that T(o) is finite, T(o) coincides with T(o) for suciently
large n.

During the proof k is to be given some strictly positive value. Assume
first that is less than on E, with a less than 1 then no point of E is regular
for E, so that the initial distribution of X attributes no mass to E. Let the
G be the open sets mentioned in Proposition 2.2, and ta.ke E to be the inter-
section of G with the part of 5C where is less than . The E have the
first three properties mentioned in the proposition, by Theorem 5.6 and the
fact that E includes E. In verifying the fourth property, let 2’ be the set
defined by the conditions

T(o) < , T(o) < T(o) for all n.

According to the preceding theorem, (X(Tn)) approaches 1 almost every-
where on 2’. On the other hand, X(T(o), 0) is regular for E for almost all
o in 2’, and the value of at such a point does not exceed a. Consequently,
2’ is a null set,--that is to say, the E have the fourth property.
Given an arbitrary nearly analytic set E, take Ak to be the subset of E

whereE is less than 1 1/k and let Rk be the time X hits A. These sets
clearly satisfy the additional condition imposed at the beginning of the proof,
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SO that one can find nearly analytic setsA having the first property mentioned
in the proposition and such that

A D ’+ D A, 6’{R R, R < n} < 2

where R is the time X hits A, Let us set

E (J, A;

The E decrease with n and have the first property. They also have the sec-
ond property, for a point of Ak is regular for A and a point of E not belonging
to some Ak is regular for E itself. The remaining two properties follow from
the relation

T min{ T, inf R },
k

which implies that, after a set of probability less than 2 is excepted, one of
the two assertions T(0) T(0) or Tn(o) > n must be true.
The next theorem ranks with Theorem 5.6 in importance.

THEOREM 6.4. If is strictly positive, then HE coincides, except perhaps at
the points belonging to E but not regular for E, with the infimum of the excessive

functions which majorize on E.

By the remarks at the beginning of the section, it suffices to prove that the
infimum does not exceed HE at any point outside E.

First, assume that the restriction of to E is bounded, say by a, take the
sets E to be those of the preceding theorem, and let Am be the intersection of
E u E with the set where is less than a + 1. According to Theorem 5.6,
the A have all the properties of the sets E u En, and in addition does not
exceed a 1 at any point belonging to An or regular for A. Now specialize
the process of the preceding theorem to one starting at a point r outside E,
let T or T be the time it hits E or An, and let t’, t, ft’ be the sets

2"T < S, 2’Tn < S, 2’,’T T < S.

Then ft’ includes ft’, and

({t- ft:}--0, (P{ft’,}-- Rift’},

because the terminal time is finite. Since every point of E is regular for Am,
the excessive function HAm coincides with on E; moreover, its value at r is

Ha 4.(r) 4(X(T,))&o,

the integrand being bounded by a + 1 almost everywhere on ft because the
point X(T(o), ) is regular for An for almost all in . As n increases the
integral decreases to

H .(r) Jf, (X(T))doo,
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according to the relations above and the fact that Tn(w) ultimately coincides
with T(o), for almost all 0 in 2’. The proof under the additional hypothesis
is now complete. We give one application before going on.

PROPOSITION 6.5. Let be strictly positive, let r lie outside E, and let E(r)
vanish. Then there is an excessive function b which is infinite at all points of E
and less than 1 at r.

Take the function of the theorem to be the constant 1. Then HE re-
duces to and vanishes at r. So, for each natural number n, there is an ex-
cessive function with values at least 1 on E and less than 2 at r, and may
be taken to be their sum.
We continue the proof of the theorem, assuming now that is finite at every

point of E. Let e be strictly positive, r outside E, and HE .(r) finite. If Ek
is the part of E where is less than ], one can choose a nearly analytic set Bk
including E so that

HBk .(r) _--< HE b.(r) -+- v2-and so that every point of E is regular for B. According to inequality
(11.10), which can be proved immediately after Theorem 5.3 and is placed in
a later section only because of the context,

H, .(r) H.(r) <- [H, .(r) H .(r)] -< ,
with B the union of the B. The excessive function HB coincides with
on E, for every point of that set is regular for B, and the proof has again been
completed under a restrictive condition.

Finally, consider an arbitrary excessive function b, let r be a point outside
E, and let F be the part of E where is infinite. If (r) is strictly positive,
then HF.(r) is infinite, so that H.(r) is also infinite and there is nothing to
prove. If (I)F(r) vanishes, let b be an excessive function which is infinite on
F and small at r, and let h’ be an excessive function which majorizes on
E F and is not much greater than H b.(r) at r; the existence of such func-
tions has already been proved. It is now clear, on considering the properties
of @ - ’, that the proof of the theorem is complete.
The theorem evidently characterizes HE C, for strictly positive, because

the exceptional set is approximately null. In particular, the probability
of hitting E before the terminal time is the greatest excessive function which
is majorized by every excessive function exceeding l on E, provided is strictly
positive.
The theorem must be restated if }, vanishes, as one sees on considering

Brownian motion in the plane, with E a point and a constant. The simplest
version will be discussed in 13.
A set E is said to be nearly open if it is nearly analytic and if, for every

process starting at a point of E, almost all sample paths of the process remain
in E for an initial interval of time. There is another characterization of
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HE for such sets. By Proposition 4.2, HE majorizes the potential Uf if f
is a positive function vanishing outside E and Uf nowhere exceeds . The
next theorem asserts that HE can be approximated by these potentials, pro-
vided E is nearly open.

