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Abstract We prove sufficient and necessary conditions for the compactness of

Calderón–Zygmund operators on the endpoint from L∞(R) into CMO(R). We use this

result to prove the compactness on Lp(R) with 1 < p < ∞ of a certain perturbation of

the Cauchy integral on curves with normal derivatives satisfying a CMO-condition.

1. Introduction

In [13], we started a general theory to characterize the compactness of singular

integral operators. More precisely, we showed that a Calderón–Zygmund opera-

tor T is compact on Lp(R) with 1< p<∞ if and only three conditions hold: the

operator kernel satisfies the definition of a compact Calderón–Zygmund kernel,

a strengthening of the smoothness condition of a standard Calderón–Zygmund

kernel; T satisfies a new property of weak compactness, analogous to the clas-

sical weak boundedness; and the functions T (1) and T ∗(1) belong to the space

CMO(R), the appropriate substitute of BMO(R).
Now, the purpose of the current article is to continue this study in two

different but related ways. First, we extend the results appearing in [13] to one

of the endpoint cases, namely, from L∞(R) into CMO(R) (see Theorem 2.18).

For this purpose, we follow a new approach, based on the study of boundedness of

a modified martingale transform, Proposition 3.6, which substitutes the classical

square function and, to the authors’ knowledge, has not been studied before.

Second, we use the latter result to provide an application of the general theory

by showing how the methods devised in [13] allow one to prove the compactness

on Lp(R) of a certain perturbation of the Cauchy integral operator defined over

Lipschitz curves with CMO-smooth normal derivatives (see Proposition 4.2).

The article is structured as follows. In Section 2, we give the necessary def-

initions, state the main results of [13] that will be needed, and also state our

main result in this article (see Theorem 2.19). In Section 3 we characterize the
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compactness of Calderón–Zygmund operators for the endpoint case L∞ →CMO.

Finally, in Section 4 we provide an application of the theory by proving the com-

pactness of the previously described perturbation of the Cauchy integral.

2. Definitions and statement of the main result

2.1. Definitions and notation
DEFINITION 2.1

We say that three bounded functions L,S,D : [0,∞)→ [0,∞) constitute a set of

admissible functions if the following limits hold:

(1) lim
x→∞

L(x) = lim
x→0

S(x) = lim
x→∞

D(x) = 0.

REMARK 2.2

Since any fixed dilation of an admissible function Lλ(x) = L(λ−1x) is again

admissible, we will often omit all universal constants appearing in the argument

of these functions.

DEFINITION 2.3

Let Δ be the diagonal of R2. Let L,S,D be admissible functions.

A function K : (R2 \Δ)→C is called a compact Calderón–Zygmund kernel

if it is bounded on compact sets of R2 \Δ and, for some 0< δ ≤ 1 and C > 0, we

have

∣∣K(t, x) − K(t′, x′)
∣∣ ≤ C

(|t− t′|+ |x− x′|)δ
|t− x|1+δ

L
(
|t − x|

)
S

(
|t − x|

)
D

(
|t + x|

)
,

whenever 2(|t− t′|+ |x− x′|)< |t− x|.

As shown in [13], it can be assumed without loss of generality that in Defini-

tion 2.3 the functions L and D are monotone nonincreasing while the function

S is monotone nondecreasing.

We also remark that there is an equivalent definition of compact Calderón–

Zygmund kernels which is more convenient to use in applications of the theory

(see Section 4). In [13], we show that Definition 2.3 is equivalent to the existence

of a bounded function B :R2 → [0,∞) such that

lim
|t−x|→∞

B(t, x) = lim
|t−x|→0

B(t, x) = lim
|t+x|→∞

B(t, x) = 0

and, for some 0< δ ≤ 1 and C > 0,

∣∣K(t, x)−K(t′, x′)
∣∣ ≤C

(|t− t′|+ |x− x′|)δ
|t− x|1+δ

B(t, x),

whenever 2(|t− t′|+ |x− x′|)< |t− x|.

DEFINITION 2.4

For every N ∈N, N ≥ 1, we define SN (R) to be the set of all functions f ∈ CN (R)
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such that

‖f‖m,n = sup
x∈R

|x|m
∣∣f (n)(x)

∣∣ <∞

for all m,n ∈ N with m,n ≤ N . Clearly, SN (R) equipped with the family of

seminorms ‖ · ‖m,n is a Fréchet space. Then, we can also define its dual space

S ′
N (R) equipped with the dual topology, which turns out to be a subspace of the

space of tempered distributions.

DEFINITION 2.5

Let T : SN (R)→S ′
N (R) be a linear operator which is continuous with respect to

the topology of SN (R) for a fixed N ≥ 1.

We say that T is associated with a compact Calderón–Zygmund kernel K if

the action of T (f) as a distribution satisfies the following integral representation:

〈
T (f), g

〉
=

∫
R

∫
R

f(t)g(x)K(t, x)dtdx,

for all functions f, g ∈ SN (R) with disjoint compact supports.

DEFINITION 2.6

For 0 < p ≤ ∞ and N ∈ N, we say that a function φ ∈ SN (R) is an Lp(R)-
normalized bump function adapted to I with constant C > 0 and order N if

it satisfies ∣∣φ(n)(x)
∣∣ ≤C

1

|I| 1p+n

(
1 +

|x− c(I)|
|I|

)−N

, 0≤ n≤N,

for every interval I ⊂R, where we denote its center by c(I) and its length by |I|.

The order of the bump functions will always be denoted by N , even though

its value might change from line to line. We will often use the greek letters φ,

ϕ for general bump functions, while we reserve the use of ψ to denote bump

functions with mean zero. If not otherwise stated, we will usually assume that

bump functions are L2(R)-normalized.

In forthcoming sections, we will use the following property of bump functions,

whose proof can be found in [12].

LEMMA 2.7

Let I, J be intervals, and let φI , ϕJ be bump functions L2-adapted to I and J ,

respectively, with order N and constant C > 0. Then,∣∣〈φI , ϕJ〉
∣∣ ≤C

( min(|I|, |J |)
max(|I|, |J |)

)1/2( diam(I ∪ J)

max(|I|, |J |)
)−N

.

Moreover, if |J | ≤ |I| and ψJ has mean zero, then

∣∣〈φI , ψJ〉
∣∣ ≤C

( |J |
|I|

)3/2(diam(I ∪ J)

|I|
)−(N−1)

.
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NOTATION 2.8

We now introduce some notation which will be frequently used throughout the

article. We denote B= [−1/2,1/2] and Bλ = λB= [−λ/2, λ/2].

Given two intervals I, J ⊂ R, we define 〈I, J〉 as the smallest interval con-

taining I ∪ J , and we denote its measure by diam(I ∪ J). Notice that

diam(I ∪ J) ≈ |I|/2 +
∣∣c(I)− c(J)

∣∣+ |J |/2.

We also define the relative distance between I and J by

rdist(I, J) =
diam(I ∪ J)

max(|I|, |J |) ,

which is comparable to max(1, n), where n is the smallest number of times the

larger interval needs to be shifted a distance equal to its side length so that it

contains the smaller one. Note that

rdist(I, J) ≈ 1 +
|c(I)− c(J)|
max(|I|, |J |) .

Finally, we define the eccentricity of I and J to be

ec(I, J) =
min(|I|, |J |)
max(|I|, |J |) .

DEFINITION 2.9

A linear operator T : SN (R)→S ′
N (R) with N ≥ 1 satisfies the weak compactness

condition if there exist admissible functions L,S,D such that for every ε > 0 there

exists M ∈ N so that, for any interval I and every pair φI , ϕI of L2-normalized

bump functions adapted to I with constant C > 0 and order N , we have

(2)
∣∣〈T (φI), ϕI

〉∣∣ � C
(
L

(
2−M |I|

)
S

(
2M |I|

)
D

(
M−1 rdist(I,B2M )

)
+ ε

)
,

where the implicit constant only depends on the operator T .

