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ON THE COMPARISON OF NORMS OF CONVOLUTORS
ASSOCIATED WITH NONCOMMUTATIVE DYNAMICS

CLAIRE ANANTHARAMAN-DELAROCHE

Abstract. To any action of a locally compact group G on a pair
(A,B) of von Neumann algebras is canonically associated a pair

(πα
A, πα

B) of unitary representations of G. The purpose of this

paper is to provide results allowing to compare the norms of the

operators πα
A(μ) and πα

B(μ) for bounded measures μ on G. We

have a twofold aim. First, to point out that several known facts

in ergodic and representation theory are indeed particular cases

of general results about (πα
A, πα

B). Second, under amenability

assumptions, to obtain transference of inequalities that will be
useful in noncommutative ergodic theory.

1. Introduction

Given a unitary representation π of a locally compact group G on a Hilbert
space H and a bounded measure μ on G, we denote by π(μ) the operator∫

G
π(s)dμ(s) acting on H. It has long been known that estimates of the

spectral radius r(π(μ)) or of the norm ‖π(μ)‖ give useful information.
A first observation (often referred to as the “Herz majorization principle”),

asserts that for any locally compact group G, any closed subgroup H of G
and any positive bounded measure μ on G, one has ‖λG(μ)‖ ≤ ‖λG/H(μ)‖
(and, therefore, r(λG(μ)) ≤ r(λG/H(μ)) as well). Here, λG is the left regu-
lar representation and λG/H denotes the quasi-regular representation associ-
ated with H , that is the unitary representation of G on L2(G/H) defined
by left translations. More generally, given a representation π of H , one has

‖IndG
H π(μ)‖ ≤ ‖λG/H(μ)‖, where IndG

H π is the representation induced of π,
from H to G (see [14], [24]).
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For a discrete group and a finitely supported symmetric probability mea-
sure μ, the convolution operator λG(μ) had been investigated by Kesten [26]
in connection with the random walk defined by μ. Kesten had already ob-
served that r(λG(μ)) ≤ r(λG/H(μ)) when H is a normal subgroup. Moreover
in this seminal paper [26], he proved that the normal subgroup H is (what is
now called) amenable if and only if there exists an adapted symmetric prob-
ability measure μ on G (i.e., the support of μ generates the group G) such
that r(λG/H(μ)) = r(λG(μ)).

Note that in terms of operator algebras, these results concern the pair

L∞(G/H) ⊂ L∞(G)

of Abelian von Neumann algebras, acted upon by left translations of G.
In [2], to which this paper is a sequel, we considered G-actions on pairs

B ⊂ A of Abelian von Neumann algebras. Our purpose in this paper is to
deal more generally with G-actions on any pair B ⊂ A of von Neumann al-
gebras. In order to state the problems we are interested in, we need first to
introduce some notations and definitions. Let A be a von Neumann algebra
and α a continuous homomorphism from a locally compact group G into the
group Aut(A) of automorphisms of A. To such a dynamical system (A,G,α)
is associated a unitary representation πα

A on the noncommutative L2-space
L2(A), well defined, up to equivalence (see Section 2). Two particular ex-
amples are well known. The first one is when A = L∞(Y,m) is an Abelian
von Neumann algebra. In this case, α is an action on Y which preserves the
class of the measure m and πα

A is the corresponding unitary representation
in L2(Y,m). When α is the action of G on A = L∞(G/H) by translations,
we get πα

A = λG/H . The second important example concerns the von Neu-
mann algebra A = B(H) of all bounded operators on H and, for αs, s ∈ G,
the automorphism T �→ Adπ(s)(T ) = π(s)Tπ(s)∗ of B(H), where π is a given
unitary representation of G on a Hilbert space H. Then the representation
πα

A is equivalent to the tensor product π ⊗ π of π with its conjugate π.
By a pair (A,B) of von Neumann algebras, we mean that B is a von

Neumann subalgebra of A. An action α of G on (A,B) is a dynamical system
(A,G,α) such that B is globally G-invariant (we still denote by the same letter
the restricted action to B). Our first result is that the “Herz majorization
principle” is valid for every pair (πα

A, πα
B). Namely, see the following theorem.

Theorem (Theorem 3.1). Let α be an action of G on a pair (A,B). For
every positive bounded measure μ on G we have

‖λG(μ)‖ ≤ ‖πα
A(μ)‖ ≤ ‖πα

B(μ)‖ ≤ μ(G).

The proof is based on the fact that representations of the form πα
A have

enough G-positive vectors, that is vectors ξ such that 〈ξ, πα
A(s)ξ〉 ≥ 0 for all s ∈

G. Indeed, every normal positive form1 ϕ on A is represented by a well-defined

1 We shall denote by A+
∗ the cone of such forms.
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G-positive vector ϕ1/2 in the space L2(A) of the representation πα
A and the

set L2(A)+ of such vectors is a self-dual cone in L2(A). The second ingredient
of the proof is the inequality 〈ϕ1/2, ψ1/2〉L2(A) ≤ 〈(ϕ|B

)1/2, (ψ|B
)1/2〉L2(B) for

ϕ,ψ ∈ A+
∗ (where ϕ|B

, ψ|B
are the restrictions of ϕ and ψ to B), resulting

from a variational formula due to Kosaki [30] (see Section 2 for notations and
details).

In the case where A = B ⊗ M is the tensor product of two von Neumann
algebras (with tensor product action), we get ‖(πα

B ⊗ πα
M )(μ)‖ ≤ ‖πα

B(μ)‖ for
every positive bounded measure μ. In fact, this result remains true for any rep-
resentation π instead of πα

M and any representation ρ having a separating fam-
ily of G-positive vectors instead of πα

B (see Theorem 3.3). In particular, taking
π = λG and using Fell’s absorption principle, one gets ‖λG(μ)‖ ≤ ‖ρ(μ)‖. This
inequality was proved by Pisier [35] when ρ is of the form π ⊗ π. Later, Shalom
observed in [36] that this inequality holds for any representation having a
nonzero G-positive vector.

Whereas the Herz majorization principle involves positivity properties, ex-
tensions of Kesten’s result express amenability phenomena. We say that the
action α of G on (A,B) is amenable if there exists a norm one projection2

E from A onto B such that αs ◦ E = E ◦ αs for s ∈ G. Two special cases
are particularly important. When B = C, one says that the G-action on A
is coamenable (or amenable in the sense of Greenleaf ). When one considers
the pair (A ⊗ L∞(G),A) with the tensor product action of the action on A
by left translations on L∞(G), one says that the G-action on A is amenable
(or amenable in the sense of Zimmer). Of course, any action of an amenable
group on (A,B) is amenable.

Let us consider an action α of G on (A,B). The existence of a normal
G-equivariant conditional expectation from A onto B easily implies that πα

B

is a subrepresentation of πα
A. It is therefore very natural to wonder whether

the amenability of the action implies that πα
B is weakly contained in πα

A. We
believe that this result is true in general, but we can only solve the problem in
several particular cases. Recall that a representation π1 is said to be weakly
contained in a representation π2 (and we write π1 ≺ π2) if for every f ∈ L1(G)
we have ‖π1(f)‖ ≤ ‖π2(f)‖ (or, equivalently, if ‖π1(μ)‖ ≤ ‖π2(μ)‖ for every
bounded measure μ on G).

Borrowing ideas used by Connes [10] in order to show that injective von
Neumann algebras are semidiscrete, we obtain the following theorem.

Theorem (Theorem 4.6). Let α be an amenable action of G on a pair
(A,B) of von Neumann algebras. We assume that there is a faithful normal
invariant state ϕ on B. Then πα

B is weakly contained in πα
A.

2 A norm one projection E from A onto B is also called a conditional expectation. It is

automatically positive and satisfies E(b1ab2) = b1E(a)b2 for a ∈ A and b1, b2 ∈ B.
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In presence of “enough” normal conditional expectations from A onto B,
there is another approach aiming to approximate conditional expectations by
normal ones. This gives a stronger weak containment property. For instance,
we get the following theorem.

Theorem (Theorems 4.8, 4.14). Let α be an amenable action of G on a
pair (A,B). We assume either that B is contained in the centre Z(A) of A
or that A is a tensor product B ⊗ M of von Neumann algebras (with tensor
product action). There exists a net (Vi) of isometries from L2(B) into L2(A)
such that for every ξ ∈ L2(B) one has

lim
i

‖πα
A(s)Viξ − Viπ

α
B(s)ξ‖ = 0

uniformly on compact subsets of G. In particular, πα
B is weakly contained in

πα
A.

There are more general statements (see Remark 4.13). However, we are
mainly interested in the case (A ⊗ L∞(G),A). As a consequence of the pre-
vious theorem, we see that if an action α on A is amenable, then for every
bounded measure μ we have

‖πα
A(μ)‖ ≤ ‖λG(μ)‖,(1)

these inequality being an equality when μ is positive.
Note that (1) is a transference of norm estimates from the regular repre-

sentation to πα
A, a classical result when A is Abelian and G amenable (see

[8]). For an amenable action of G on an Abelian von Neumann algebra A, this
inequality was obtained in [28] when G is discrete and in [2] for any locally
compact group. It gives an upper bound for ‖πα

A(μ)‖ only depending on μ,
particularly useful in ergodic theory (for instance in the study of entropy, see
[34, Proposition 4.1]).