THEOREM 6.6. If is strictly positive and E nearly open, there is a sequence
of positive functions, each one vanishing outside E, whose potentials increase to
HE everywhere. The functions may be taken to have compact supports included
in E, if E is the countable union of closed sets.

Suppose first that is bounded, and let be the potential mentioned in
Proposition 4.4. One verifies, using Theorem 5.3, that b increases with the
function h and that the difference h is positive, for these assertions are
true when is the potential of a positive function. Now let h run through a
sequence of functions which increase to infinity at every point orE and which
vanish outside E--or outside some variable compact subset of E, if E is a
countable union of closed sets. The time assigned to a process by h decreases
with probability 1 to the time the process hits E. These facts, together with
the definition of and the continuity of (X(r)) on the right, imply that
increases to HO everywhere.

If 4; is unbounded, let h.h be the potential defined as h above, but with
replaced by the minimum of and the positive integer n. This potential
increases with n and with h, so that the theorem is proved by letting n tend
to infinity as h runs through the sequence described before.
We shall now discuss determining sets for an excessive function 0. Let

Cc be the one point compactification of 5C, or C itself if the space is already
compact. When we speak of Ha and so on, G being a set in 5Cc, we mean the
kernel or other quantity defined by the part of G in . A closed set F in C
is said to be a determining set for if Ha coincides with whenever G is a
neighborhood of F. The notion is very coarse; a finer one requires ramifica-
tion of the point at infinity.

Let be bounded, , strictly positive, F a determining set for , and Gn a
decreasing sequence of compact neighborhoods of F in C which shrink to F.
If X is a process starting at a point r outside F, the time T, at which it hits
G increases with probability 1 to T, the time it hits F; so the probability of
2, the set where T is less than S, decreases to the probability of T, the set
where T is less than S. This behavior and the equation

(6.4) 4(r) =--- Han 4).(r) fa 4)(X(T,))d,

together imply that

/T

The set 2 is the part of 2’ on which T() coincides with T() for some n,
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and 1 is the remaining part of ft’; the obvious integrand for the first integral
is the limit of (X(Tn)), but it may be replaced by the one used because limits
from the left exist. The equation shows that is determined by its values and
limiting values at the points of a determining set. A similar result, ft’ being
defined by a weak inequality, holds when X vanishes. A more detailed study
is to be found in Doob’s papers.

PROPOSITION 6.7. If is strictly positive and if G is a neighborhood of a de-
termining set for , there is a sequence of positive functions, each one vanishing
outside G, whose potentials increase to

PROPOSITION 6.8. An excessive function majorizes everywhere if it does so
on a neighborhood of a determining set for

The first proposition follows from Theorem 6.6, the second from the remark
after Proposition 5.4.

PROPOSITION 6.9. Let E be open in c Then H is the supremum of the
excessive functions which are majorized by and have a determining set included
inE.

According to the preceding proposition, H is an upper bound for the ex-
cessive functions mentioned. The proof is completed, when is strictly posi-
tive, by Theorem 6.6 and the remark that the support of a function is a deter-
mining set for the potential of the function; the extension to vanishing X is
straightforward.

PROPOSITION 6.10. If is strictly positive and bounded, then has a least
determining set.

Let F be the intersection of all determining sets for . Every neighborhood
of F includes the intersection of a finite number of determining sets, for such
sets are compact. In proving F to be a determining set, it therefore suffices
to establish that the intersection of two determining sets F1 and F2 is itself a
determining set. Given a neighborhood G of the intersection, choose a neigh-
borhood G of F so that G1 G and G2 G have disjoint closures, and take
E to be the union of G with G. Let X be a process starting from a point r,
let T be the time it hits G, and let 2’ be the set where T is less than S. We
shall pproximate T by an increasing sequence of stopping times Tn defined
recursively: T is the time X hits E, T is the infimum of the greater than
T._ for which X(r) belongs to E, and T.+ is the infimum of the greater
than T., for which X(r) belongs to E the value of one of these times is to
be infinite if there are no such r. The equality of T.() and Tn+(o) is equiva-
lent to that of T(o) and T(), because of the way G and G2 were chosen.
Also, T() -- if all the Tn(O) are distinct; else, some sample path would
fail to have a limit from the left at a certain finite time. The probability of
t, the set where T is less than S, therefore decreases to the probability of
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t’; and Tn(o) coincides with T(), for almost all in t’ and for sufficiently
large n. Since is bounded,

4(X(T))dw ---. f, 4(X(T))do He .(r).