REMARK 2.10

We note that in the main results of the article, namely, Theorems 2.18 and 3.8,

when we say that T satisfies the weak compactness condition, we mean that there

is an integer N ≥ 1 sufficiently large depending on the operator or its kernel so

that the operator can be defined as T : SN (R)→ S ′
N (R), it is continuous with

respect to the topology in SN (R), and it satisfies Definition 2.9 for that value

of N .

In [13] we discuss other equivalent formulations of this definition.

From now on, we will denote

FK(I) = LK

(
|I|

)
SK

(
|I|

)
DK

(
rdist(I,B)

)
and

FW (I;M) = LW

(
2−M |I|

)
SW

(
2M |I|

)
DW

(
M−1 rdist(I,B2M )

)
,
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where LK , SK , and DK are the functions appearing in the definition of a compact

Calderón–Zygmund kernel, while LW , SW , DW , and the constant M are as in

the definition of the weak compactness condition. Note that the value M =MT,ε

depends not only on T but also on ε.

We will also denote F (I;M) = FK(I) + FW (I;M),

FK(I1, . . . , In) =
( n∑
i=1

LK

(
|Ii|

))( n∑
i=1

SK

(
|Ii|

))( n∑
i=1

DK

(
rdist(Ii,B)

))
,

FW (I1, . . . , In;M) =
( n∑
i=1

LW

(
2−M |Ii|

))( n∑
i=1

SW

(
2M |Ii|

))

×
( n∑
i=1

DW

(
M−1 rdist(Ii,B2M )

))
,

and F (I1, . . . , In;M) = FK(I1, . . . , In) + FW (I1, . . . , In;M).

2.2. Characterization of compactness: the lagom projection operator
To prove our results about compact singular integral operators, we will use the fol-

lowing characterization of compact operators in a Banach space with a Schauder

basis (see [5]).

THEOREM 2.11

Suppose that {en}n∈N is a Schauder basis of a Banach space E. For each positive

integer k, let Pk be the canonical projection

Pk

(∑
n∈N

αnen

)
=

∑
n≤k

αnen.

Then, a bounded linear operator T : E → E is compact if and only if Pk ◦ T

converges to T in operator norm.

DEFINITION 2.12

For every M ∈ N, let IM be the family of intervals such that 2−M ≤ |I| ≤ 2M

and rdist(I,B2M )≤M . Let D be the family of dyadic intervals of the real line,

and let DM be the intersection of IM with D. We call the intervals in IM and

DM lagom intervals and dyadic lagom intervals, respectively.

Note that I ∈ DM implies that 2−M (2M + |c(I)|) ≤ M and then |c(I)| ≤
(M − 1)2M . Therefore, I ⊂ BM2M with 2−M ≤ |I|.

On the other hand, I /∈ DM implies either |I|> 2M or |I|< 2−M or 2−M ≤
|I| ≤ 2M with |c(I)|> (M − 1)2M .

Let E be one of the following Banach spaces: the Lebesgue space Lp(R),
1 < p < ∞, the Hardy space H1(R), or the space CMO(R), to be introduced

later as the closure in BMO(R) of continuous functions vanishing at infinity. In

each case, E is equipped with smooth wavelet bases which are also Schauder
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bases (see [6] and Lemma 2.16). Moreover, in all cases, we have at our disposal

smooth and compactly supported wavelet bases.

DEFINITION 2.13

Let E be one of the previously mentioned Banach spaces. Let (ψI)I∈D be

a wavelet basis of E. Then, for every M ∈ N, we define the lagom projection

operator PM by

PM (f) =
∑

I∈DM

〈f,ψI〉ψI ,

where 〈f,ψI〉=
∫
R
f(x)ψI(x)dx.

We also define the orthogonal lagom projection operator as P⊥
M (f) = f −

PM (f).

REMARK 2.14

Without explicit mention, we will let the wavelet basis defining PM vary from

proof to proof to suit our technical needs.

We also note the use of the same notation for the action of T (f) as a distri-

bution and the inner product. We hope that this will not cause confusion.

It is easy to see that both PM and P⊥
M are self-adjoint operators. We note the

difference with the usual projection operator PQ, for every intervalQ⊂R, defined
by

(3) PQ(f) =
∑

I∈D,I⊂Q

〈f,ψI〉ψI ,

which we will also use in forthcoming sections.

Let S denote the square function operator associated with a wavelet basis

(ψI)I∈D,

S(f)(x) =
(∑
I∈D

|〈f,ψI〉|2
|I| χI(x)

)1/2

.

Since we trivially have the pointwise estimates S(PM (f))(x) ≤ S(f)(x) and

S(P⊥
M (f))(x)≤ S(f)(x), by Littlewood–Paley theory, we deduce that the lagom

projection operator and its orthogonal projection are both continuous on Lp(R)
for all 1< p<∞. Moreover, the estimate∥∥PM (f)

∥∥
BMO(R)

= sup
Q⊂R

( 1

|Q|
∑

I∈DM ,I⊂Q

∣∣〈f,ψI〉
∣∣2)1/2

≤ ‖f‖BMO(R)

shows that PM is bounded on BMO(R) and, by duality, on H1(R) with

‖PM‖BMO(R)→BMO(R) ≤ 1 and ‖PM‖H1(R)→H1(R) ≤ 1. For similar reasons, we

have ‖P⊥
M‖BMO(R)→BMO(R) ≤ 1 and ‖P⊥

M‖H1(R)→H1(R) ≤ 1.

We remark that in E the equality

(4) P⊥
M (f) =

∑
I∈Dc

M

〈f,ψI〉ψI
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is to be interpreted in its Schauder basis sense,

lim
M ′→∞

∥∥∥P⊥
M (f)−

∑
I∈DM′\DM

〈f,ψI〉ψI

∥∥∥
E
= 0.

Note that according to Theorem 2.11 an operator T : E → E is compact if and

only if

lim
M→∞

‖P⊥
M ◦ T‖= 0,

where ‖ · ‖ is the operator norm.

2.3. The space CMO(R)
We now provide the definition and main properties of the space to which the

function T (1) must belong if T is compact.

DEFINITION 2.15

We define CMO(R) as the closure in BMO(R) of the space of continuous functions
vanishing at infinity.

We note that CMO(R) equipped with the norm ‖ · ‖BMO is a Banach space. The

next lemma gives two characterizations of CMO(R): the first in terms of the aver-

age deviation from the mean, and the second in terms of a wavelet decomposition.

See [11] for the first, and see [8] for the second characterization.

LEMMA 2.16

(i) f ∈CMO(R) if and only if f ∈BMO(R) and

(5) lim
M→∞

sup
I /∈IM

1

|I|

∫
I

∣∣∣f(x)− 1

|I|

∫
I

f(y)dy
∣∣∣dx= 0.

(ii) f ∈CMO(R) if and only if f ∈BMO(R) and

(6) lim
M→∞

sup
Q⊂R

( 1

|Q|
∑

I /∈DM ,I⊂Q

∣∣〈f,ψI〉
∣∣2)1/2

= 0,

where the supremum is calculated over all intervals Q⊂R.

As a consequence of the previous lemma, (ψI)I∈D is a Schauder basis for

CMO(R). We will mainly be using the latter formulation.

REMARK 2.17

Considering the comment after Definition 2.12, we see that the preceding lemma

is also true if we, in line with [11], replace IM by I ′
M consisting of those intervals

I such that 2−M ≤ |I| ≤ 2M and |c(I)| ≤M/2 and replace DM by D′
M = I ′

M ∩D.

We note that the remarks about (4) work well for the spaces Lp(R), H1(R), and
also CMO(R), but not for BMO(R). The latter space is not separable, and so,

it does not contain an unconditional basis. However, the characterization of the
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norm in BMO(R) by a wavelet basis implies that for every f ∈BMO(R) we have
the equality

f =
∑
I∈D

〈f,ψI〉ψI

with convergence in the weak* topology σ(BMO(R),H1(R)). This, in turn,

implies the equality

(7) P⊥
M (f) =

∑
I∈Dc

M

〈f,ψI〉ψI

with convergence in the same topology, which is interpreted as

lim
M ′→∞

∣∣∣〈P⊥
M (f), g

〉
−

∑
I∈DM′\DM

〈f,ψI〉〈ψI , g〉
∣∣∣= 0

for all g ∈H1(R). See [9] and [1] for proofs and more details.