As observed in [2], there is no hope for recovering in general the amenability
of the action on a pair (A,B) from the weak containment πα

B ≺ πα
A, even in

the commutative setting. Let us consider, for example, the case A = L∞(G)
and B = L∞(G/H). We proved in [2, Proposition 4.2.1, Corollary 4.4.5] the
equivalence of the following three conditions:

• the action of G on (L∞(G),L∞(G/H)) is amenable;
• H is amenable;
• λG/H ≺ λG and the trivial representation ιH of H is weakly contained in

the restriction of λG/H to H .

For H = SL(2,R) and G = SL(3,R), one has λG/H ≺ λG although H is not
amenable (see [2, Section 4.2]).

However, when B = C, the situation is completely understood. Recall that
a bounded measure μ is said to be adapted if the closed subgroup generated
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by the support Supp(μ) of μ is G. Observe that for any representation π
of G and any probability measure μ on G, it is easily seen that r(π(μ)) = 1
whenever the trivial representation ιG of G is weakly contained in π. However,
the existence of an adapted probability measure μ on G with r(π(μ)) = 1 does
not always imply ιG ≺ π.

Theorem (5.3). Let (A,G,α) be a dynamical system. The following con-
ditions are equivalent:

(i) there exists a G-invariant state on A (i.e., the action is coamenable);
(ii) the trivial representation ιG is weakly contained in πα

A;
(iii) there exists an adapted probability measure μ on G with r(πα

A(μ)) = 1.

The above theorem is well known when A is an Abelian von Neumann
algebra. First, extending Kesten’s and Day’s results [11], [26], [27], Derriennic
and Guivarc’h [12] proved the equivalence between (ii) and (iii) when A =
L∞(G) (see also [7]). In this case, the equivalence between (i) and (ii) is the
Hulanicki–Reiter theorem (see [18, Theorem 3.5.2]). Recall that G is then
said to be an amenable group.

Next, the equivalence between (i) and (ii) was obtained by Eymard [15] for
G-homogeneous spaces G/H . Later, Guivarc’h [20] proved that the previous
theorem holds for any action on an Abelian von Neumann algebra.

Another particular case of the above theorem concerns the von Neumann
algebra A = B(H) of all bounded operators on H and αs = Adπ(s), s ∈ G,
where π is a given unitary representation of G on H. In this situation the
equivalence of (i) and (ii) is due to Bekka [5] and the equivalence of the two
last assertions is a recent result of Bekka and Guivarc’h [6].3

The equivalence between (i) and (ii) for any dynamical system (A,G,α) is
proved by Kirchberg in [29, Sublemma 7.2.1]. As an interesting consequence
of this fact, note that the weak containment of the trivial representation ιG
in πα

A is independent of the topology of G.
This paper is organized as follows. We begin by recalling the basic facts

on standard forms of von Neumann algebras. In Section 3, we prove non-
commutative Herz majorization theorems. In Section 4, we study the weak
containment property πα

B ≺ πα
A for an amenable action α of G on (A,B). Fi-

nally, in the last section, we consider more specifically the cases of amenable
and coamenable actions.

For fundamentals of the theory of von Neumann algebras, we refer to
[13], [31]. In the whole paper, we shall only consider second countable lo-
cally compact groups, σ-finite measured spaces and von Neumann algebras
with separable preduals, although these assumptions are not always neces-
sary.

3 Representations π such that ιG ≺ π ⊗ π are called amenable.
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2. Preliminaries on standard forms and noncommutative
dynamical systems

2.1. Standard form of a von Neumann algebra. Let M be a von Neu-
mann algebra. A standard form of M is a normal faithful representation of M
in a Hilbert space HM endowed with a conjugate linear isometric involution
JM : HM → HM and a self-dual cone PM ⊂ HM such that:

• JMMJM = M ′ (where M ′ is the commutant of M in B(HM );
• JMcJM = c∗ for all c ∈ M ∩ M ′;
• JMξ = ξ for all ξ ∈ PM ;
• xJMxJM (PM ) ⊂ PM for all x ∈ M .

Such a standard form (M, HM , JM , PM ) exists and is unique, up to isomor-
phism. We refer to [21] for details about this subject. Given a faithful normal
state ϕ on M , one may take the standard representation to be the Gelfand–
Naimark–Segal representation on L2(M,ϕ). Denoting by ξϕ the unit of M ,
viewed in L2(M,ϕ), then JM is the antilinear isometry Jϕ given by the polar
decomposition of the closure of Sϕ : xξϕ �→ x∗ξϕ, x ∈ M . Moreover, PM is the
norm closure Pϕ of {xJϕxJϕξϕ : x ∈ M }.

Usually we shall fix a standard form, denoted by (M,L2(M), JM , PM ), or
even (M,L2(M), J,P ) for simplicity. The space L2(M) is ordered by the
positive cone P . This cone is self-dual in the sense that

P = {ξ ∈ L2(M) : 〈ξ, η〉 ≥ 0, ∀η ∈ P }.

Recall also that every element ξ ∈ L2(M) can be written in a unique way as
ξ = u|ξ| where |ξ| ∈ PM and u is a partial isometry in M such that u∗u is the
support of ξ. This decomposition is called the polar decomposition of ξ.

The Banach space M∗ of all normal forms on M is the predual of M .
A crucial fact is that every normal positive form φ ∈ M+

∗ can be uniquely
written as φ = ωξ, with ξ ∈ PM .4 It is also very suggestive to denote φ1/2 this
vector ξ.

We shall need a concrete description of (L2(M), J,P ). We refer to [22]
and [40] for the details concerning the following facts. We fix a concrete
representation of M on a Hilbert space H. Let σ : t �→ σψ

t be the modular
automorphism group of a normal semifinite faithful weight ψ and let

M �σ R ⊂ B
(
L2(R) ⊗ H

)
be the corresponding crossed product. We denote by σ̂ the dual action of R

on M �σ R. Recall that M �σ R has a canonical normal semifinite trace τ
satisfying τ ◦ σ̂t = e−tτ for all t ∈ R. Following the point of view of Haagerup,
Lp(M) is defined, for p ≥ 1, as a subspace of the ∗-algebra M(M �σ R) formed

4 Where ωξ is the vector state x �→ 〈ξ, xξ〉 = ωξ(x).
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by the closed densely defined operators on L2(R) ⊗ H, affiliated with M �σ R,
that are measurable with respect to τ (see [40] or [39]). Namely,

Lp(M) = {x ∈ M(M �σ R) : σ̂t(x) = e−t/px, ∀t ∈ R}.

In this picture, we have a description of (M,L2(M), J,P ) as follows: L2(M)
is defined, as just said, as a space of operators, its positive cone is the cone
of all positive operators in L2(M), J is the adjoint map, and the polar de-
composition is the usual one. The spaces L1(M) and L∞(M) are canonically
isomorphic to the predual M∗ of M and to M, respectively.

Lemma 2.1. Let (M,L2(M), J,P ) be a standard form of M . Then for
ξ, η ∈ L2(M), we have

| 〈ξ, η〉 |2 ≤ 〈|ξ|, |η|〉〈|Jξ|, |Jη| 〉.

Proof. The proof is exactly that of [13, Lemma 2, page 105]. We use the
above description of the standard form. We need to introduce the linear
functional

tr : h ∈ L1(M) �→ ϕh(1),

where ϕh denotes the normal linear form on M associated with h. We recall
that if h ∈ Lp(M) and k ∈ Lq(M), with 1/p + 1/q = 1, then tr(hk) = tr(kh).
Moreover, for ξ, η ∈ L2(M) the scalar product is given by 〈ξ, η〉 = tr(ξ∗η).
The functional tr plays the role of the usual trace on the space of trace-class
operators on a Hilbert space.

Let ξ = u|ξ| and η = v|η| be the polar decompositions of ξ and η, respec-
tively. Then the polar decomposition of Jξ is Jξ = u∗(u(JuJ)|ξ|) since Jν = ν
for ν ∈ P , so that |Jξ| = u|ξ|u∗. Similarly, we have |Jη| = v|η|v∗. Using the
tracial property of tr and the Cauchy–Schwarz inequality, we proceed exactly
as in [13, Lemma 2, page 105] to get

| 〈ξ, η〉| ≤ tr(|ξ| |η|)1/2tr(|Jη| |Jξ|)1/2.

�

2.2. Standard form of a pair of von Neumann algebras. Now let B
be a von Neumann subalgebra of A and let us examine some results relating
the standard form (B,L2(B), JB, PB) of B to that of A.

Let us consider first a pair (A,B) such that there exists a normal faithful
conditional expectation E from A onto B. Let us choose a faithful normal
state ψ on B and set ϕ = ψ ◦ E. The Hilbert space L2(B,ψ) is canonically
embedded into L2(A,ϕ) and the standard form of B is obtained from that of A
by restriction to L2(B,ψ). Indeed, one checks that L2(B,ψ) is stable under
Jϕ and that Jψ is the restriction of Jϕ to L2(B,ψ). Moreover, Pψ = Pϕ ∩
L2(B,ψ) and the standard representation of B into L2(B,ψ) is the restriction
of the standard representation of A into L2(A,ϕ) (see, for instance [37, page
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130]). For every ξ, η ∈ L2(B,ψ) and a ∈ A, one has 〈ξ,E(a)η〉 = 〈ξ, aη〉. More
generally, we shall need the following lemma.