On the other hand, all the b, coincide with , for

by the extended Markoff property. The proof is now complete.
The hypothesis that be bounded cannot be entirely avoided, as shown by

the following example: 5C is the extended reals with the origin deleted. A
particle starting from + or - remains fixed; one finding itself at a finite
point r at time r moves with velocity -1 or -l, according as r is positive or
negative, and has a probability dr of jumping to the point -r during the in-
terval (r, r - dr). The function ,

(+/-) 0, (r) eIrl/fr +/-,

is excessive if h has the value 1. But, for strictly positive a, the two intervals-- <= r <= --a, a <= r <= --,
are disjoint and ea.ch is a determining set for .
Even simpler examples show that boundedness of does not suffice when },

vanishes. However, the proposition holds for all }, if, instead of boundedness,
it is assumed that is majorized by a potential which is finite approximately
everywhere. The proof is practically the same.
The least determining set for the potential of a positive bounded continuous

function is the support of the function, provided }, is positive. The least de-
termining sets for more general excessive functions may behave unexpectedly.
For example, the least determining set for may have no point in common
with E, even when E is compact. Consider the following situation" 3C is the
interval b -< r with an isolated point a adjoined. A particle starting
at a point of the interval travels with uniform velocity to the right; one start-
ing at a remains there a period of time distributed exponentially, then jumps
to b and begins the uniform motion. The least determining set for lb/ re-
duces to a. If the interval is replaced by the real line, the rest of the descrip-
tion being unchanged, then {a, b} is the least determining set. If now the
uniform motion on the line is replaced by Brownian motion, {bl is the least
determining set.

It can be proved, under additional hypotheses on the transition measures,
that for every point of 3C there is essentially one excessive function whose least
determining set reduces to the point, and that the infimum of the excessive
functions which majorize a given excessive function on some neighborhood
of a fixed closed set F coincides approximately everywhere with the supremum
of the excessive functions which are majorized everywhere by and have F
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for a determining set. It is desirable to find the least hypotheses which imply
these stateInents.
We shall set the problem before the reader by developing the consequences

of the following hypothesis:

(B) If G is a neighborhood of the compact set F, then HH coincides with H
for all .

This is equivalent to saying, F is a determining set for every excessive func-
tion of the form H. In deriving a less obvious restatement we shall sup-
pose to be strictly positive. Consider a processX starting at a point r outside
G, let T be the time it hits G, and partition the set where T is less than S into

’ and ", the second set beinE defined by the condition that X(T) belong to
F. The extended Markoff property on the one hand, and hypothesis (B) on
the other, give the two equations

(r) , (X(T))d +

so that the integrand of the last integral has the value 1 almost evewwhere on
". Since h is strictly positive and the terminal time is independent of the
process, the point X(T(), ) must be regular for F for almost all in ’;
equivalently, the measure Ha(r, ds) must attribute no mass to the points
which belong to F but are not regular for F. In the last statement the com-
pact set F may be replaced by an arbitrary nearly analytic subset E of G.
One sees this by choosing, for each r, a sequence of compact subsets F of E so
that H(r, F,) increases to H(r, E), and noting that a point regular for F,
is also regular for E. Thus (B) is equivalent to the stronger statement ob-
tained by allowing F to be a nearly analytic set.
Given an excessive function and a nearly analytic set E, define a function
in the following manner. Let X be a process starting at r, let T be the time

it hits E, and partition the set where T is less than S into ’ and ", the first
being the set where T is strictly positive, X(T) belongs to E, and X(r) is
continuous on the left at T. Set

d,

the limit being taken as r increases to T. Assuming to be bounded, one
first shows that , is excessive; the verification is straightforward at a point
not regular for E, and quite simple at a regular point if Theorem 5.6 is used.
Standard martingale theorems, together with the discussion in 5, prove
to be an increasing function of E. These results are extended to unbounded
by a passage to the limit using Theorem 5.3. FinMly, once the point r

is fixed, Cy(r) increases to (r) as F runs through a certain sequence of com-
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pact subsets of E. To see this, let the sets F, be the ones mentioned in
Proposition 2.1 and choose an increasing sequence of compact subsets

Fof E so that, for almost all 0 in [t’ the point X(T(o), o) belongs to some
the required sets may be taken to be F t, F’n, as one sees immediately from
Theorem 5.6 and the definitions.
The function CE can be defined another way when is bounded and

strictly positive; it then coincides, except perhaps at the points belonging to
E but not regular for E, with the infimum of the excessive functions which
majorize on some neighborhood of E. The assertion is evident at a point
regular for E. Moreover, CE nowhere exceeds one of the functions men-
tioned, because it is majorized byH whenever G is in a neighborhood of E.
We shall prove a strengthened version of Proposition 2.2 before completing
the proof.

Let X be a process, T the time it hits E, and t* the set where T is finite and
both X(r) and X(r-) belong to the complement of E for 0 -< r -< T. The
results of 2 imply that t* is changed only by a null set if the condition on
X(r-) is omitted; this remark will be needed at the end of the paragraph.
For every define a compact subset C(o) of 5C in the following way- C()
is empty for not in gt*; for in t* it comprises exactly the points X(r) and
X(r-) as r ranges over the closed interval [0, T]. If B is a subset of
denote by/ the set of o for which B n C(0) is not empty; the set/ certainly
belongs to ff whenever B is nearly analytic. The function {}, where F
denotes a variable compact set, is alternating of order infinity because of the
probability interpretation. It is also continuous on the right,--that is to
say, for every compact F and every strictly positive a, there is an open neigh-
borhood G of F such that (P[/’} is less than (e{/71 -t- a for every compact
subset F’ of G. The proof is merely the observation that (P{G} decreases to
(P{} as the open set G shrinks to F, because each set C() is compact. It
follows from Choquet’s extension theorem that the function (P{/} can be ex-
tended to analytic sets, remaining continuous on the right, and it is easily
verified that the extended function has precisely the value (9{/} at the ana-
lytic set B. Now choose an analytic set E including E so that, for almost all
o and for all r, the point X(r, ) belongs to E’ if and only if it belongs to E.
According to the remark at the beginning of the paragraph, ’ and/ differ
at most by a null set, and of course the probability of/ vanishes by definition.
Consequently, by the right continuity, there is a decreasing sequence of open
neighborhoods B of E’ such that the probability of B tends to 0.