2.4. Main results
We now give the statement of the main result in the article and also the results

from [13] which we will need.

THEOREM 2.18

Let T be a linear operator associated with a standard Calderón–Zygmund ker-

nel. Then, T extends to a compact operator from L∞(R) into CMO(R) if and

only if T is associated with a compact Calderón–Zygmund kernel, T satisfies

the weak compactness condition, and T (1), T ∗(1) ∈CMO(R). Moreover, with the

extra assumption T (1) = T ∗(1) = 0, T is compact from BMO(R) into CMO(R).

The analogous result appearing in [13] is the following theorem.

THEOREM 2.19

Let T be a linear operator associated with a standard Calderón–Zygmund kernel.

Then, T extends to a compact operator on Lp(R) for 1 < p <∞ if and only if

T is associated with a compact Calderón–Zygmund kernel, T satisfies the weak

compactness condition, and T (1), T ∗(1) ∈CMO(R).

We now state the key ingredient in the proof of Theorem 2.19 and also Theo-

rem 2.18: the so-called bump lemma, which describes the action of the operator

over functions adapted to two different intervals.

Given two intervals I and J , we will denote Kmin = J and Kmax = I if

|J | ≤ |I|, while Kmin = I and Kmax = J otherwise.

PROPOSITION 2.20

Let K be a compact Calderón–Zygmund kernel with parameter δ. Let N be suffi-

ciently large and depend on δ and 0< θ < 1, and let 0< δ′ < δ depend on N . Let
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T : SN →S ′
N be a linear operator associated with K satisfying the weak compact-

ness condition with parameter N and the special cancellation conditions T (1) = 0

and T ∗(1) = 0.

Then, there exists Cδ′ > 0 such that, for every ε > 0, all intervals I, J , and

all mean zero bump functions ψI , ψJ , L
2-adapted to I and J , respectively, with

order N and constant C > 0, we have∣∣〈T (ψI), ψJ

〉∣∣ ≤Cδ′C ec(I, J)
1
2+δ′ rdist(I, J)−(1+δ′)

(
F (I1, . . . , I6;MT,ε) + ε

)
,

where I1 = I, I2 = J , I3 = 〈I, J〉, I4 = λ1K̃max, I5 = λ2K̃max, I6 = λ2Kmin, λ1 =

|Kmax|−1diam(I ∪J), λ2 = (|Kmin|−1diam(I ∪J))θ, and K̃max is the translate of

Kmax with the same center as Kmin.

3. Endpoint estimates

In this section, we extend the study of compactness for singular integral oper-

ators to the endpoint case. Namely, we characterize those Calderón–Zygmund

operators that extend compactly as maps from L∞(R) to CMO(R).

3.1. Necessity of the hypotheses
The necessity of the hypotheses of Theorem 2.18 is a direct consequence of the

following result.

PROPOSITION 3.1

Let T be a linear operator associated with a standard Calderón–Zygmund kernel.

If T is compact from L∞(R) into CMO(R), then T is compact on Lp(R) for

1< p<∞.

Proof

Since T is bounded from L∞(R) into CMO(R) and it is associated with a standard

Calderón–Zygmund kernel, by [7, p. 49], T is bounded on Lp(R) for all 1< p<∞.

Therefore, by interpolation, T is compact on Lp(R). �

Since, in particular, T is compact on L2(R), by the results in [13] we have that

the hypotheses of Theorem 2.18 are satisfied, that is, T is associated with a

compact Calderón–Zygmund kernel, T satisfies the weak compactness condition,

and T (1), T ∗(1) ∈CMO(R).

3.2. Wavelet basis
We devote the first part of this section to describing the way to choose a wavelet

basis of Lp(R) and H1(R) and how we use this basis to decompose the opera-

tors under study. To do this, we will use the results contained in the books [3]

and [6].
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For every function ψ and every dyadic interval I = 2−j [k, k+1], j, k ∈ Z, we
denote

ψI(x) = Tl(I)D2
|I|ψ(x) = 2j/2ψ(2jx− k),

where l(I) =min{x : x ∈ I}.

THEOREM 3.2

Let ψ ∈ L2(R) with ‖ψ‖L2(R) = 1. Then, {ψI}I∈D is an orthonormal wavelet basis

of L2(R) if and only if∑
k∈Z

∣∣ψ̂(ξ + k)
∣∣2 = 1,

∑
k∈Z

ψ̂
(
2j(ξ + k)

)
ψ̂(ξ + k) = 0

for all ξ ∈R and all j ≥ 1.

DEFINITION 3.3

For any function f : R → C, we say that a bounded function W : [0,∞) → R+

is a radial decreasing L1-majorant of f if |f(x)| ≤ W (|x|) and W satisfies the

following three conditions: W ∈ L1([0,∞)), W is decreasing, and W (0)<∞.

THEOREM 3.4

Let ψ ∈ L2(R) be differentiable and such that {ψI}I∈D is an orthonormal basis

of L2(R). We further assume that ψ and its derivative ψ′ have a common radial

decreasing L1-majorant W satisfying∫ ∞

0

xW (x)dx <∞.

Then, the system (ψI)I∈D is an unconditional basis for Lp(R) with 1 < p <∞
and for H1(R).

Now, for our particular purposes, we will take ψ satisfying the hypotheses of pre-

vious theorems with the additional conditions that ψ ∈CN (R) and it is adapted

to [−1/2,1/2] with constant C > 0 and order N . Then, we remark that, for every

interval I ∈ D, every wavelet function ψI is a bump function adapted to I with

the same constant C > 0 and the same order N . Several examples of construc-

tions of systems of wavelets with any required order of differentiability can also

be found in [6].

In the described setting, the continuity of T with respect to the topology of

SN (R) allows us to write〈
T (f), g

〉
=

∑
I,J∈D

〈f,ψI〉〈g,ψJ〉
〈
T (ψI), ψJ

〉
for every f, g ∈ S(R), where the sums run over the whole family of dyadic intervals

in R and convergence is understood in the topology of SN (R). Furthermore, since〈
PM

(
T (f)

)
, g

〉
=

〈
T (f), PMg

〉
=

∑
I∈D

∑
J∈DM

〈f,ψI〉〈g,ψJ〉
〈
T (ψI), ψJ

〉
,
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we have that

(8)
〈
P⊥
M

(
T (f)

)
, g

〉
=

∑
I∈D

∑
J∈Dc

M

〈f,ψI〉〈g,ψJ〉
〈
T (ψI), ψJ

〉
,

where the summation is performed as in (4).

3.3. Boundedness of a martingale transform
We now study a new martingale transform. Its definition and the proof of its

boundedness on Lp(R) for 1 < p < ∞ appear in the preprint [10]. We include

here the endpoint result.

DEFINITION 3.5

Let (ψI)I∈D be a wavelet basis of L2(R). Given k ∈ Z and n ∈N, n≥ 1, let Tk,n

be the operator defined by

Tk,n(f)(x) =
∑
I∈D

∑
J∈Ik,n

〈f,ψJ〉ψI(x),

where, for each fixed dyadic interval I , Ik,n is the family of all dyadic intervals

J such that |I|= 2k|J | and n≤ rdist(I, J)< n+ 1.

We remind the reader that for every dyadic interval I and each n ∈N there are

2max(e,0)+1 dyadic intervals J such that |I| = 2e|J | and n ≤ rdist(I, J) < n+ 1.

This implies that the cardinality of Ie,n is comparable to 2max(e,0).

In the proposition below, we prove the boundedness of this modified martin-

gale operator.

PROPOSITION 3.6

Let k ∈ Z and n ∈N, n≥ 1. Then, Tk,n is bounded on BMO(R). Moreover,

‖Tk,nf‖BMO(R) � 2
|k|
2

(
log(n+ 1) +max(−k,0) + 1

) 1
2 ‖f‖BMO(R)

with implicit constant independent of f , k, and n.