Lemma 2.2. Let E be a normal conditional expectation from A onto B.
There exists a unique positive isometry qE (i.e., sending L2(B)+ into L2(A)+)
from L2(B) into L2(A) such that 〈ξ,E(a)η〉 = 〈qE(ξ), aqE(η)〉 for all a ∈ A.

Proof. The uniqueness of qE is immediate since for ξ ∈ L2(B)+, the normal
form ωξ ◦ E is uniquely implemented by qE(ξ) ∈ L2(A)+. To prove the exis-
tence of qE we introduce the support e of E, that is the smallest projection
in A with E(1 − e) = 0. We have e ∈ A ∩ B′ and θ : b �→ be is an isomorphism
from B onto Be. Through this isomorphism, we may view the standard form
of B as represented into L2(Be) which is embedded in L2(eAe) by the previ-
ous remarks applied to the faithful normal conditional expectation a �→ eE(a)
from eAe onto eB. Now L2(eAe) is obviously included into L2(A). The
composition of all these isometries give the required qE : L2(B) → L2(A). �

In the other direction, we shall need the map p from L2(A)+ into L2(B)+

defined by
〈ξ, bξ〉 = 〈p(ξ), bp(ξ)〉

for all b ∈ B. In other terms, for ϕ ∈ A+
∗ , we have p(ϕ1/2) = (ϕ|B

)1/2.

Example 2.3. (a) Assume that B is a von Neumann subalgebra of Z(A).
We write B = L∞(X,m) and A =

∫ ⊕
X

A(x)dm(x), so that L2(A) =∫ ⊕
X

L2(A(x))dm(x) (see [38]). Let ξ =
∫ ⊕

X
ξ(x)dm(x) be an element of L2(A)+.

Then p(ξ) is the function x �→ ‖ξ(x)‖2, belonging to L2(X,m)+.
(b) Assume that A is a finite von Neumann algebra, equipped with a faith-

ful normal trace τ and let E be the faithful normal conditional expectation
from A onto B such that τ ◦ E = τ . Then one has A+ ⊂ L2(A,τ)+ and
B+ ⊂ L2(B,τ|B

)+. For a ∈ A+, one checks that p(a) = E(a2)1/2.
(c) Take A = B(H) and B = C. Let ϕ = Tr(h·) ∈ B(H)+∗ where h is a

positive trace-class operator on H. Then p(ϕ1/2) = p(h1/2) = ‖h1/2‖2.

Lemma 2.4. The map p : L2(A)+ → L2(B)+ is norm preserving and we
have

〈ξ, η〉 ≤ 〈p(ξ), p(η)〉
for all ξ, η ∈ L2(A)+.

Proof. Let ϕ,ψ ∈ L1(A)+ and let Δϕ,ψ be the unique positive self-adjoint
operator on L2(A) such that JΔ1/2

ϕ,ψaψ1/2 = a∗ϕ1/2 for all a ∈ A. Using the
formula

√
λ =

1
π

∫ +∞

0

λ

λ + t

dt√
t
,

we get

〈ϕ1/2, ψ1/2〉 = 〈Δ1/2
ϕ,ψψ1/2, ψ1/2〉
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=
1
π

∫ +∞

0

〈Δϕ,ψ(Δϕ,ψ + t)−1ψ1/2, ψ1/2〉 dt√
t
.

A quadratic interpolation method gives

〈Δϕ,ψ(Δϕ,ψ + t)−1ψ1/2, ψ1/2〉 = inf{ϕ(yy∗)/t + ψ(z∗z)},(2)

where the infimum is taken on the pairs (y, z) ∈ A2 such that y + z = 1 (see
[30, Lemma 2.1] and the proof of the Wigner–Yanase–Dyson–Lieb theorem [30,
Theorem 5.2]). We conclude by observing that the expression (2) obviously
increases when ϕ and ψ are replaced by their restriction to B. �

Remark 2.5. In Examples 2.3(a) and (c), the above lemma is immediately
obtained by Cauchy–Schwarz inequality. Applied to Example 2.3(b), this
lemma gives the following inequality:

∀x, y ∈ A+, τ(xy) ≤ τ(E(x2)1/2E(y2)1/2).

2.3. Unitary implementation of automorphisms. Finally, let us recall a
very important property of standard forms. Let Aut(M) be the automorphism
group of the von Neumann algebra M and let (M,L2(M), J,P ) be a fixed stan-
dard form. For every γ ∈ Aut(M), there is a unique u(γ) in the unitary group
U (L2(M)) such that u(γ)(P ) ⊂ P , Ju(γ) = u(γ)J and γ(x) = u(γ)xu(γ)∗ for
all x ∈ M . This unitary is called the canonical implementation of γ (see [21,
Theorem 3.2]).

The group Aut(M) acts on M∗ by (γ,ϕ) �→ ϕ ◦ γ−1. We equip it with the
topology of pointwise norm convergence on M∗. Then the map γ �→ u(γ) is
a continuous homomorphism from Aut(M) into the unitary group U (L2(M))
equipped with the strong operator topology [21, Proposition 3.6].

Lemma 2.6. Let (A,B) be a pair of von Neumann algebras and γ ∈ Aut(A)
such that γ(B) = B. We fix standard forms of A and B and denote by uA(γ)
and uB(γ) the unitary implementations of γ and of its restriction to B, re-
spectively:

(i) We have p ◦ uA(γ)(ξ) = uB(γ) ◦ p(ξ) for every ξ ∈ L2(A)+.
(ii) Let E be a normal conditional expectation from A onto B and set

γ · E = γ ◦ E ◦ γ−1. Then qγ·E = uA(γ) ◦ qE ◦ uB(γ)∗.

Proof. Immediate. �

2.4. Representations defined by noncommutative dynamical sys-
tems. An action of a locally compact group G on a von Neumann algebra M
is a continuous homomorphism s �→ αs from G into Aut(M). We also say that
(M,G,α) is a dynamical system. We fix a standard form of M and for s ∈ G,
we denote by πα

M (s) the canonical unitary u(αs) implementing αs. Then πα
M

is a unitary representation of G, that is, a continuous homomorphism from G
into U (L2(M)). Note that πα

M is well defined, up to equivalence.
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Observe that every ξ ∈ PM is G-positive in the sense that for all s ∈ G we
have 〈ξ, πα

M (s)ξ〉 ≥ 0.
Note also that the set of representations of the form πα

M is stable under
direct sums and tensor products. Furthermore, each representation πα

M is
equivalent to its conjugate.

Example 2.7. (a) Let X be a standard Borel space with a Borel left G-
action (s,x) ∈ G × X �→ sx ∈ X . When equipped with a G-quasi-invariant
measure m, we say that (X,G,m) is a (nonsingular) measured G-space. To
such a measured G-space is associated the dynamical system (L∞(X,m),G,α)
where αs(f)(x) = f(s−1x) for f ∈ L∞(X,m), s ∈ G, x ∈ X .

We denote by r (or rX in case of ambiguity) the Radon–Nikodým derivative
defined by

∀s ∈ G, ∀f ∈ L1(X,m),
∫

X

f(s−1x)r(x, s)dm(x) =
∫

X

f(x)dm(x).

Recall that (L∞(X,m),L2(X,m), J,L2(X,m)+) is a standard form of
L∞(X,m) (where J is the complex conjugation and L2(X,m)+ is the cone
of nonnegative functions in L2(X,m)). The unitary representation πα

L∞(X,m)

(rather denoted πX) associated with the dynamical system (L∞(X,m),G,α)
is defined by

πX(s)ξ(x) =
√

r(x, s)ξ(s−1x)

for ξ ∈ L2(X,m) and (s,x) ∈ G × X .
(b) Let π be a representation of a locally compact group G in a Hilbert

space H. We consider the dynamical system (M,G,α) where M is the von
Neumann algebra B(H) of all bounded operators on H and α is the action
such that αs(T ) = π(s)Tπ(s)∗ for T ∈ B(H) and s ∈ G. A standard form
for B(H) is (B(H), H ⊗ H, J, (H ⊗ H)+) where H ⊗ H is canonically identified
with the Hilbert space of Hilbert–Schmidt operators, J is the adjoint operator
(also described as J : ξ ⊗ η �→ η ⊗ ξ), and (H ⊗ H)+ is the cone of nonnegative
Hilbert–Schmidt operators. The canonical representation πα

B(H) canonically
associated with (M,G,α) is π ⊗ π. This representation acts on the space of
Hilbert–Schmidt operators by

π ⊗ π(s)(T ) = π(s)Tπ(s)∗.

(c) More generally, let M be a von Neumann algebra and s �→ π(s) be a
continuous representation on L2(M) with π(s) ∈ U (M) for all s ∈ G. Denote
by α the corresponding action on M by inner automorphisms, that is αs =
Adπ(s) for s ∈ G. Then πα

M (s) = π(s)JMπ(s)JM .
In the particular case where M = L(G) is the group von Neumann algebra

and π = λG is the left regular representation, πα
M is the conjugation represen-

tation γG.
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3. A noncommutative “Herz majorization principle”

An action of a locally compact group G on the pair (A,B) of von Neumann
algebras is a dynamical system (A,G,α) such that the von Neumann subal-
gebra B is left globally invariant under the action. The restricted action of G
on B will still be denoted by α.