Specialize X to the process occurring in (6.6), let r be a point outside E,
let the sets G, be the sets mentioned in. Proposition 2.2, and take G’, to be
G B. The G’ form a decreasing sequence of open neighborhoods of E,
and the time T, at which X hits Gr increases to T with probability 1. The
choice of the Bn implies that, for almost all o for which T() is finite and
X(T(o), ) lies outside E, the time T(0) coincides with T() when n is suf-
ficiently large. Consider an 0 such that T(o) is finite, X(T(o), ,) belongs to
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E, and T() coincides with some T(); clearly the point X(r, ) is a discon-
tinuous function of r at T(), for it lies outside G for less than Tn(r).
Finally, for almost all such that T() is finite and greater than all T(), the
point X(r, ) is continuous in at T() by the last part of hypothesis (A).
Matters being so, let fan be the set where Tn is less than S and let fl’ and
have the same meaning as in (6.6). The argument leading to (6.5) gives the
relation

lim Hag, b.(r) lim f b(X(T,)) doo

(6.7) lim b(X(r)) doo q- b(X(T)) doa
r T

(r),

under the assumptions that is bounded and strictly positive. The veri-
fication that coincides with a certain infimum, except on an approxi-
mately null set, is now complete.
The next theorem should be compared with Theorem 8.4 of [7]. Doob’s

language is a little different from ours, and he treats the relative theory with
vanishing parameter, but the two theorems are essentially the same.

THEOREM 6.11. If (B) is true and strictly positive, is the supremum of
the bounded excessive functions which nowhere exceed and have a compact
subset of E for a determining set.

If the theorem is true for bounded it is also true for unbounded ; one
has only to consider the minimum of and a constant which is allowed to
grow large. We shall therefore assume to be bounded in the proof.
Let be an excessive function majorized by and having the compact sub-

set F of E for a determining set. Then

the steps being justified by equation (6.7) with h and F replacing and E,
the majorization of by , and the fact that increases with E. Observe
that (B) has not been used so far.

It remains to prove that can be approximated at every point by the func-
tions mentioned in the theorem. First assume E to be compact, let G be any
neighborhood of E, and choose a decreasing sequence of compact neighbor-
hoods / of E which shrink to E. Clearly, HF .(r) tends to (r) if r is
regular for E, since all terms have the value (r). The convergence holds
also at a point r outside E, since the Fn behave just like the sets G’. in (6.7)
when E is compact. And, for such points r, the measure H(r, ds) attributes
no mass to the remaining set of points where the convergence may not take
place. Accordingly

He Ho(lim HF. ) lim(Ho HF) lim HF
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except perhaps at the points belonging to E but not regular for E; hypothesis
(B) iustifies the next to last step, since F is finally included in G. On the
other hand, the extreme members clearly have the same value at a point of E.
Thus itself has E for a determining set. We have proved a little more
than was stated in the theorem, assuming E to be compact.

If E is not compact, consider as F varies over the compact subsets of E.
It is one of the functions mentioned in the theorem, by what has just been
proved; and for each fixed r, according to a remark following the definition,
(r) is the limit of (r) as F runs through an appropriate sequence. The
proof of the theorem is now complete.
The function is at least as great asH. The two coincide if E is open,

because then t’ is empty and the first integral in (6.6) vanishes;so the theorem
implies Proposition 6.9, which was proved without using (B). It is also clear
that and H are the same if is a bounded continuous function or if it is
the potential of a positive function and finite except on a negligible set. The
statement is true for much wider classes of functions when the transition
probabilities are sufficiently regular; when they give the classical or the Riesz
potentials, for example, may be the potential of any measure which at-
tributes no mass to a set of capacity null.
The part of the theorem proved without using (B) is sometimes useful.

By way of illustration, suppose that there is a bounded excessive function
which does not vanish identically and which has a compact subset of E for a
determining set; then can not vanish identically, so that E is not negligible.
There are other versions of the theorem; the one stated was chosen because

it is closest to Doob’s theorem. Hypothesis (B) can be dispensed with by
changing the definition of determining set, requiring only that equation
(6.5) be true; the theorem is then nearly obvious. A more significant change
is to define as the excessive function that coincides, except on an approxi-
mately null set, with the infimum of the excessive functions which maiorize
on some neighborhood of E; the word bounded should then be deleted from the
statement of the theorem.

I have not found simple and general conditions on the transition measures
to ensure the truth of hypothesis (B). It is implied by the rather elaborate
hypothesis in 2 of [11], but that is a good deal too restrictive.