REMARK 3.7

By duality and the fact that T ∗
k,n = T−k,n, we have that Tk,n is also bounded on

H1(R) with

‖Tk,nf‖H1(R) � 2
|k|
2

(
log(n+ 1) +max(k,0) + 1

) 1
2 ‖f‖H1(R).

Proof of Proposition 3.6

Since for any given f ∈ S(R)

‖Tk,nf‖BMO(R) = sup
Q⊂R

(
|Q|−1

∑
I⊂Q

∣∣∣ ∑
J∈Ik,n

〈f,ψJ〉
∣∣∣2) 1

2

,
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where the supremum is calculated over all intervals Q⊂R, we will show that∑
I⊂Q

∣∣∣ ∑
J∈Ik,n

〈f,ψJ〉
∣∣∣2 � 2|k|

(
log(n+ 1) +max(−k,0) + 1

)
‖f‖2BMO(R)|Q|.(9)

To compute the double sum, we use an argument that distinguishes between

large and small scales (k ≥ 0 and k ≤ 0), with a slightly different argument in

each case.

We first assume k ≥ 0. In this case, the cardinality of Ik,n is comparable to

2k, and so, every interval I ∈D is associated with 2k different intervals J ∈ Ik,n.

Therefore, by Cauchy’s inequality, the contribution of those intervals collected in

the sum in (9) can be bounded by

(10)
∑
I⊂Q

2k
∑

J∈Ik,n

∣∣〈f,ψJ〉
∣∣2 = 2k

∑
j∈N

∑
I∈Qj

∑
J∈Ik,n

∣∣〈f,ψJ〉
∣∣2,

where Qj = {I ∈D : I ⊂Q,2−(j+1)|Q|< |I| ≤ 2−j |Q|}.
Now, we separate again into two different cases: when J ⊂ 3Q and when

J � 3Q.

(1) In the first case, we start by showing that the intervals J in the inner

sum of (10) only appear at most five times. This will be clear once we prove

that given I ∈D and J ∈ Ik,n there exist at most four different intervals I ′ ∈D,

I ′ �= I , such that J ∈ I ′k,n.

If J ∈ Ik,n ∩ I ′k,n, then |I| = 2k|J | = |I ′|. Now, we denote In = (I + n|I|) ∪
(I − n|I|). Since k ≥ 0, we have that J ⊂ In ∩ I ′n �= ∅. Then, if n > 1, this implies

rdist(I, I ′) = 2n, and so, I ′ = I + 2n|I| or I ′ = I − 2n|I|. On the other hand, if

n= 1, this implies rdist(I, I ′) ∈ {1,2}, and so, I ′ = I + |I|, I ′ = I − |I|, I ′ = I +

2|I|, or I ′ = I− 2|I|. Therefore, the terms in the inner sum of (10) corresponding

to this case can be bounded by a constant times

2k
∑

J⊂3Q

∣∣〈f,ψJ〉
∣∣2 � 2k‖f‖2BMO(R)|Q|,

which is compatible with the stated bound.

(2) In the second case, for those intervals I , J such that I ⊂Q and J � 3Q,

we have diam(I ∪ J)> |Q|. Then, for every I ∈Qj we get

n+ 1> rdist(I, J) =
diam(I ∪ J)

|I| >
|Q|
|I| ≥ 2j ,

where we have used that |J | ≤ |I|.
We now show that, for every j, the union of the disjoint intervals J ∈ Ik,n

when varying I ∈Qj has measure at most 2|Q|. For fixed I , the union of the dis-

joint intervals J ∈ Ik,n measures 2|I|. Moreover, the union of the disjoint intervals

I ∈Qj measures at most |Q|. Therefore,∣∣∣ ⋃
I∈Qj

⋃
J∈Ik,n

J
∣∣∣ ≤ ∑

I∈Qj

∑
J∈Ik,n

|J | ≤ 2
∑
I∈Qj

|I| ≤ 2|Q|.
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In this way, the relevant contribution of this case to the sum in (10) can be

bounded by

2k
log(n+1)∑

j=0

∑
I∈Qj ,J∈Ik,n

∣∣〈f,ψJ〉
∣∣2

� 2k‖f‖2BMO(R)

log(n+1)∑
j=0

∣∣∣ ⋃
I∈Qj ,J∈Ik,n

J
∣∣∣

� 2k‖f‖2BMO(R)

log(n+1)∑
j=0

|Q|

= 2k
(
1 + log(n+ 1)

)
‖f‖2BMO(R)|Q|,

which is the desired bound when k ≥ 0.

For k ≤ 0 we reason as follows. The cardinality of Ik,n is now essentially one,

and there are at most 2j intervals I ∈Qj . In addition, up to 2−k different intervals

I of fixed size in the sum (9) are associated with the same interval J and so have

the same coefficient 〈f,ψJ〉. Then, if we denote Qj
k,n = {J ∈ Ik,n : I ∈ Qj}, we

have that the terms in the sum (9) corresponding to this case can be bounded

by

(11)
∑
j∈N

∑
J∈Qj

k,n

min(2j ,2−k)
∣∣〈f,ψJ〉

∣∣2,
where now the intervals J ∈ Qj

k,n appearing in the sum are pairwise different.

Moreover, since |I|= 2k|J | and 2−(j+1)|Q|< |I| ≤ 2−j |Q| we get 2j+k ≤ |Q|/|J |<
2j+k+1.

We separate the study into the same two cases as before: J ⊂ 3Q and J � 3Q.

(1) When I ⊂Q and J ⊂ 3Q we have

n≤ rdist(I, J) =
diam(I ∪ J)

|J | ≤ 3|Q|
|J | < 2j+k+4.

Therefore, j > logn− k− 4≥−k− 4, and so, the contribution of the intervals in

this case to the sum (11) can be bounded by∑
−k−4<j≤−k

∑
J∈Qj

k,n,J⊂3Q

2j
∣∣〈f,ψJ〉

∣∣2 + ∑
−k≤j

∑
J∈Qj

k,n,J⊂3Q

2−k
∣∣〈f,ψJ〉

∣∣2

� 2−k
∑

J⊂3Q

∣∣〈f,ψJ〉
∣∣2

� 2−k‖f‖2BMO(R)|Q|.

(2) On the other hand, for those J such that J � 3Q we have that

n+ 1> rdist(I, J) =
diam(I ∪ J)

|J | >
|Q|
|J | ≥ 2j+k,
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and so, j < log(n+1)− k. Then, the contribution to sum (11) can be estimated

by

log(n+1)+|k|∑
j=0

min(2j ,2−k)
∑

J∈Qj
k,n

∣∣〈f,ψJ〉
∣∣2

≤
log(n+1)+|k|∑

j=0

min(2j ,2−k)‖f‖2BMO(R)

∣∣∣ ⋃
J∈Qj

k,n

J
∣∣∣.

(12)

We now calculate the measure of the union of those intervals J ∈ Qj
k,n. If

j ≥−k, then from the 2j different possible intervals I ∈Qj , up to 2−k of them

are associated with the same interval J . Then, the union of those intervals J has

measure 2j

2−k |J | ≤ |Q|. On the other hand, when j < −k, there is only a single

interval J associated with all intervals I ∈Qj , which measures |J | ≤ |Q|2−(k+j).

Then, the union has measure at most max(2−k−j ,1)|Q|, and thus, we bound (12)

by

‖f‖2BMO(R)

log(n+1)+|k|∑
j=0

2j min(1,2−k−j)max(2−k−j ,1)|Q|

= ‖f‖2BMO(R)

log(n+1)+|k|∑
j=0

2−k|Q|

= 2−k
(
log(n+ 1) + |k|+ 1

)
‖f‖2BMO(R)|Q|.