Theorem 3.1. Let α be an action of the locally compact group G on (A,B).
Then for every probability measure μ on G, we have

‖πα
A(μ)‖ ≤ ‖πα

B(μ)‖.(3)

The proof uses the following well-known way of computing norms.

Lemma 3.2. Let T ∈ B(H) be a positive operator on a Hilbert space H and
let S ⊂ H be a separating family of norm one vectors (i.e., for S ∈ B(H),
Sξ = 0 for all ξ ∈ S implies S = 0). Then

‖T ‖ = lim
n→∞

sup
ξ∈S

ωξ(Tn)1/n.

Proof. Let μξ be the spectral measure of T on the spectrum σ(T ) ⊂ [0, ‖T ‖],
associated with ξ. Since the family S is separating, the union of the supports
of μξ , ξ ∈ S , is dense into σ(T ). Given ε > 0, let ξ0 ∈ S be such that μξ0([‖T ‖ −
ε, ‖T ‖]) > 0. We have

‖T ‖ ≥ sup
ξ∈S

ωξ(Tn)1/n ≥ (‖T ‖ − ε)μξ0([‖T ‖ − ε, ‖T ‖])1/n,

and the conclusion follows immediately. �

Proof of Theorem 3.1. We shall apply the previous lemma with T = πα
A(ν),

ν = μ̌ ∗ μ, and for S we take the set of norm one vectors in L2(A)+. For every
n, we have

‖πα
A(μ)‖2 = lim

n→∞
sup
ξ∈S

ωξ(πα
A(ν∗n))1/n

(where ν∗n = ν ∗ · · · ∗ ν is the n-fold convolution product) and

ωξ(πα
A(ν∗n)) =

∫
〈ξ, πα

A(t)ξ〉 dν∗n(t)

≤
∫

〈p(ξ), p(πα
A(t)ξ)〉 dν∗n(t)

=
∫

〈p(ξ), πα
B(t)(p(ξ))〉 dν∗n(t)

= ωp(ξ)(πα
B(ν∗n)) ≤ ‖πα

B(μ)‖2n

by Lemmas 2.4 and 2.6. The inequality (3) is then an immediate consequence
of Lemma 3.2. �
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When A is the tensor product of B by another von Neumann algebra C,
with a tensor product action α = β ⊗ γ, it follows from Theorem 3.1 that

‖πβ
B ⊗ πγ

C(μ)‖ ≤ min{ ‖πβ
B(μ)‖, ‖πγ

C(μ)‖}
for every probability measure μ. In fact, this is also a particular case of the
following more general result.

Theorem 3.3. Let G be a locally compact group, ρ a representation having
a separating set P of norm one G-positive vectors and π any representation.
Then for every probability measure μ on G, we have

‖(ρ ⊗ π)(μ)‖ ≤ ‖ρ(μ)‖.

Proof. We use again Lemma 3.2 with T = (ρ ⊗ π)(μ̌ ∗ μ) and

S = {ξ ⊗ η : ξ ∈ P , η ∈ H(π), ‖η‖ = 1}
where H(π) is the Hilbert space of the representation π. We have

‖(ρ ⊗ π)(μ)‖2 = lim
n→∞

sup
ξ∈S

∥∥ωξ

(
(ρ ⊗ π)(ν∗n)

)∥∥1/n
.

Observe that for ξ ⊗ η ∈ S ,

ωξ⊗η

(
(ρ ⊗ π)(ν∗n)

)
=

∫
ωξ(ρ(t))ωη(π(t))dν∗n(t)

≤
∫

ωξ(ρ(t))dν∗n(t)

= ωξ(ρ(ν∗n)) ≤ ‖ρ(μ)‖2n,

due to the positivity of ωξ(ρ(t)). The conclusion follows immediately. �
Corollary 3.4 ([36, Lemma 2.3]). Let ρ be a representation of G having

a nonzero G-positive vector. Then for every probability measure μ on G, we
have

‖λG(μ)‖ ≤ ‖ρ(μ)‖.

Proof. Let ξ ∈ H(ρ) be a norm one G-positive vector for ρ. Then P = ρ(G)ξ
is a set of G-positive vectors. Let K be the Hilbert subspace of H(ρ) generated
by P . It is G-invariant and we denote by ρ|K

the representation of G obtained
by restriction. We apply Theorem 3.3 with ρ|K

instead of ρ and π = λG. We
have

‖(ρ|K
⊗ λG)(μ)‖ ≤ ‖ρ|K

(μ)‖ ≤ ‖ρ(μ)‖.

Moreover, a well-known observation of J. M. G. Fell [16] says that the regular
representation absorbs any other representation. In particular, ρ|K

⊗ λG is
equivalent to a multiple of λG and, therefore, ‖(ρ|K

⊗ λG)(μ)‖ = ‖λG(μ)‖. �
Corollary 3.5 ([32], [35]). Let π be a representation of G. Then for every

probability measure μ on G, we have ‖λG(μ)‖ ≤ ‖(π ⊗ π)(μ)‖. Moreover, if π
has a separating set of G-positive vectors, then ‖(π ⊗ π)(μ)‖ ≤ ‖π(μ)‖.
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Proof. The first inequality follows from Corollary 3.4 and the second from
Theorem 3.3. �

Remark 3.6. Let U1, . . . ,Un be n unitary operators in a Hilbert space and
let c1, . . . , cn, d1, . . . , dn be 2n nonnegative real numbers. Let us denote by
g1, . . . , gn the generators of the free group Fn. As a particular case of the
previous corollary, one finds Pisier’s inequality [35]:∥∥∥∥∥

n∑
i=1

(
ciλFn(gi) + diλFn(gi)∗)∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

i=1

(ciUi ⊗ U i + diU
∗
i ⊗ U

∗
i )

∥∥∥∥∥.

The left-hand side of this inequality is 2
√

2n − 1 when ci = di = 1 for every i
(due to Kesten [26]). It is equal to 2

√
n − 1 when ci = 1 and di = 0 for every

i (due to Akemann and Ostrand [4]).

To conclude this section, let us explain how the inequality ‖πα
A(μ)‖ ≤

‖πα
B(μ)‖, when μ is a probability measure and B ⊂ Z(A), is a particular

case of the classical “Herz majorization principle”.
First, we need to recall some definitions. Let (X,m) be a measured space

and let H = {H(x) : x ∈ X} be a m-measurable field of Hilbert spaces on
X (see [13, Chapter II]). We denote by L2(H) =

∫ ⊕
X

H(x)dm(x) the direct
integral Hilbert space. For x, y ∈ X , the set of bounded linear maps from
H(x) to H(y) will be denoted by B(H(x), H(y)) and Iso(H(x), H(y)) will be
its subset of Hilbert space isomorphisms.

Definition 3.7. Let (X,G,m) be a measured G-space and H as above.
A (unitary) cocycle representation of (X,G,m), acting on the measurable field
H, is a map

U : (x, s) ∈ X × G �→ U(x, s) ∈ B(H(s−1x), H(x))

such that:
(a) for each s ∈ G, U(x, s) ∈ Iso(H(s−1x), H(x)) for m-almost every x;
(b) for each (s, t) ∈ G × G, U(x, st) = U(x, s)U(s−1x, t) for m-almost every

x ∈ X ;
(c) for every pair of measurable sections ξ, η of H, and every s ∈ G the map

x �→ 〈η(x),U(x, s)ξ(s−1x)〉 is measurable.

To every cocycle representation U of (X,G,m) is associated a representa-
tion of G, called the induced representation and denoted IndU (or IndX U in
case of ambiguity). Let us recall its definition. If U acts on H, IndU is the
representation into L2(H) defined by

(IndU(s)ξ)(x) =
√

r(x, s)U(x, s)ξ(s−1x)

for ξ ∈ L2(H) and (x, s) ∈ X × G. This extends the classical construction of
the representation induced by a representation of a closed subgroup H , which
amounts to consider the left action of G on G/H .
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The fact that ‖IndU(μ)‖ ≤ ‖πX(μ)‖ when μ is a probability measure is
very easy to prove (see [2, Proposition 2.3.1] for instance).

Now let α be an action of G on a von Neumann algebra A, preserving a
subalgebra B = L∞(X,m) of Z(A). By disintegrating A with respect to B, we
get A =

∫
X

A(x)dm(x) and L2(A) =
∫

X
L2(A(x))dm(x) (see [38]). We know

by [33, Theorem 1] that the action of G on L∞(X,m) has a point realization.
Therefore, we may write πα

B as

πα
B(s)ξ(x) =

√
r(x, s)ξ(s−1x)

for ξ ∈ L2(X,m) and (x, s) ∈ X × G. Thus, we have πα
B = πX . Moreover, by

[19, Proposition 1], there is a cocycle representation UA : (x, s) ∈ X × G �→
UA(x, s) ∈ B(L2(A(s−1x)),L2(A(x))) such that πα

A = IndUA.