EXCESSIVE MEASURES

7. Potentials of measures

Recall that a measure on is always a countable sum of positive bounded
measures. We shall say that a measure t maiorizes a measure on the set
A if the inequality (B) => (B) holds for all subsets of A, and that a se-
quence of measures increases if t+l maiorizes everywhere. A measure
which is finite on compact sets is determined by the values of f du as f

ranges over the positive continuous functions with compact supports. A
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sequence of measures is said to converge weakly to the measure if fd
converges to f fd for all such functions f. A nucleus for a measure is a set
bearing all the mass of the measure.
The potential of the measure t is the measure tU. For example, the meas-

ure U(r, ds) is the potential of the unit mass placed at the point r. The po-
tential of g has total mass ()/},, so that it is bounded if is bounded and ,
is strictly positive.
The notation

(7.1) f tU.(ds)f(s) fc (dr) Uf.(r)

will be used occasionally in this part, more frequently later on. Now Uf.(r)
can be written (r, f}, with r understood to be the unit mass placed at the point
r. If is a probability measure, there is the interpretation

(,, f do f(X(r)) dr,

where X is a process having g as initial distribution. A similar interpretation
for an arbitrary measure is obtained by considering a quantity of matter,
initially distributed according to the given measure, and the paths the par-
ticles traverse.

PROPOSITION 7.1. If ) is strictly positive, a bounded measure t is deter-
mined by its potential.

If f is bounded and continuous then Hf converges boundedly to f as r -- 0,
so that

j0u(dr)f(r) lim
1 u(dr) Hf.(r) d

r-O T

lira,_,0 -1 fe [uU.(ds) uUH,.(ds)] f(s).

Now, he las expression .is obviously deermined by he function f and he
measure u U.
The projection of he measure u on he nearly analytic se E is defined o

be he measure uH. ince

(7.2) fc t,H U.(ds)f(s) fc (dr)H Uf.(r)

a number of results are easily translated from potentials of functions to poten-
tials of measures.

PROPOSITION 7.2. In the notation above, tU majorizes H U eerywhere,
and the two measures have the same restriction to E. If is a measure such that
,U majorizes U, then also ,H U majorizes H U.
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The proof is relation (7.2) and Propositions 4.2 and 4.3.
We shall say that a set E is nearly open if it is nearly analytic and if, for

every process starting at a point of E, almost all sample paths of the process
remain in E for an initial interval of time.

PROPOSITION 7.3. Let k be strictly positive. The potential q( is determined
by its restriction to a nearly open nucleus for . Also, ,U majorizes tU every-
where if it does so on a nearly open nucleus for

Let E be a nearly open nucleus for u and let f be a positive function. Ac-
cording to Theorem 6.6 there is a sequence of positive functions f,, each one
vanishing outside E, whose potentials increase to H Uf. It follows from
(7.2) and the equation nH t that

(, f} lim (, f),

so that the first assertion is proved. The second is proved similarly.

PROPOSITION 7.4. Let k be strictly positive. If E is nearly open, tH, U
is the least potential which majorizes pU on E.

The potential of H coincides on E with tU, by Proposition 7.2, so that
one has only to show it to be majorized by every potential U which ma-
jorizes tU on E. Now,

(uH, f} lim (u, A}
-< lim (v, f..) =< (v, f),

where f and f, have the same meaning as in the preceding proof. The hy-
pothesis that k be strictly positive is unnecessary in the last two propositions,
as can be seen from Proposition 8.3.

PROPOSITION 7.5. If E is nearly open, then H U is the supremum of all
potentials r U, with , ranging over the measures on E whose potentials are ma-
jorized by U everywhere.

The potential of **H is an upper bound for the U, because H for
every measure on E. In establishing the approximation of H U by the
U, we shall use the latter part of 4. Let h be a bounded positive function
vanishing outside E and define the kernel K(r, ds) by the formula

K(r, A) =- 6) Rr < S, Xr(Rr) e A }, A

where X is a process starting at r and R,. is the time assigned to it by h.
For every r, the measure K(r, ds) is concentrated on E. Now let h run through
a sequence of functions which increase to infinity at all points of E. For
every point r and every positive function f,
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with ft’r the set where Rr is less than S, increases to

fc HE(r, ds) fc U(s, dt)f(t) =- far
where Tr is the time Xr hits E and 2, is the set where it is less than S. So
the potential of K, which is a measure on E, increases to the potential of
H.

Observe that the measures K may be taken to have supports included in
E, if E is the countable union of closed sets.

Let Oz be the class of measures whose projections on compact sets are
bounded. This is the largest class of measures for which there is a satisfac-
tory theory of potentials.
A measure belongs to Oz if and only if the integral dt is finite whenever

F is compact, because of the evident relation

tHF.(F) fc t(dr)(,(r).

A measure in Oz is clearly finite on compact sets. Its potential has the
same property when X is strictly positive. For, if x is the characteristic func-
tion of the compact set F, then

(tt, x) fc tt(dr)HF U;.(r)

1tH.(ds) Ux.(s) <= H.(3C),

because of Proposition 4.2 and the fact that Ux is bounded by 1/X. In 9,
when a little more is assumed of the transition probabilities, we shall see that
this property characterizes a measure in OZ.