This finishes the proof. �

3.4. Sufficiency of the hypotheses: proof of endpoint compactness
In this section, we prove the compactness of singular integral operators T as

maps from L∞(R) to CMO(R).
To prove this result, we follow the scheme of the original proof of the T (1)

theorem. Namely, we first assume that the special cancellation property T (1) =

T ∗(1) = 0 holds, and then we tackle the general case with the use of paraproducts.

Actually, we prove that under the special cancellation conditions the operator T

extends compactly from BMO(R) into CMO(R).

3.4.1. The special case: T (1) = T ∗(1) = 0

We start by proving the main result under the special cancellation conditions.

THEOREM 3.8

Let T be a linear operator associated with a compact Calderón–Zygmund kernel

satisfying the weak compactness condition and the special cancellation conditions

T (1) = 0 and T ∗(1) = 0. Then, T can be extended to a compact operator from

BMO(R) into CMO(R).
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Proof

Let (ψI)I∈D be a wavelet basis of L2(R) andH1(R) with L2-normalized elements.

Let PM be the lagom projection operator defined by this basis. By the remarks

at the end of Section 2.3, we have that all functions in BMO(R) and H1(R) can
be approximated by functions in SN (R) with convergence in the weak* topology

σ(BMO(R),H1(R)) and in the H1(R)-norm, respectively.

Then, by Theorem 2.11 with E = CMO(R) equipped with the norm of

BMO(R), to show the compactness of T , we need to check that P⊥
M (Tb) converges

to zero in the operator norm ‖ · ‖BMO(R)→BMO(R) when M tends to infinity. For

this, it is enough to prove that 〈P⊥
M (T (f)), g〉 tends to zero uniformly for all

f, g ∈ SN (R) in the unit ball of BMO(R) and H1(R), respectively.
For f, g ∈ SN (R), we recall

(13)
〈
P⊥
M

(
T (f)

)
, g

〉
=

∑
I∈D

∑
J∈Dc

M

〈f,ψI〉〈g,ψJ〉
〈
T (ψI), ψJ

〉
.

Since this inequality is understood as a limit, we can assume that the sums run

over finite but arbitrary in size families of dyadic intervals, and we will work to

obtain bounds that are independent of the cardinality of the families.

We start by proving that for every ε > 0 there is M0 ∈ N such that, for

any M >M0, we have F (I1, . . . , I6;MT,ε) � ε for Ii ∈ Dc
M . This will follow as a

consequence of the inequality F (I;MT,ε)� ε for every I ∈Dc
M . We note that the

implicit constants only depend on the admissible functions.

We first remind the reader that, by the definition of the weak compactness

condition, for ε > 0 there is a constant MT,ε > 0 such that, for any interval I and

any φI , ϕI bump functions adapted to I with constant C > 0 and order N , we

have ∣∣〈T (φI), ϕI

〉∣∣ ≤C
(
FW (I;MT,ε) + ε

)
.

We now show that there is M ′
0 ∈ N depending on ε such that, for any M >M ′

0,

we have F (Ii;MT,ε) = F (I1, . . . , I6;MT,ε) � ε when all Ii ∈Dc
M .

By the limit properties of the admissible functions in Definition 2.1, we have

that, for fixed MT,ε > 0, there is M ′
0 ∈N, depending on ε,MT,ε, with M ′

0 >MT,ε,

such that for any M >M ′
0 we get

LK(2M ) + SK(2−M ) +DK(M)< ε

and

LW (2M−MT,ε) + SW (2−(M−MT,ε)) +DW (M/MT,ε)< ε.

Let I ∈Dc
M . The claim is proven by considering the following cases.

(1) If |I|> 2M , then since LK and LW are nonincreasing, we have

F (I;MT,ε) � LK

(
|I|

)
+LW

(
|I|/2MT,ε

)
≤ LK(2M ) +LW (2M−MT,ε) � ε.
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(2) If |I|< 2−M , then since SK and SW are nondecreasing, we have

F (I;MT,ε)� SK

(
|I|

)
+ SW

(
2MT,ε |I|

)
≤ SK(2−M ) + SW (2−(M−MT,ε))� ε.

(3) If 2−M ≤ |I| ≤ 2M with rdist(I,B2M )>M , then as we saw in the remark

after Definition 2.12, |c(I)|> (M − 1)2M . Therefore,

rdist(I,B2MT,ε )≥ 1 +
|c(I)|

max(|I|,2MT,ε)

≥ 1 +
(M − 1)2M

max(2M ,2MT,ε)
≥M.

We can apply similar reasoning to show that we also have rdist(I,B)>M . Then,

since DW is nonincreasing, we have

F (I;MT,ε) � DK

(
rdist(I,B)

)
+DW

(
M−1

T,ε rdist(I,B2MT,ε )
)

≤DK(M) +DW (M/MT,ε) � ε.

Therefore, there is finally M0 ∈N depending on ε such that, for any M >M0,

we have

(1) F (Ii;MT,ε) = F (I1, . . . , I6;MT,ε) � ε when all Ii ∈Dc
M ,

(2) M− δ
2 +M

3
2 2−M δ

2 +
∑

e≥M 2−eδe1/2 < ε.

Now, for every ε > 0 and chosen M0 ∈ N, we are going to prove that for all

M >M0 we have ∣∣〈P⊥
2M

(
T (f)

)
, g

〉∣∣ � ε,

with the implicit constant depending on δ > 0 and the constant given by the

wavelet basis.

We first parameterize the terms in (13) according to eccentricity and relative

distance to obtain

(14)
〈
P⊥
2M

(
T (f)

)
, g

〉
=

∑
e∈Z

∑
n∈N

∑
J∈Dc

2M

∑
I∈Je,n

〈f,ψI〉〈g,ψJ〉
〈
T (ψI), ψJ

〉
,

where for fixed eccentricity e ∈ Z, relative distance n ∈N, and every given inter-

val J

Je,n =
{
I : |I|= 2e|J |, n≤ rdist(I, J)< n+ 1

}
.

By Proposition 2.20 we have∣∣〈T (ψI), ψJ

〉∣∣ � 2−|e|( 1
2+δ)n−(1+δ)

(
F (Ii;MT,ε) + ε

)
,

where I1 = I , I2 = J , I3 = 〈I, J〉, I4 = λ1K̃max, I5 = λ2K̃max, and I6 = λ2Kmin,

with parameters λ1, λ2 ≥ 1 explicitly stated in the mentioned proposition. To

simplify notation, we will simply write F (Ii). We also note that the implicit

constant might depend on δ and the wavelet basis, but it is universal otherwise.
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Therefore,∣∣〈P⊥
2M

(
T (f)

)
, g

〉∣∣
�

∑
e∈Z

∑
n∈N

2−|e|( 1
2+δ)n−(1+δ)

∑
J∈Dc

2M

∑
I∈Je,n

(
F (Ii) + ε

)∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣.(15)

Now, to estimate (15), we divide the study into six cases:

(1) Ii /∈DM for all i= 1, . . . ,6;

(2) I ∈DM ;

(3) 〈I ∪ J〉 ∈ DM ;

(4) I /∈DM but λ1K̃max ∈ IM ;

(5) I /∈DM but λ2K̃max ∈ IM ;

(6) I /∈DM but λ2Kmin ∈ IM .

(1) In the first case we have F (Ii)< ε, and thus, we can bound the contri-

bution of the corresponding terms to (14) by

(16) ε
∑
e∈Z

∑
n∈N

2−|e|( 1
2+δ)n−(1+δ)

∑
J∈Dc

2M

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣.
Since, as said, we consider that I and J run over finite families of intervals, we

can define f̃ =
∑

I |〈f,ψI〉|ψI and g̃ =
∑

J |〈g,ψJ〉|ψJ , so that 〈f̃ , ψI〉= |〈f,ψI〉|
and similarly for g̃. Then, for any interval Q⊂R we have∥∥PQ(f̃)

∥∥2

L2(R)
≤

∑
I⊂Q

∣∣〈f,ψI〉
∣∣2 = ∥∥PQ(f)

∥∥2

L2(R)
,

where PQ(f) =
∑

I⊂Q〈f,ψI〉ψI is the classical projection operator defined in (3).