4. Representations associated with amenable pairs

Let (A,G,α) be a dynamical system. It is easily checked that the repre-
sentation πα

A has a nonzero invariant vector if and only if there is a normal
invariant state on A. More generally, we have, in one direction the following
proposition.

Proposition 4.1. Let α be an action of G on a pair (A,B) of von Neu-
mann algebras. Assume that there exists a normal G-equivariant conditional
expectation E from A onto B. Then πα

B is a subrepresentation of πα
A.

Proof. This follows immediately from Lemmas 2.2 and 2.6. Indeed, for an
equivariant normal conditional expectation E, the isometry qE of Lemma 2.2
intertwines the representations πα

A and πα
B . �

When the conditional expectation is not required to be normal, we are
led to the following definition, due to Zimmer [41] for pairs of Abelian von
Neumann algebras.

Definition 4.2. We say that an action of G on a pair (A,B) of von
Neumann algebras is amenable if there exists an equivariant conditional ex-
pectation from A onto B.

Let us also recall the definitions of the two following important particular
cases.

Definition 4.3. Let (A,G,α) be a dynamical system:
(i) We say that the action is coamenable if there is a G-invariant state on A.
(ii) We say that the action is amenable if there is a G-equivariant condi-

tional expectation from A ⊗ L∞(G) (with its usual tensor product action)
onto A.

In particular, one of the definitions of amenability for a locally compact
group G is the coamenability of the action on L∞(G) by left translations.
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Let α be an action of G on a pair (A,B). Note that if the action on B
is amenable then, by [1, Proposition 2.5], the action on the pair (A,B) is
amenable whenever there exists a conditional expectation from A onto B.

In this section, we are interested in the following problem:
• does the amenability of the action α on (A,B) imply that πα

B is weakly
contained in πα

A?
We shall only give partial answers. First, we introduce some notations. For
f ∈ L1(G), a ∈ A and ϕ ∈ A∗ we set

f ∗ a =
∫

G

f(s)αs(a)ds, (ϕ ∗ f)(a) = ϕ(f ∗ a).

The left and right translated s · f , f · s of f are defined by

(s · f)(t) = f(s−1t), (f · s)(t) = f(ts−1)Δ(s)−1,

where Δ is the modular function of G. Note that f ∗ (αs(a)) = (f · s) ∗ a and
αs(f ∗ a) = (s · f) ∗ a for a ∈ A.

Let us now recall a useful equivalent definition of amenability using a notion
of invariant conditional expectation which is stronger than equivariance.

Definition 4.4. Let us consider an action α of G on a pair (A,B) of
von Neumann algebras. A topologically invariant conditional expectation is a
conditional expectation E : A → B such that E(f ∗ a) = f ∗ (E(a)) for every
f ∈ L1(G) and every a ∈ A.

The following result is well known (see [1] for instance).

Proposition 4.5. Let G act on (A,B). This action is amenable if and
only if there exists a topologically invariant conditional expectation E : A → B.

4.1. Let us state a first answer to our problem.

Theorem 4.6. Let α be an amenable action of G on a pair (A,B) of von
Neumann algebras. We assume that there is a faithful normal invariant state
ϕ on B. Then πα

B is weakly contained in πα
A.

The proof uses the following key lemma inspired by the very simple proof
given by Connes [10] to show that an injective von Neumann algebra is semi-
discrete.

Lemma 4.7. We keep the assumptions of the previous theorem. Given any
compact subset K of G and ε > 0, there exists a normal state ψ on A such
that

‖ψ|B
− ϕ‖ ≤ ε, sup

s∈K
‖ψ ◦ αs − ψ‖ ≤ ε.

Proof. We follow the proof of [10, Lemma 2]. We introduce the weakly
compact convex set

C = {x − ϕ(x)1 : x ∈ B, ‖x‖ ≤ ε−1}.
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Let E be a topologically invariant conditional expectation from A onto B. The
(nonnormal) state ϕ ◦ E belongs to polar set of the convex hull co(C ∪ A+),
which is weakly closed. Therefore, using the bipolar theorem, we see that
there is a net (ψi) of normal states on A such that limi ψi = ϕ ◦ E in the
weak*-topology and ‖ψi|B

− ϕ‖ ≤ ε for every i.
Now, we use the classical Day–Namioka convexity argument. We denote

by C ′ the convex set of normal states ψ on A such that ‖ψ|B − ϕ‖ ≤ ε. Let
h1, . . . , hk be fixed elements in L1(G)+ with

∫
G

hj(t)dt = 1, 1 ≤ j ≤ k. For
ψ ∈ C ′, we set

bj(ψ) = ψ ∗ hj − ψ.

Let us denote by C ′ ′ the range of C ′ in the product Ak
∗ by the map

ψ �→ (b1(ψ), . . . , bk(ψ)).

Since E is topologically invariant and ϕ is invariant, we have (ϕ ◦ E)(hj ∗ a) =
(ϕ ◦ E)(a) for a ∈ A. Therefore, we know that (0, . . . ,0) belongs to the closure
of C ′ ′ in Ak

∗ equipped with the product topology, where we consider the weak
topology on A∗. Since C ′ ′ is convex, we may replace this latter topology by the
norm topology, using the Hahn–Banach separation theorem. It follows that
there exists a net (ψi) in C ′ such that for every h ∈ L1(G)+ with

∫
G

h(t)dt = 1
we have

lim
i

‖ψi − ψi ∗ h‖A∗ = 0.

Now, we fix h ∈ L1(G)+ such that
∫

G
h(t)dt = 1. Given η > 0, we choose a

neighborhood V of e in G such that ‖h · s − h‖1 ≤ η for s ∈ V . Then we can
find a finite number of elements s1, . . . , sn in G such that K ⊂

⋃n
i=1 V si. We

set s0 = e and we choose ψ ∈ C ′ satisfying

‖ψ − ψ ∗ (h · si)‖A∗ ≤ η

for 0 ≤ i ≤ n.
Let s ∈ K and choose i such that s ∈ V si. We have

‖ψ ∗ h − (ψ ∗ h) ◦ αs‖A∗

≤ ‖ψ ∗ h − ψ‖A∗ + ‖ψ − ψ ∗ (h · s)‖A∗

≤ η + ‖ψ − ψ ∗ (h · si)‖A∗ + ‖ψ ∗ (h · si) − ψ ∗ (h · s)‖A∗

≤ 2η + ‖h − h · (ss−1
i )‖A∗ ≤ 3η.

To conclude, it suffices to take η = ε/3 and to replace ψ by ψ ∗ h. �

Proof of Theorem 4.6. We fix ε > 0 and a compact subset K of G. Let ψ
be a normal state on A as in Lemma 4.7. We set ξϕ = ϕ1/2 ∈ L2(B)+ and
ξψ = ψ1/2 ∈ L2(A)+. Note that ξϕ = πα

B(s)ξϕ for every s ∈ G since ϕ is G-
invariant. On the other hand, ψ ◦ αs corresponds to πα

A(s)ξψ in L2(A)+. It
follows from the Powers–Størmer inequality [21, Lemma 2.10] that

‖ξψ − πα
A(s)ξψ ‖2

2 ≤ ‖ψ − ψ ◦ αs‖A∗ .
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Using the facts that ‖ξψ − πα
A(s)ξψ ‖2 ≤ √

ε and ‖ψ|B
− ϕ‖ ≤ ε, we get for

s ∈ K and b ∈ B,

| 〈bξψ, πα
A(s)bξψ 〉 − 〈bξϕ, πα

B(s)bξϕ〉 |
= | 〈ξψ, b∗αs(b)πα

A(s)ξψ 〉 − 〈ξϕ, b∗αs(b)ξϕ〉 |
≤ | 〈ξψ, b∗αs(b)ξψ 〉 − 〈ξϕ, b∗αs(b)ξϕ〉 | + ‖b‖2

√
ε

≤ ‖b‖2
(
ε +

√
ε
)
.

Finally, we note that Bξϕ is dense in L2(B) since ϕ is faithful. It follows
from the above observations that every coefficient of the representation πα

B is
the limit, uniformly on compact subsets of G, of a net of coefficients of πα

A.
Therefore, we have πα

B ≺ πα
A. �

4.2. We now turn to situations where we can take advantage of the existence
of sufficiently many normal conditional expectations.

Theorem 4.8. Let α be an amenable action of G on a pair (A,B) of von
Neumann algebras. We assume that B is contained in the center Z(A) of A.
Then πα

B is weakly contained in πα
A. More precisely, there exists a net (Vi) of

isometries from L2(B) into L2(A) such that for every ξ ∈ L2(B) one has

lim
i

‖πα
A(s)Viξ − Viπ

α
B(s)ξ‖ = 0

uniformly on compact subsets of G.

This last condition implies the weak containment property, as it is easily
seen in the following lemma.

Lemma 4.9. Let π (resp. ρ) be a representation on H(π) (resp. H(ρ)).
Assume the existence of a net Vi of isometries from H(ρ) into H(π) such that
for every ξ ∈ H(ρ)

lim
i

‖π(s)Viξ − Viρ(s)ξ‖ = 0

uniformly on compact subsets of G. Then ρ is weakly contained in π.