Fix a sequence of open sets G, with the following properties" Go is empty,
the closure of G is compact and is included in G+I, the union of the G, is
5C. Then HGn.b Ho, coincides with Ho, because every point of an open set
is regular for the set. Now consider a measure in Oz and its projections
on the G,. It is clear that the projections are bounded measures, and we
shall prove that they determine the original measure . Let be the re-
striction of to Gn+i G, and let be the projection of " on G. The
mass of t tends to 0 as n becomes large, for n t is the bounded measure. Also, coincides with " for ]c greater than n. Finally, if A is included
in G and n is greater than l, then t(A) decreases as ]c increases from to n,
and vanishes for k greater than n. Matters being so,

lim .(A) lim .2 (A)

E #n(A) t(A),

provided A is included in some G,.
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PROPOSITION 7.6.
by its potential.

If is strictly positive, a measure t in 9 is determined

By Proposition 7.1 and what has just been proved, it is enough to show that
tU determines each tn U. Consider an open set G and a positive function
f. There is a sequence of positive functions fn whose potentials increase to
Ho Uf; it follows that

{uHo, f) lim {t, fn),
and the assertion is proved.

8. Excessive measures

A measure i" on 3C is excessive (relative to the terminal time S) if it is finite
on compact sets and if it majorizes H for every r. It follows that H
increases as r decreases, and we shall prove that the limit as r-- 0 is pre-
cisely ’. If f is a positive continuous function with compact support, then

lim_,o fc H.(dr)f(r) lim,_,o fc (dr)H,f.(r)

>= fc (dr)f(r),

by Fatou’s lemma and the fact that Hf approaches f everywhere. On the
other hand, the limit certainly cannot exceed the last integral. The asser-
tion is now obvious.
The set of excessive measures is closed under addition, multiplication by

positive constants, taking the limit of a decreasing sequence, and also taking
the limit of an increasing sequence if the limit is finite on compact sets. The
minimum of two excessive measures 1 and . is excessive,--the minimum
being defined as f(r)(dr), where

1 - ., f(r)(dr) (dr), f =-- min(fl, f).

The minimum of a countable collection of excessive measures is excessive,
for it is the limit of a decreasing sequence of excessive measures. Finally,
the potential of a measure in is excessive if h is strictly positive.
A measure is excessive for one value of h if and only if it is excessive for

every greater value.

PROPOSITION 8.1. Let be an excessive measure such that Hr.(F)-- 0
as r--> , whenever F is compact. Then the potential of (- H)/r in-
creases to as r -- O.

The proof is omitted, as it is like the proof of Proposition 5.2 and somewhat
simpler. For }, strictly positive, the hypothesis on i" is satisfied if the measure
is bounded, or if it remains excessive when , is slightly decreased.

PROPOSITION 8.2. If is strictly positive, then an excessive measure is the
limit of an increasing sequence of bounded potentials.
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Denote by U’ the kernel corresponding to a value X’ of the parameter slightly
greater than X, so that is the limit of an increasing sequence of X’-potentials

U’, and consider an increasing sequence of open sets G which have com-
pact closures and whose union is 3C. Let n be a bounded measure majorized
by n and such that

pnVt.(an) > n Vt.(an)- 1In.
Then the X’-potentiMs U’ also converge to from below, although they
may not form an increasing sequence. The X-potential U is bounded,
because , is bounded, nd it mjorizes U’. The mesure ,

’--= mir (’, U),
is therefore a X-excessive bounded measure which increases to ’, and the se-
quence of bounded X-potentials

11n

n[, H1/,] U n ,H do-

also increases to ’.
The operation of passing from a potential U to the potential H, U,

where E is a given nearly analytic set, will now be extended to an excessive
measure . Suppose first that X is strictly positive, and choose a sequence of
measures , whose potentials increase to . Then H U also increases
with n, and we take L to be the limit as n -- . There is an alternative
definition, which shows incidentally that the dependence on the particular
choice of the u is only apparent. Let f and the fk be positive functions such
that Ufk increases to H Uf. Then

lim {t U,f) lim lim (t,

lira lim (us
k

the change in the order of the limits being permissible because
increases with/c and with n. The definition of L " for vanishing X will be
given during the proof of the next proposition; for the moment suppose
to be strictly positive.

It should be noted that the transformation L cannot usually be derived
from a kernel. A good many of its properties follow directly from the defini-
tion. For example, L f increases with f and with E; if " is the limit of an
increasing sequence of excessive measures f,, then L f is the limit of L ’,
if G is an open subset of E then LL coincides with L o; and L " is an
excessive measure, majorized everywhere by f and coinciding with f on the
set E.
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It is sometimes useful to know that L " is the limit of an increasing se-
quence of potentials Vn U, the vn being bounded measures whose supports
are compact subsets of E. First of all, the measures tzn of the definition can
be chosen bounded. Next, by Proposition 2.1 and a simple selection, there
is an increasing sequence of compact subsets F of E such that for each n
the potential n Hr U increases to tn H U ask -- . So n may be taken
to be the projection of t on Fn.
An excessive measure - majorizes a potential tzU everywhere if it does so on

a nearly open nucleus E for the measure u. To see this, let f and the f be
positive functions such that Uf, increases to HE Uf and each f vanishes
outside E. Then

(, f) (uH, f) lim (a, f,)

=<lim (ds)f,(s) LE.(ds)f(s).