Therefore, ‖f̃‖BMO(R) ≤ ‖f‖BMO(R), and by a duality argument, we also have

‖g̃‖H1(R) ≤ ‖g‖H1(R).

With this, we get for the inner sums in (16)∑
J∈Dc

2M

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣
≤

∑
J∈D

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣ = ∑
J∈D

∑
I∈Je,n

〈f̃ , ψI〉〈g̃, ψJ〉

=
〈
g̃,

∑
J∈D

∑
I∈Je,n

〈f̃ , ψI〉ψJ

〉
=

〈
g̃, Te,n(f̃)

〉
≤ ‖g̃‖H1(R)

∥∥Te,n(f̃)
∥∥
BMO(R)

≤ 2
|e|
2

(
log(n+ 1) + |e|+ 1

) 1
2 ‖f̃‖BMO(R)‖g̃‖H1(R),

where the last inequality is due to Proposition 3.6. Note also that log(n+ 1)≤
2 logn � 2δ−1nδ .

In this way, (16) can be bounded by a constant times

ε
∑
e∈Z

∑
n∈N

2−|e|( 1
2+δ)n−(1+δ)2

|e|
2

(
nδ + |e|+ 1

) 1
2 ‖f‖BMO(R)‖g‖H1(R)

� ε
∑
e∈Z

2−|e|δ|e| 12
∑
n≥1

n−(1+δ− δ
2 )‖f‖BMO(R)‖g‖H1(R) � ε‖f‖BMO(R)‖g‖H1(R).
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In the remaining cases, we will not use the smallness of F . Instead, we will

use the particular geometric disposition of the intervals I and J , which make

either their eccentricity or their relative distance very extreme. We recall that

the intervals I and J in the sum (15) satisfy |I|= 2e|J | and n≤ rdist(I, J)< n+1.

(2) We deal first with the case when I ∈ DM , that is, when 2−M ≤ |I| ≤
2M and rdist(I,B2M ) ≤ M . Notice that, since F is bounded, we can estimate

F (Ii) + ε � 1.

Since J ∈ Dc
2M , we separate the study into three cases: |J | > 22M , |J | <

2−2M , and 2−2M ≤ |J | ≤ 22M with rdist(J,B22M )> 2M .

(2.1) In the case |J |> 22M , since 2e|J |= |I| ≤ 2M , we have 2e ≤ 2M |J |−1 ≤
2−M , that is, e≤−M . Therefore, the calculations developed in case (1) allow us

to bound the corresponding terms in (15) by∑
e≤−M

∑
n≥1

2−|e|( 1
2+δ)n−(1+δ)

∑
J∈Dc

2M

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣
≤

∑
e≤−M

∑
n≥1

2−|e|( 1
2+δ)n−(1+δ)2

|e|
2

(
nδ + |e|+ 1

) 1
2 ‖f‖BMO(R)‖g‖H1(R)

�
( ∑
e≤−M

2−|e|δ|e| 12
∑
n≥1

n−(1+ δ
2 )

)
‖f‖BMO(R)‖g‖H1(R)

� ε‖f‖BMO(R)‖g‖H1(R)

by the choice of M . This finishes this case.

(2.2) The case |J | < 2−2M is symmetric and amounts to changing e ≤−M

to e≥M in the previous case.

(2.3) In the case when 2−2M ≤ |J | ≤ 22M and rdist(J,B22M )≥ 2M , we have

that |J |= 2k with −2M ≤ k ≤ 2M and |c(J)| ≥ (2M − 1)22M . Since I ∈DM , we

also have

M ≥ rdist(I,B2M ) = 2−M diam(I ∪B2M )

≥ 2−M
(
2M−1 + |I|/2 +

∣∣c(I)∣∣) ≥ 2−M
(
2M−1 +

∣∣c(I)∣∣),
and then, |c(I)| ≤ (M − 1/2)2M . This implies∣∣c(I)− c(J)

∣∣ ≥ ∣∣c(J)∣∣− ∣∣c(I)∣∣ ≥ (2M − 1)22M − (M − 1/2)2M ≥M22M .

In this way, since max(|I|, |J |)≤ 22M , we get

n+ 1> rdist(I, J) =
diam(I ∪ J)

max(|I|, |J |) ≥
|c(I)− c(J)|
max(|I|, |J |) ≥ 2−2MM22M =M.

Therefore, as in the previous case, we bound the relevant terms in (15) by a

constant times∑
e∈Z

∑
n≥M−1

2−|e|( 1
2+δ)n−(1+δ)

∑
J∈Dc

2M

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣
�

(∑
e∈Z

2−|e|δ|e| 12
∑

n≥M−1

n−(1+ δ
2 )

)
‖f‖BMO(R)‖g‖H1(R)
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� M− δ
2 ‖f‖BMO(R)‖g‖H1(R)

< ε‖f‖BMO(R)‖g‖H1(R),

again by the choice of M .

(3) Now, we deal with the case when 〈I, J〉 ∈ DM , that is, when 2−M ≤
|〈I, J〉| ≤ 2M and rdist(〈I, J〉,B2M ) ≤ M . Both inequalities imply that 2−M ≤
diam(I ∪ J)≤ 2M and |c(〈I, J〉)| ≤M2M .

Moreover, we have that c(〈I, J〉) = 1/2(c(I) + c(J) + α(|I| − |J |)) with α ∈
[−1,1]. Then, ∣∣c(I) + c(J)

∣∣ ≤ 2
∣∣c(〈I, J〉)∣∣+ ∣∣|I| − |J |

∣∣
≤ 2M2M +

∣∣〈I, J〉∣∣ ≤ (2M + 1)2M .
(17)

(3.1) When |J |> 22M we have that |〈I, J〉| ≥ |J |> 22M implies 〈I, J〉 /∈DM ,

and so, we do not need to consider this case.

(3.2) When 2−2M ≤ |J | ≤ 22M with rdist(J,B22M ) ≥ 2M , we have that

|c(J)|> (2M − 1)22M >M22M . If sign c(I) =− sign c(J), we have∣∣〈I, J〉∣∣ = diam(I ∪ J)≥
∣∣c(I)− c(J)

∣∣
=

∣∣c(I)∣∣+ ∣∣c(J)∣∣ > ∣∣c(J)∣∣ >M22M ,

which contradicts 〈I, J〉 ∈ DM . Otherwise, if sign c(I) = sign c(J), we have∣∣c(I) + c(J)
∣∣= ∣∣c(I)∣∣+ ∣∣c(J)∣∣ >M22M ,

which now contradicts (17). So, we do not need to consider this case either.

(3.3) The remaining case is when |J |< 2−2M . If e≥ 0 then,

n+ 1> |I|−1 diam(I ∪ J) = 2−e|J |−1
∣∣〈I, J〉∣∣ ≥ 2−e22M2−M = 2M−e.

Meanwhile, if e≤ 0, we have

n+ 1> rdist(I, J) = |J |−1 diam(I ∪ J)≥ 22M2−M = 2M .

Therefore, we bound the relevant part of (15) by a constant times∑
e≥0

∑
n≥max(2M−e−1,1)

2−|e|( 1
2+δ)n−(1+δ)

∑
J∈Dc

2M

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣
+

∑
e≤0

∑
n≥2M−1

2−|e|( 1
2+δ)n−(1+δ)

∑
J∈Dc

2M

∑
I∈Je,n

∣∣〈f,ψI〉
∣∣∣∣〈g,ψJ〉

∣∣
≤

( ∑
0≤e≤M−1

2−|e|δ|e| 12
∑

n≥2M−e−1

n−(1+ δ
2 ) +

∑
M≤e

2−|e|δ|e| 12
∑
n≥1

n−(1+ δ
2 )

+
∑
e≤0

2−|e|δ|e| 12
∑

n≥2M−1

n−(1+ δ
2 )

)
‖f‖BMO(R)‖g‖H1(R)

�
( ∑
0≤e≤M−1

2−eδ|e| 12 2−(M−e) δ
2 +

∑
M≤e

2−eδ|e| 12 + 2−M δ
2

)
‖f‖BMO(R)‖g‖H1(R)
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�
(
2−M δ

2M
3
2 +

∑
M≤e

2−eδ|e| 12 + 2−M δ
2

)
‖f‖BMO(R)‖g‖H1(R)

� ε‖f‖BMO(R)‖g‖H1(R)

by the choice of M .