Proof. Let ξ ∈ H(ρ) and f ∈ L1(G). Since Vi is an isometry, we have

‖ρ(f)ξ‖ = ‖Viρ(f)ξ‖
≤ ‖Viρ(f)ξ − π(f)Viξ‖ + ‖π(f)Viξ‖

≤
∫

G

|f(s)| ‖Viρ(s)ξ − π(s)Viξ‖ ds + ‖π(f)‖‖ξ‖.

Since limi

∫
G

|f(s)| ‖Viρ(s)ξ − π(s)Viξ‖ ds = 0 it follows that ‖ρ(f)ξ‖ ≤
‖π(f)‖‖ξ‖. We conclude that ρ is weakly contained in π. �

In order to prove Theorem 4.8, we need some preliminaries. We shall de-
note by BB(A,B) the Banach space of bounded maps F from A into B that
are B-linear in the sense that F (ba) = bF (a) for a ∈ A and b ∈ B. This space
is the dual of the quotient A ⊗̂B B∗ of the projective tensor product A ⊗̂ B∗
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by the vector subspace generated by {a ⊗ bϕ − ab ⊗ ϕ : a ∈ A,b ∈ B,ϕ ∈ B∗ }.
We denote by BB(A,B)+1 the weak*-closed convex subset of positive ele-
ments F ∈ BB(A,B) with F (1) ≤ 1. We want to introduce a weak*-dense
convex subset C in BB(A,B)+1 , consisting of normal maps. To that pur-
pose, we disintegrate A with respect to B = L∞(X,m), that is, we write
A =

∫ ⊕
X

A(x)dm(x) and L2(A) =
∫ ⊕

X
L2(A(x))dm(x). Given a measurable

section ξ : x �→ ξ(x) ∈ L2(A(x)) with ‖ξ(x)‖2 ≤ 1 almost everywhere, we de-
note by �ξ the element of BB(A,B)+1 such that

�ξ(a)(x) = 〈ξ(x), a(x)ξ(x)〉L2(A(x))

for a ∈ A. Obviously, �ξ is a normal element in BB(A,B)+1 and we denote by
C the convex set of such maps �ξ .

Lemma 4.10. (i) The set C is weak*-dense in BB(A,B)+1 .
(ii) Every conditional expectation from A onto B is the weak*-limit of a

net of normal conditional expectations belonging to C.

Proof. Assume that there is an element F ∈ BB(A,B)+1 that is not in the
weak*-closure of C. Using the Hahn–Banach separation theorem, we find an
element Φ =

∑
i ai ⊗ ϕi in Asa⊗̂BB∗sa (where the sum is finite) and r ∈ R

with
〈F,Φ〉 > r and, ∀�ξ ∈ C, 〈�ξ,Φ〉 ≤ r.

By polar decomposition, we may assume that ϕi ≥ 0 for all i. Moreover,
setting ϕ =

∑
i ϕi, thanks to the Radon–Nikodým theorem we easily put Φ in

the form a ⊗ ϕ with a ∈ Asa. Let e be a spectral projection of a with ae = a+,
the positive part of a. Obviously, we have 〈F (a+), ϕ〉 ≥ 〈F (a), ϕ〉 = 〈F,Φ〉 > r.

On the other hand, observe that for every �ξ ∈ C the map b �→ �ξ(eb) =
�ξe(b) still belongs to C. Therefore, writing ϕ as h ∈ L1(X,m)+, we have∫

X

h(x)〈ξ(x), a+(x)ξ(x)〉 dm(x) = 〈�ξe,Φ〉 ≤ r.

Let (ξn) be a sequence of measurable sections such that {ξn(x) : n ∈ N} is
dense in the unit ball of L2(A(x)) for almost every x ∈ X . Let us fix ε > 0. We
may find a measurable partition (Xn,ε)n of X such that for every x ∈ Xn,ε we
have 〈ξn(x), a+(x)ξn(x)〉 ≥ ‖a+(x)‖(1 − ε). For x ∈ Xn,ε, we set ξ(x) = ξn(x).
Then we have

r ≥
∫

X

h(x)〈ξ(x), a+(x)ξ(x)〉 dm(x) ≥ (1 − ε)
∫

X

h(x)‖a+(x)‖ dm(x).

By letting ε go to 0 we get r ≥
∫

X
h(x)‖a+(x)‖ dm(x).

Since F is positive, B-linear with F (1) ≤ 1, we get F (a+)(x) ≤ ‖a+(x)‖
a.e. and, therefore,

r < 〈F (a+), ϕ〉 =
∫

X

h(x)F (a+)(x)dm(x) ≤
∫

X

h(x)‖a+(x)‖ dm(x) ≤ r.
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The contradiction thus obtained concludes the proof of (i).
If F (1) = 1, it is easy to see that we may approximate F by elements �ξ

with ‖ξ(x)‖2 = 1 a.e. �

We shall denote by E (A,B) ⊂ BB(A,B)+1 the subset of all normal condi-
tional expectations from A onto B.

Lemma 4.11. Let α be an action of G on (A,B) where B ⊂ Z(A). The
following conditions are equivalent:

(i) There exists a G-equivariant conditional expectation from A onto B.
(ii) There exists a net (Φi) of normal conditional expectations from A onto

B such that for ϕ ∈ B∗, f ∈ L1(G) and a ∈ A we have

lim
i

〈ϕ,f ∗ (Φi(a)) − Φi(f ∗ a)〉 = 0

Proof. (i) ⇒ (ii). Let E be a topologically invariant conditional expectation
and let (Φi) be a net in E (A,B) such that limi Φi = E in the weak*-topology,
whose existence was proved in Lemma 4.10. Assertion (ii) follows immediately
from the invariance of E.

The converse is also obvious. �

To go further, let us introduce some more notations. For s ∈ G and F ∈
BB(A,B) we set s · F = αs ◦ F ◦ αs−1 . Note that s · F ∈ E (A,B) whenever F ∈
E (A,B). Finally, for F ∈ E (A,B) and f ∈ L1(G), we define f ∗ F ∈ E (A,B)
by

∀a ∈ A, (f ∗ F )(a) =
∫

G

f(s)(s · F )(a)ds.

Lemma 4.12. Let α be an action on a pair (A,B). The following conditions
are equivalent:

(i) There exists a net (Φi) in E (A,B) such that for every ϕ ∈ B∗, f ∈
L1(G) and a ∈ A we have

lim
i

〈ϕ,f ∗ (Φi(a)) − Φi(f ∗ a)〉 = 0.

(ii) There exists a net (Φi) in E (A,B) such that for every ϕ ∈ B∗ and
every f ∈ L1(G) with

∫
G

f(s)ds = 1 we have

lim
i

‖ϕ ◦ (f ∗ Φi − Φi)‖B∗ = 0.

(iii) For every compact subset K of G, every finite subset F of L2(B) and
every ε > 0, there exists Φ ∈ E (A,B) such that

sup
(s,ξ)∈K× F

‖πα
A(s)qΦξ − qΦπα

B(s)ξ‖2 ≤ ε.
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(iv) There exists a net (Φi) in E (A,B) such that for every f ∈ L1(G) and
ξ ∈ L2(B) we have

lim
i

∫
f(s)‖πα

A(s)qΦiξ − qΦiπ
α
B(s)ξ‖2 ds = 0.

Proof. (i) ⇒ (ii) Let (Φi) as in the statement of (i). We have

〈ϕ,f ∗ (Φi(a)) − Φi(f ∗ a)〉 =
∫

G

f(s)〈ϕ,αs ◦ Φi(a) − Φi ◦ αs(a)〉 ds

=
∫

G

f(s)〈ϕ ◦ αs,Φi(a) − αs−1 ◦ Φi ◦ αs(a)〉 ds.

Note that s �→ f(s)ϕ ◦ αs is in L1(G,B∗) and that elements of this form
generate L1(G,B∗). It follows that

lim
i

∫
G

〈h(s),Φi(a) − αs−1 ◦ Φi ◦ αs(a)〉 ds = 0

for every h ∈ L1(G,B∗) and a ∈ A .
Now, we use again the Day–Namioka convexity argument. Let h1, . . . , hk

be fixed elements in L1(G,B∗). For 1 ≤ j ≤ k and Φ ∈ E (A,B), we set

bj(Φ) =
∫

G

hj(s) ◦ (Φ − s · Φ)ds ∈ A∗.

Let us denote by C ′ the range of E (A,B) in the product Ak
∗ by the map

Φ �→ (b1(Φ), . . . , bk(Φ)). We know that (0, . . . ,0) belongs to the closure of
C ′ in Ak

∗ equipped with the product topology, where we consider the weak
topology on A∗. Since C ′ is convex, we may replace this latter topology by
the norm topology. Therefore, there exists a net (Φi) in E (A,B) such that for
every f ∈ L1(G) with

∫
G

f(s)ds = 1 and every ϕ ∈ B∗, we have

lim
i

‖ϕ ◦ (Φi − f ∗ Φi)‖A∗ = lim
i

∥∥∥∥
∫

G

f(s)ϕ ◦ (Φi − s · Φi)ds

∥∥∥∥
A∗

= 0.