PROPOSITION 8.3. Let E be nearly open and excessive. Then L is the
least excessive measure which majorizes on E.

The proof will be given first for strictly positive and the result will be used
in defining L for vanishing .

Let h be strictly positive. Since L coincides with on E, we have only
to prove that an excessive measure majorizes L everywhere if it does so on
E; the statement follows directly from the two paragraphs preceding the
proposition.

This result shows that, for a fixed nearly open set E and a fixed measure, the measure Le decreases as the parameter h increasesprovided, of
course, one considers only the strictly positive h for which is excessive
because the class of excessive measures increases with h. We shall remove the
restriction on E as a preliminary to defining L generally for vanishing h.

Let be strictly positive; let ’ be a greater value of the parameter, say
+ a; let E be a nearly analytic set; and let be a -excessive measure.

Denote by U’, H and so on the quantities corresponding to the value h’
of the parameter. An integration by parts shows that the kernel U can be
written U’ + aUU, so that the h-potential of a measure can be written as
the h’-potential of the measure + ap.U. Consequently,

L lim( + a U)H’ U,

where the are measures whose h-potentials increase to . The majoriza-
tion of L by L will therefore be proved once the inequality

(8.1) H U H U’ + aug U’

is established. The inequality is true whenever E is open, according to the
preceding paragraph, and the following argument extends it to nearly ana-
lytic sets. Denote byA (E, r, C) and B(E, r, C) the values of the two kernels in
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(8.1) at the pair (r, C). These values are the same if r is regular for E. Now
consider a point r outside E, let X be a process starting from r, and let T be
the time X hits E. Take Z to be a positive random variable which is inde-
pendent of X and the terminal time S’ and which has the distribution

{z 0} x+’ x+
and let Y be the process X(r -t- Z).

B(E, r, C)

Then one has the interpretation

where x is the characteristic function of C, T’ is the time Y hits E, and a’
is the set where T’ is less than S’. Since the points belonging to E but not
regular for E form a null set relative to the measure U(r, ds), it is only with
vanishing probability that Y(0) is such a point. Hence, by Proposition 2.2,
there is a decreasing sequence of open neighborhoods Gn of E such that Tn
and T’, the times X and Y hit Gn, decrease to T and T’ with probability 1.
The inequality

A (an, r, C) >-_ B(a, r, C),

which is valid because Gn is open, therefore becomes

(s.2) A (E, r, C) >= B(E, r, C)

on passing to the limit. This inequality has been established approximately
everywhere, and both members are X’-excessive functions of r. It follows
from the last paragraph of 5 that (8.2) must hold identically.

If " is 0-excessive, define L f to be the limit of LX f as X - 0. The defini-
tion makes sense, and the properties of L " are carried over by monotone
convergence. In particular, the proposition is true for vanishing X. For, if
( is 0-excessive and majorizes f on E, then it is also Mexcessive and majorizes
L f for X strictly positive; the majorization is obviously preserved on passing
to the limit X -- 0.
A closed subset F of the compact space 3Cc defined in 6 is a determining set

for the excessive measure f if Lo coincides with f for every open neighbor-
hood G of F in 5Cc here Lo is the transformation defined by the part of G in

PROPOSITION 8.4. Let E be an open set in 5C and an excessive measure.
Then L is the supremum of the excessive measures majorized by and having a
determining set in E.

The proof is similar to that of Proposition 6.9.
analogues of the other propositions at the end of 6.

We shll not state the
It should be remarked,
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however, that the support of the measure t is the least determining set for the
potential U, provided ) is strictly positive and is a measure in .

?. Representation as potentials
In this section we make the following assumption, in which (5C) is the

Banach space of functions continuous on and vanishing at infinity.

(C) For strictly positive, Uf belongs to () if f does so.

Simple examples show that some such condition is needed in proving the
theorems of this section. First, consider uniform motion with velocity 1 on
the interval 0 < r < , taking h to be 1. The measure U(r, ds) vanishes in
the interval 0 < s =< r and coincides with the measure of e ds in the interval
r < s <: ; here ds is the element of Lebesgue measure. The bounded ex-
cessive measure e ds is not a potential, but it is the limit of an increasing
sequence of potentials. In this example Uf.(r) is continuous but may not
vanish as r -- 0.

Next, adjoin the point 0 to the interval, with the prescription that a particle
starting from there remains fixed forever. Again e ds is not a potential.
This time Uf vanishes at infinity but may not be continuous.

PROPOSITION 9.1. Let X be strictly positive and let the . be measures whose
masses are bounded in n and whose potentials increase with n. Then .tn converges
weakly to a measure , and u, U converges to tU.
Some subsequence of the measures, say , converges wea,kly to a measure

u. If f belongs to e(3C), then

(’, f) -- (, f),

because Uf also belongs to (), so that t U increases to tU. According to
Proposition 7.1, the measure z is determined by its potential and is therefore
independent of the choice of the subsequence t’. The convergence of the
full original sequence is now proved by a familiar argument. Observe that
there is no escape of mass to infinity; t() tends to z(), because the mass
of a measure is h times the mass of its potential.

THEOREM 9.2. If h is strictly positive, a bounded excessive measure is a po-
tential.

PROPOSITION 9.3. Let h be strictly positive and let the be bounded measures
whose potentials decrease with n. Then converges weakly to a measure ,
whose potential is the limit of U.