(6) We deal now with the case λ2Kmin ∈ IM , that is, 2−M ≤ |λ2Kmin| ≤ 2M

and rdist(λ2Kmin,B2M )≤M .

(6.1) When |J |> 22M , we have two cases. Whenever e > 0, then Kmin = J ,

and so, |λ2J | ≥ |J | ≥ 22M , which contradicts λ2J ∈ IM . On the other hand, when

e≤ 0, we have Kmin = I and |I| ≤ |λ2I| ≤ 2M . Then, 2e = |I|/|J | ≤ 2−M , and so,

e ≤ −M . Therefore, the arguments of case (2.1) show that the corresponding

part of (15) can be bounded by ε‖f‖BMO(R)‖g‖H1(R).

(6.2) When 2−2M ≤ |J | ≤ 22M with rdist(J,B22M ) ≥ 2M , we have |c(J)| >
(2M − 1)22M . Now, we divide into the same two cases. When e ≥ 0, we know

Kmin = J , and so, 2−M ≤ |λ2J | ≤ 2M with rdist(λ2J,B2M ) ≤M . This leads to

the following contradiction:

M ≥ rdist(λ2J,B2M )> 2−M
∣∣c(J)∣∣ ≥ (2M − 1)2M .

On the other hand, when e≤ 0, we have Kmin = I , and then |c(I)|= |c(λ2I)| ≤
(M − 1)2M . This implies |c(I)− c(J)|>M22M and

n+ 1> rdist(I, J)≥ |c(I)− c(J)|
|J | ≥M.

Then, the same arguments developed in case (2.3) provide the bound

ε‖f‖BMO(R)‖g‖H1(R).

(6.3) When |J |< 2−2M , we proceed as follows. If e≥ 0, we have Kmin = J ,

and so, |λ2J | ≥ 2−M . This implies λ2 ≥ 2−M |J |−1 > 2M and

2M < λ2 =
(diam(I ∪ J)

|J |
)θ

=
( |I|
|J |

)θ

rdist(I, J)θ < 2eθ(n+ 1)θ.

Meanwhile, if e ≤ 0, we have Kmin = I , and then |λ2I| ≥ 2−M . We also have

|I| ≤ |J | ≤ 2−2M . All this implies λ2 ≥ 2−M |I|−1 > 2M and

2M < λ2 =
(diam(I ∪ J)

|I|
)θ

=
( |J |
|I|

)θ

rdist(I, J)θ < 2−eθ(n+ 1)θ.

Then, since θ < 1, we get n+1> 2−|e|2
M
θ > 2−|e|2M , and so, previous arguments

show that the relevant part of (15) can be bounded by(∑
e∈Z

2−|e|δ|e| 12
∑

n≥2−|e|2M−1

n−(1+ δ
2 )

)
‖f‖BMO(R)‖g‖H1(R)

�
(∑
e∈Z

2−|e|δ|e| 12 2|e| δ2 2−M δ
2

)
‖f‖BMO(R)‖g‖H1(R)

� 2−M δ
2 ‖f‖BMO(R)‖g‖H1(R) ≤ ε‖f‖BMO(R)‖g‖H1(R).
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Finally, we note that similar types of calculations are enough to deal with

the two remaining cases (4) and (5). This completely finishes the proof of Theo-

rem 3.8. �

3.5. The general case
For the proof of compactness in the general case, that is, without the special

cancellation conditions, we follow the same scheme as in the proof of the clas-

sical T (1) theorem. When b1 = T (1) and b2 = T ∗(1) are arbitrary functions

in CMO(R), we construct compact paraproducts Tb associated with compact

Calderón–Zygmund kernels such that Tb1(1) = b1, T
∗
b1
(1) = 0. Then, the operator

T̃ = T − Tb1 − T ∗
b2

satisfies the hypotheses of Theorem 3.8, and so, T̃ is compact from BMO(R) to
CMO(R). Finally, since the operators Tb1 and T ∗

b2
are compact from L∞(R) to

CMO(R) by construction, we deduce that the initial operator T is also compact

from L∞(R) to CMO(R). We remark that, as we will later see in full detail, the

appropriate paraproducts are exactly the same ones as in the classical setting,

with the only difference being that the parameter functions bi belong to the space

CMO(R) instead of BMO(R).
As in Proposition 3.9, we use a wavelet basis (ψI)I∈D of L2(R) and H1(R)

such that each ψI is an L2-normalized bump function supported and adapted to

I with constant C and order N . We now denote by φ a positive bump function

supported and adapted to [−1/2,1/2] with order N and integral 1. Then, we

have that 0 ≤ φ(x) ≤ C(1 + |x|)−N and |φ′(x)| ≤ C(1 + |x|)−N . Let (φI)I∈D be

the family of bump functions defined by φI = Tc(I)D1
|I|φ. Therefore, each φI

is an L1-normalized bump function adapted to I , that is, it satisfies φI(x) ≤
C|I|−1(1 + |I|−1|x− c(I)|)−N and |φ′

I(x)| ≤C|I|−2(1 + |I|−1|x− c(I)|)−N .

PROPOSITION 3.9

Given b ∈CMO(R), we define the operator

Tb(f) =
∑
I∈D

〈b,ψI〉〈f,φI〉ψI ,

where ψI and φI are as described above. Then, Tb and T ∗
b are associated with a

compact Calderón–Zygmund kernel, and they are both compact from L∞(R) to

CMO(R). Furthermore, 〈Tb(1), g〉= 〈b, g〉 and 〈Tb(f),1〉= 0 for all f, g ∈ S(R).

Proof

In [13] we showed that Tb and T ∗
b belong to the class of operators for which the

theory applies, that is, the integral representation of Definition 2.5 holds with

operator kernel satisfying Definition 2.3 of a compact Calderón–Zygmund kernel.

For the proof of compactness of Tb, it is sufficient to verify that 〈P⊥
M (Tb)(f), g〉

tends to zero for all f ∈ L∞(R) and g ∈ S(R) uniformly in the unit ball of L∞(R)
and H1(R), respectively. Since g ∈H1(R), we have P⊥

M (g) =
∑

I∈Dc
M
〈g,ψI〉ψI .
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We note that, by the classical T (1)-theory, we already know that the operator

is bounded from L∞(R) to CMO(R), and so, the expression Tb(f) is completely

meaningful.

Moreover, since (ψI)I∈D can be chosen so that it is also a wavelet basis

on CMO(R) (see the comment in Lemma 2.16), we have P⊥
M (b) ∈ BMO(R) and

P⊥
M (b) =

∑
I∈Dc

M
〈b,ψI〉ψI . With this,〈

P⊥
M

(
Tb(f)

)
, g

〉
=

〈
Tb(f), P

⊥
M (g)

〉
=

∑
I∈D

〈b,ψI〉〈f,φI〉
〈
P⊥
M (g), ψI

〉

=
∑

I∈Dc
M

〈b,ψI〉〈f,φI〉〈g,ψI〉=
∑
I∈D

〈
P⊥
M (b), ψI

〉
〈f,φI〉〈g,ψI〉,

that is,

(18)
〈
P⊥
M

(
Tb(f)

)
, g

〉
=

〈
TP⊥

M (b)(f), g
〉
.

Then, the boundedness of TP⊥
M (b) from L∞(R) to BMO(R) implies∣∣〈P⊥

M (Tb)(f), g
〉∣∣ �

∥∥P⊥
M (b)

∥∥
BMO(R)

‖f‖L∞(R)‖g‖H1(R).