(ii) ⇒ (iii) Let K be a compact subset of G and F a finite subset of L2(B)+.
Let f ∈ L1(G)+ such that

∫
G

f(s)ds = 1. We argue as in the proof of Lemma
4.7 to show that given η > 0, there exists Ψ ∈ E (A,B) such that

sup
(s,ξ)∈K× F

∥∥ωξ ◦
(
s · (f ∗ Ψ) − f ∗ Ψ

)∥∥
A∗

≤ η.

We take Φ = f ∗ Ψ. Using the Powers–Størmer inequality and Lemma 2.6
we get for s ∈ K and ξ ∈ F ,

‖πα
A(s−1)qΦξ − qΦπα

B(s−1)ξ‖2
2 = ‖qΦξ − πα

A(s)qΦπα
B(s−1)ξ‖2

2

≤ ‖ωξ ◦ (Φ − s · Φ)‖A∗ .

To conclude, it suffices to replace K by K−1 and to take η = ε2.
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(iii) ⇒ (iv) is obvious. It is not difficult to show that (iv) implies (i) and
we skip the proof. �

Remark 4.13. An inspection of the above proof shows that when α is
an amenable action on (A,B) with B ⊂ Z(A), one may take the Φi’s in the
convex set C of Lemma 4.10. Using the cocycle representation UA introduced
at the end of Section 3, and taking Φi = �ξi we get, for η ∈ L2(B) = L2(X,m),

‖qΦiπ
α
B(s−1)η − πα

A(s−1)qΦiη‖2
2

= ‖πα
A(s)qΦiπ

α
B(s−1)η − qΦiη‖2

2

=
∫

X

‖UA(x, s)ξi(s−1x)η(x) − ξi(x)η(x)‖2
2 dm(x)

=
∫

X

|η(x)|2‖UA(x, s)ξi(s−1x) − ξi(x)‖2
2 dm(x).

Now by Lemma 4.12(iv), we see that α is amenable if and only if there exists a
sequence (ξn) of sections of the Hilbert bundle (L2(A(x))x∈X with ‖ξn(x)‖2 =
1 almost everywhere, such that

lim
n

∫
X×G

f(x, s)‖UA(x, s)ξn(s−1x) − ξn(x)‖2
2 dm(x)ds = 0

for every f ∈ L1(X × G). Expressed in term of groupoid, this is equivalent to
the fact that the representation UA of the measured groupoid X � G weakly
contains the trivial representation (see [3] for details).

Proof of Theorem 4.8. Immediate consequence of Lemmas 4.11 and 4.12.
�

Theorem 4.14. Let α be a tensor product action on A = B ⊗ M . Assume
that there is an equivariant conditional expectation from A onto B. Then the
conclusions of Theorem 4.8 hold. In particular for every probability measure
μ on G we have ‖πα

B(μ)‖ = ‖(πα
B ⊗ πα

M )(μ)‖.

Proof. We first observe that by restriction there is an equivariant condi-
tional expectation from Z(B) ⊗ M onto Z(B). We write Z(B) as L∞(X,m)
and we disintegrate the representation πα

B so that for ξ =
∫ ⊕

X
ξ(x)dm(x) ∈∫ ⊕

X
L2(B(x))dm(x) we have (see the end of Section 3),

πα
B(s)ξ(x) =

√
r(x, s)UB(x, s)ξ(s−1x).

Using Theorem 4.8 and Remark 4.13, we get a net (Φi) of conditional
expectations from Z(B) ⊗ M onto Z(B), of the form Φi = �ξi (where ξi : X →
L2(M) is a measurable map with ‖ξi(x)‖2 = 1 almost everywhere), such that
for every η ∈ L2(Z(B))+ we have

lim
i

∥∥πα
Z(B)⊗M (s)qΦiη − qΦiπ

α
Z(B)(s)η

∥∥
2
= 0

uniformly on compact subsets of G.
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Each linear isometry qΦi : L2(Z(B)) → L2(Z(B)) ⊗ L2(M) extends to an
isometry qΦi : L2(B) → L2(B) ⊗ L2(M) by setting

qΦiη(x) = η(x) ⊗ ξi(x)

for η =
∫ ⊕

X
η(x)dm(x) ∈ L2(B).

A straightforward computation shows that for η ∈ L2(B),

‖πα
B⊗M (s)qΦiη − qΦiπ

α
B(s)η‖2 =

∥∥πα
Z(B)⊗M (s)qΦi |η| − qΦiπ

α
Z(B)(s)|η|

∥∥
2

where we denote by |η| the element x �→ ‖η(x)‖2 of L2(Z(B)). This ends the
proof. �

Remark 4.15. We may more generally use the same kind of techniques
for any action α on B ⊗ M leaving B ⊗ 1 invariant even if the action is
not a tensor product action. We may even deal with an action on a pair
(B ⊗ M,B ⊗ N) where N ⊂ Z(M), such that B ⊗ N is globally invariant
under α. As a consequence, using the structure theory of type I von Neumann
algebras, one gets the following result.

Theorem 4.16. Let α be an amenable action of G on a pair (A,B) where
B is a type I von Neumann algebra such that Z(B) ⊂ Z(A). Then there exists
a net (Vi) of isometries from L2(B) into L2(A) such that for every ξ ∈ L2(B)
one has

lim
i

‖πα
AViξ − Viπ

α
B(s)ξ‖ = 0

uniformly on compact subsets of G. In particular πα
B is weakly contained in

πα
A.

Since we are mainly interested in amenable and coamenable actions, we
shall not give the rather tedious proof. In fact, one would be more interested
in deciding whether the above theorem is true when α is an amenable action
on (A,B), under the assumption that there are “enough” normal conditional
expectations from A onto B.

Recall that a group G is said to have property T if every of its representa-
tions that weakly contains the trivial representation ιG actually contains ιG
as a subrepresentation, that is has a nonzero G-invariant vector. It follows
that for such groups, every dynamical system having an invariant state, i.e.,
ιG ≺ πα

A, has a normal invariant state, i.e., ιG ≤ πα
A. More generally, we have

the following theorem.

Theorem 4.17. Let G be a locally compact group having property T and
let α be an amenable action on a pair (A,B) of von Neumann algebras. We
assume that B is contained in the centre of A and that the action on B is
ergodic and leaves invariant a normal faithful state. Then there exists an
equivariant normal conditional expectation from A onto B. In particular, πα

B

is a subrepresentation of πα
A.



COMPARISON OF NORMS OF CONVOLUTORS 113

Proof. We write B = L∞(X,m) where m is an invariant probability mea-
sure. Since G has property T and preserves the finite measure m, one knows
that the measured groupoid X � G has property T (see [3, Corollary 5.16]
for instance). By Remark 4.13, its representation UA weakly contains the
trivial one. By definition of property T for a measured groupoid, the triv-
ial representation is actually contained in UA. This means that there exists
a section ξ : x �→ ξ(x) ∈ L2(A(x)) with ‖ξ(x)‖2 = 1 almost everywhere, such
that UA(x, s)ξ(s−1x) = ξ(x) almost everywhere on X × G. Then E = �ξ is a
normal equivariant conditional expectation from A onto B. �

4.3. We now mention another positive answer to the problem considered in
this section. Let B be a von Neumann algebra, G a locally compact group
and α the G-action on B associated to a representation of π : G → U (B)
(see Example 2.7(c)). This action extends to the action α : s �→ Adπ(s) on
A = B(L2(B)). Observe that the amenability of the G-action on (A,B) is
equivalent to the injectivity of B, that is to the existence of a norm one
projection from B(L2(B)) onto B.

Proposition 4.18. Let α be the G-action on (A,B) defined above. Assume
that B is injective. Then we have πα

B ≺ πα
A, that is πJBπJB ≺ π ⊗ π.

Proof. By the result asserting that an injective von Neumann algebra is
semi-discrete (see [9], [10]) we have, for every ai, bi ∈ B, i = 1, . . . , n,∥∥∥∥∥

n∑
i=1

aiJBbiJB

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥.

In particular, for fi, gi in L1(G) we get∥∥∥∥∥
n∑

i=1

π(fi)JBπ(gi)JB

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

π(fi) ⊗ π(gi)

∥∥∥∥∥.

It follows that∥∥∥∥
∫

G×G

h(s, t)π(s)JBπ(t)JB dsdt

∥∥∥∥ ≤
∥∥∥∥
∫

G×G

h(s, t)π(s) ⊗ π(t)dsdt

∥∥∥∥(4)

for h ∈ L1(G × G). Let μ be a bounded measure on G and denote by ν its
image by the diagonal map s �→ (s, s). Moreover, let us consider an approxi-
mate unit (ϕi) of L1(G). Applying the inequality (4) to h = (ϕj ⊗ ϕj) ∗ ν, we
get ∥∥∥∥π(ϕj)JBπ(ϕj)JB

∫
G

π(s)JBπ(s)JB dμ(s)
∥∥∥∥

≤
∥∥∥∥π(ϕj) ⊗ π(ϕj)

∫
G

π(s) ⊗ π(s)dμ(s)
∥∥∥∥

from which we easily get ‖(πJBπJB)(μ)‖ ≤ ‖(π ⊗ π)(μ)‖. �
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Remark 4.19. If we apply this proposition to the group von Neumann al-
gebra B = L(G) and to the representation π = λG, we get that whenever L(G)
is injective (for instance when G is almost connected by [9, Corollary 6.7]),
then the conjugation representation γG of G is weakly contained in λG ⊗ λG

and, therefore, in λG. Note that when the reduced C∗-algebra of G is nuclear,
it has been proved by Kaniuth [25] that γG is weakly contained in the direct
sum of the representations π ⊗ π where π ranges over the reduced dual of G.