The theorem follows at once from Propositions 8.1 nd 9.1. The proof of
the proposition is like the preceding one.
The main result of this section is a characterization of the excessive meas-

ures which are potentials. A number of preliminary facts are needed; the
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parameter ) is understood to be strictly positive throughout the discussion,
this restriction being mentioned only in the theorems.

For every compact set A there is a positive continuous function g, with
compact support, whose potential exceeds 1 at every point of A. To see this,
let g run through a sequence of such functions which increase to 2h everywhere;
the corresponding potentials are continuous and increase to 2 everywhere, so
that Dini’s theorem justifies the assertion. If is a measure whose potential
is finite o compact sets, then

H.(SC) <__ f H.(dr) Ug.(r)

<- fc U.(ds)g(s),

the lust member being finite. According to this implication and wlat was
said in 7, a measure belongs to r if and only if its potential is finite on com-
pact sets.

If i" is an excessive measure and A a compact set, then L i" is a bounded
measure and therefore, by Theorem 9.2, the potential of a bounded measure.
In proof, consider a sequence of measures on A whose potentials increase to
L . If g is the same function as in the preceding paragraph, then

(5) <= f. n(dr) Ug.(r) <-_ fc (dr)g(r),

the last member being finite, say with value a, because g is bounded and has
compact support. The mass of each U is bounded by a/),, which also
serves as a bound for the mass of L . Clearly, it would be enough to assume
A to be included in a compact set.

In the remainder of this section, the G., are a fixed sequence of open sets,
the union of the G being 3C, the closure of G being compact and included in

G+I. We denote the complement of G, by Fn and write

L-La, L:L,, g, H, H’H,,
by way of abbreviation. The relation L L, L, holds for m greater than
n, because G is then an open subset of G.

Let A be a compact set and a measure in . We shall need to know that
H’ U.(A) is small if n is large. The statement is immediate if is bounded;
the muss of H then decreases to 0, because the terminal time is finite and
the F are closed sets which decrease to the empty set. If , is unbounded,
write it as -t- , with bounded and U.(A) small; then

H’ U.(A) --. 0, : H’ U.(A) =< U. (A).

We shall see in a moment the significance of this property.
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THEOREM 9.4. If is strictly positive, an excessive measure can be written
as - tU, where t is a measure in and an excessive measure which coincides
with L’, for every n.

By the preceding remarks, L is the potential of a bounded measure
and coincides with the projection of m on G if m exceeds n. Let A be a
compact set, say included in G then t(A) decreases as n increases, at least
for values of n greater than 1. Define the measure t by setting

(A) lim tn(A)

for every compact set A. If g is a bounded positive function which vanishes
outside a compact set, then g dt ultimately decreases as n increases, and the
limit is g d. Accordingly, for every positive bounded function f,

(, f} lim lim fo. u(dr) Uj’.(r)

<__ lim ( f <= f (dr) f(r)

the last expression being finite if f vanishes outside a compact set. So
belongs to and majorizes its potential.
The positive measure is defined by setting

(A) (A) tV.(A)

for every compact set A. To prove that is excessive, consider the measures

m U t U, where m is greater than n and is the restriction of t to Gn.
These measures are all excessive, since tm majorizes t they are all majorized
by ; and they increase as m increases or as n decreases. Now,

lim lim (urn U n U),

and each limit is an excessive measure according to the second paragraph of 8.
The proof will be complete once the equality- L’ ,U- ,H’ U

is established. Since both members vanish on F,, it is enough to prove that

HL L,L tH U t H U,

because the operator L changes an excessive measure only outside G. The
measure on the .right attributes to a compact set A the mass

f (dr)[H U.(r, A) H’ H U.(r, A)].
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Since the integrand is bounded and vanishes outside the closure of Gn, which
is compact, this integral can be written

lim, J ,(dr)[Hn U.(r, A) H’n H U.(r, A)]

lim [L, L, .(A) L L’n L, ..(A)]

L i’.(A) L L’ -.(A),

the passage to the limit being justified by the fact that Lm i" increases to .
The proof is now complete.

It should be noted that the decomposition is unique and independent of the
particular sequence of sets G For is determined by the equation

(A) lim Lrn .(A) lira t U.(A) lim L .(A)

which holds for every compact set according to a remark preceding the
theorem; and given two sequences of sets G’n and G, one can construct a

third sequence which includes infinitely many of the GP and infinitely many
of the G:.

In the language of 8, the measure can be described as an excessive measure
having the point at infinity for a determining set.

THEOREM 9.5. If is strictly positive, an excessive measure is the potential
of a measure in if and only if LP, (A) -- 0 for every compact set A.

THEOREM 9.6. If is strictly positive, an excessive measure is the potential
of a measure in if it is majorized by such a potential.

PROPOSITION 9.7.
If

Let be strictly positive, let , and the #, be measures in .
u. U <- u,+ U <-_ ,U

for all n, then t, converges weakly to a measure in , and #n U increases to

tU.
PROPOSITION 9.8. Let h be strictly positive and let the be measures in

whose potentials form a decreasing sequence. Then n converges weakly to a

measure t, and t., U decreases to tU.
The proofs are omitted, as they are quite straightforward.
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