5. Amenable and coamenable actions

Proposition 5.1. Let (A,G,α) be an amenable dynamical system. We
have

πα
Z(A) ≺ πα

A ≺ λG.

In particular for every probability measure μ on G we have

‖λG(μ)‖ = ‖πα
A(μ)‖ =

∥∥πα
Z(A)(μ)

∥∥.

Proof. By [1, Corollary 3.6], we know that the action of G on Z(A) is
amenable. Moreover, it follows from [1, Proposition 2.5] that the action of
G on the pair (A,Z(A)) is amenable. By Theorems 4.8 and 4.14, we have
respectively πα

Z(A) ≺ πα
A and πα

A ≺ πα
A ⊗ λG. Then the conclusion follows from

Fell’s absorption principle.
The second part of the proposition follows from Theorem 3.1. �
Remark 5.2. The property πα

A ≺ λG means that for every bounded mea-
sure μ on G we have ‖πα

A(μ)‖ ≤ ‖λG(μ)‖. It is a transference property of
norm estimates, in the style of the ones that prove to be so useful in classi-
cal harmonic analysis and ergodic theory (see [8]). In the noncommutative
setting, one can also establish Lp-transference inequalities and apply them to
prove ergodic theorems. This is the subject of a forthcoming paper.

Theorem 5.3. Let (A,G,α) be a dynamical system. The following condi-
tions are equivalent:

(i) there exists a G-invariant state on A (i.e., the action is coamenable);
(ii) the trivial representation ιG is weakly contained in πα

A;
(iii) there exists an adapted probability measure μ on G with r(πα

A(μ)) = 1.

Proof. (i) ⇒ (ii) is a particular case of Theorem 4.8 where we take B =
C (in this case, all technical difficulties disappear and the proof is indeed
straightforward by usual convexity arguments).

(ii) ⇒ (iii) is obvious. In fact, if (ii) holds, one easily sees that 1 is an
approximate eigenvalue of πα

A(μ) for any probability measure μ on G.
To show (iii) ⇒ (i) we follow the lines of the proof of Theorem 1 in [6]

(or of [12, Theorem]), that we reproduce for the reader’s convenience. First,
since πα

A(μ) is a contraction of spectral radius 1, there exist a complex num-
ber c with |c| = 1 and a sequence (ξn) of unit vectors in L2(A) such that
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limn ‖πα
A(μ)ξn − cξn‖ = 1 (see the proof of [12, Theorem 1]). Using Lemma 2.1

and the Cauchy–Schwarz inequality, we get∣∣∣∣
∫

G

〈ξn, πα
A(s)ξn〉 dμ(s)

∣∣∣∣ ≤
∫

G

| 〈ξn, πα
A(s)ξn〉| dμ(s)

≤
∫

G

〈|ξn|, πα
A(s)|ξn| 〉1/2〈 |Jξn|, πα

A(s)|Jξn| 〉1/2 dμ(s)

≤
(∫

G

〈|ξn|, πα
A(s)|ξn| 〉 dμ(s)

)1/2

×
(∫

G

〈|Jξn|, πα
A(s)|Jξn| 〉 dμ(s)

)1/2

.

Since∫
G

〈|ξn|, πα
A(s)|ξn| 〉 dμ(s) ≤ 1 and

∫
G

〈|Jξn|, πα
A(s)|Jξn|〉 dμ(s) ≤ 1

and since limn |
∫

G
〈ξn, πα

A(s)ξn〉 dμ(s)| = 1, we infer that

lim
n

∫
G

〈|ξn|, πα
A(s)|ξn| 〉 dμ(s) = 1.

It follows that there exists a subsequence (ηn) of (|ξn|) such that

lim
n

〈ηn, πα
A(s)ηn〉 = 1

and, therefore,
lim
n

‖πα
A(s)ηn − ηn‖ = 0

for all s in a subset S of G whose complement has μ-measure zero.
Let us denote by Ac the C∗-subalgebra of all x ∈ A such that s �→ αs(x)

is norm continuous, and for n ∈ N, denote by ϕn the state x �→ 〈ηn, xηn〉
defined on Ac. Let ϕ be a weak*-limit point of (ϕn) in the dual space of
Ac. The set F of elements s ∈ G such that ϕ ◦ αs = ϕ is a closed subgroup
containing S. Therefore, we have μ(G \ F ) = 0. It follows that F = G since
μ is an adapted probability measure. To conclude we use the well-known fact
that the existence of a G-invariant state on A is equivalent to the existence
of a G-invariant state on Ac) (see [1, Lemma 2.1] for instance). �

Remark 5.4. As a consequence of the previous theorem, we see that ιG ≺
πα

A if and only if ιG ≺ πα
A ⊗ πα

A. Indeed, whenever this last condition holds, the
implication (ii) ⇒ (i) gives the existence of a state ϕ on B(L2(A)) such that
ϕ ◦ Adπα

A(s) for every s ∈ G and therefore the existence of a G-invariant state
on A by restriction. Applied to the regular representation λG, one recovers a
result of Fell [17] saying that G is amenable whenever λG weakly contains a
finite dimensional representation.
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Remark 5.5. As said in the Introduction, one cannot expect in general
that πα

B ≺ πα
A implies that the action is amenable. This is already not true

when A is Abelian. In [2], we studied some particular cases where this fact
holds in the Abelian setting. Let us recall below another important particular
case, due to Connes [9], where this fact holds in the noncommutative setting.
Here, we take A = B(L2(B)) and G is the unitary group U (B) of B. This
group is not countable, but we observe that the only result used in the sequel,
namely Theorem 5.3, does not require any separability assumption. We let G
act on (A,B) by αU = AdU for U ∈ G. The amenability of the G-action on
(A,B) is, by definition, the injectivity of B. Recall that an hypertrace for B
is a G-invariant state on A.

Theorem 5.6 ([9]). We keep the above assumptions. The following condi-
tions are equivalent:

(i) There exists an hypertrace for B;
(ii) For every finite subsets {U1, . . . ,Un} of U (B) and {c1, . . . , cn} of C,

we have ∣∣∣∣∣
n∑

i=1

ci

∣∣∣∣∣ ≤
∥∥∥∥∥

n∑
i=1

ciUi ⊗ U i

∥∥∥∥∥.

(iii) For every finite subset {U1, . . . ,Un} of U (B) we have∥∥∥∥∥
n∑

i=1

Ui ⊗ U i

∥∥∥∥∥ = n.

Moreover, if B is a factor, these conditions are equivalent to
(iv) B is a finite injective factor.

In particular, when B is a finite factor, we see that B is injective if and only
if πα

B ≺ πα
A.

Proof. Assertion (ii) means that ιG ≺ πα
A. Therefore, (i) ⇒ (ii) is a partic-

ular case of (i) ⇒ (ii) in Theorem 5.3.
(ii) ⇒ (iii) is obvious. Assuming that (iii) holds, let us prove (i). Thanks to

(iii) ⇒ (i) in Theorem 5.3, for every finite subset F of U (B), we get a state ψF
on A, invariant by AdU , U ∈ F . Taking a limit point of (ψF ) along the filter
of finite subsets of U (B), we obtain an hypertrace for B.

(iv) ⇒ (i) is obvious. Indeed, if τ is the tracial state of B and E is
a conditional expectation from B(L2(B)) onto B, then τ ◦ E is an hypertrace.

Let us sketch the proof of (i) ⇒ (iv) whenever B is a factor. Let ψ be
an hypertrace for B. Its restriction to B is a trace, and therefore B is finite.
Denote by τ its trace. For a ∈ A+ and b ∈ B, we set ψa(b) = ψ(ab). Then ψa is
a positive state on B with ψa ≤ ‖a‖τ . We denote by E(a) the Radon–Nikodým
derivative of ψa with respect to τ . Then it is easy to check that E extends
into a conditional expectation from A onto B (e.g., see [23, Lemma 2.2]).
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Assume now that B is a finite factor. If B is injective, we have πα
B ≺ πα

A

by Theorem 4.6. Conversely, assume that πα
B ≺ πα

A. Since the tracial state of
B is G-invariant, we have ιG ≤ πα

B and, therefore, (ii) holds. It follows that
B injective by (iv). �

The following proposition extends the equivalence between (i) and (ii)
stated in Theorem 5.3

Proposition 5.7. Let α be an action of a locally compact group G on
(A,B). We assume that B is a finite factor and that α(G) contains the group
{AdU : U ∈ U (B)}. Then the action is amenable if and only if πα

B ≺ πα
A.

Proof. Assume that πα
B ≺ πα

A. Since B is a finite factor, we have ιG ≤ πα
B

and therefore ιG ≺ πα
A. By Theorem 5.3, there exists a G-invariant state ψ

on A. We have ψ(ab) = ψ(ba) for a ∈ A and b ∈ U (B). As in the previous
theorem, this state gives rise to a conditional expectation from A onto B,
easily seen to be G-invariant. �
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