Since limM→∞ ‖P⊥
M (b)‖BMO(R) = 0, the inequality above finally proves that Tb(f)

is compact from L∞(R) into CMO(R).
The proof that Tb

∗ is compact from L∞(R) to CMO(R) is slightly different

since Tb
∗ does not satisfy the analogue to (18). Thus, we prove instead the dual

compactness for Tb. By (18) and the boundedness of Tb from H1(R) to L1(R),
we have∣∣〈P⊥

M (Tb)(f), g
〉∣∣= ∣∣〈TP⊥

M (b)(f), g
〉∣∣ �

∥∥P⊥
M (b)

∥∥
BMO(R)

‖f‖H1(R)‖g‖L∞(R).

This proves that Tb is compact from H1(R) to L1(R), and so, by duality T ∗
b

is compact from L∞(R) to BMO(R). But this obviously implies that

limM→∞ ‖P⊥
M (T ∗

b )(f)‖BMO(R) = 0 uniformly in the unit ball of H1(R), and thus,

the range of T ∗
b is actually in CMO(R). �

4. Compactness of a perturbation of the Cauchy transform

In this section we apply our main theorem to demonstrate the compactness of a

certain perturbation of the Cauchy transform for Lipschitz paths in the complex

plane satisfying a CMO-condition. The example illustrates with special clarity

the scope and methodology of the new theory, since the computations involved

are essentially variations of the well-known calculations pertaining to the study of

the Cauchy transform in the classical T (1)-theory. We note that a T (b)-theorem

for compactness in several dimensions is already under development, and it could

be of further use in the compactness theory of Cauchy-type operators. We start

by giving the following definition.

DEFINITION 4.1

We denote by L∞
CMO(R) the closed subspace L∞(R)∩CMO(R) of L∞(R).
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Let A : R → R be an absolutely continuous function such that A′ ∈ L∞
CMO(R),

and let Γ⊂C be the curve given by the parameterization z(t) = t+ iA(t), t ∈R.
Given points z(x), z(t) ∈ Γ, we denote by σz(x),z(t), τz(x),z(t) ∈ Γ the points

σz(x),z(t) = z
(
x− 1

4
(x− t)

)
, τz(x),z(t) = z

(
x− 3

4
(x− t)

)
lying in between z(x) and z(t) with respect to the parameterization of Γ.

The application we present concerns a perturbation of the Cauchy transform

associated with Γ. Namely, define TΓ : Lp(Γ)→ Lp(Γ) by

TΓf(z) = 2

∫
Γ

f(w)

z −w+ 2(σz,w − τz,w)
ds(w), f ∈ Lp(Γ), z ∈ Γ,

where ds denotes the arc length measure on Γ. Note that if z = z(x) and w = z(t),

then

Re
(
z −w+ 2(σz,w − τz,w)

)
= 2Re(z −w)

and

Im
(
z −w+ 2(σz,w − τz,w)

)
=A(x)−A(t)− 2A

(
x− 1

4
(x− t)

)
+ 2A

(
x− 3

4
(x− t)

)
.

(19)

In analogy to the Hilbert transform, we also introduce the operator HΓ : Lp(Γ)→
Lp(Γ),

HΓf(z) =

∫
Γ

f(w)

Re(z −w)
ds(w), f ∈ Lp(Γ), z ∈ Γ.

One might surmise that there is a sufficient amount of cancellation in (19) to

cause TΓ −HΓ to be compact on Lp(Γ). We will apply the results of this article

to prove exactly this when ‖A′‖∞ is sufficiently small.

PROPOSITION 4.2

Suppose that A :R→R is absolutely continuous, and suppose that A′ ∈ L∞
CMO(R).

Then, there exists an η > 0 such that TΓ −HΓ is compact on Lp(Γ), 1< p<∞,

whenever ‖A′‖∞ < η.

Proof

Moving over to the real line, we formally have that

(20) (TΓf −HΓf)
(
z(t)

)
=

∞∑
n=1

(−i

2

)n

Tn

(
f ·

√
1 + |A′|2

)
(t),

where Tn : Lp(R)→ Lp(R) is the operator associated to the kernel

Kn(x, t) =
(A(x)−A(t)− 2A(x− 1

4 (x− t)) + 2A(x− 3
4 (x− t)))n

(x− t)n+1
.

The expression for K1 is reminiscent of a double difference of A. Operators

associated to such kernels have received attention by Coifman and Meyer [4].
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Note that Kn is antisymmetric for each n. In what follows, we will prove that

each Kn is a compact Calderón–Zygmund kernel and that Tn satisfies the weak

compactness condition with appropriate bounds. Moreover, through an inductive

procedure, we shall compute Tn(1) and check its membership in CMO. In this

way, we will deduce that Tn is compact and obtain the existence of a constant

C > 0 such that ‖Tn‖Lp→Lp ≤Cn‖A′‖n∞. Then, by setting η = 2/C, we will have

finally proven Proposition 4.2.

Note that we may write

Kn(x, t) =
1

x− t

(∫ x

t
A′(z)dz

x− t
−

∫ x− 1
4 (x−t)

x− 3
4 (x−t)

A′(z)dz

1
2 (x− t)

)n

.

The inner expression can be interpreted as the difference of two averages of A′.

From the estimate

|fI − fJ | ≤
1

|J |

∫
J

|f − fI |dt≤
2

|I|

∫
I

|f − fI |dt,

where J ⊂ I are two intervals such that |I|= 2|J | and fI denotes the average of

f on I , we deduce

(21)
∣∣Kn(x, t)

∣∣ � 2n‖A′‖nBMO

1

|x− t| .

Demonstrating the smoothness condition of Definition 2.3 is more involved.

Let x, t, t′ ∈R with 0< 2|t− t′| ≤ |x− t|. We denote Gn(x, t) = (x− t)n+1Kn(x, t)

for notational convenience and note that

Kn(x, t)−Kn(x, t
′) =Gn(x, t

′)
( (x− t′)n+1 − (x− t)n+1

(x− t)n+1(x− t′)n+1

)
+

Gn(x, t)−Gn(x, t
′)

(x− t)n+1
.

Regarding the first term of this decomposition, there exists, by the mean value

theorem, a λ between t and t′, and therefore satisfying |t−λ|< |t− t′|, such that

Gn(x, t
′)

( (x− t′)n+1 − (x− t)n+1

(x− t)n+1(x− t′)n+1

)
= (n+ 1)

Gn(x, t
′)

(x− t′)n
(x− λ)n

(x− t)n
t− t′

(x− t)(x− t′)
.

For M > 0, let

F1,n(M) = sup
Ix,t∈Ic

M

2|t−t′|≤|x−t|

∣∣∣Gn(x, t
′)

(x− t′)n

∣∣∣,
where Ix,t is the interval with endpoints x and t, and IM is the set of intervals

I with center c(I) such that 2−M < |I| < 2M and |c(I)| < M
2 . Clearly, F1,n is

decreasing, and from the assumption that A′ ∈ CMO in conjunction with the

estimate (21), it follows that ‖F1,n‖∞ � 2n‖A′‖nBMO and limM→∞F1,n(M) = 0.

This gives us control of the first term,∣∣∣Gn(x, t
′)

( (x− t′)n+1 − (x− t)n+1

(x− t)n+1(x− t′)n+1

)∣∣∣
� (n+ 1)

(3

2

)n

F1,n

(
max

(∣∣log2(|x− t|
)∣∣, |x+ t|

)) |t− t′|
|x− t|2 .
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To deal with the second term we will consider the cases n = 1 and n ≥ 2

separately. Suppose first that n≥ 2. By applying the mean value theorem, there

exists a λ with∣∣∣A(t) + 2A
(
x− 1

4
(x− t)

)
− 2A

(
x− 3

4
(x− t)

)
− λ

∣∣∣
<

∣∣G1(x, t)−G1(x, t
′)

∣∣
and such that

Gn(x, t)−Gn(x, t
′)

(x− t)n+1
= n

G1(x, t)−G1(x, t
′)

t− t′
(A(x)− λ)n−1

(x− t)n−1

t− t′

(x− t)2
.

At this point the condition A′ ∈ L∞ comes into play, since it is necessary for

estimating the first factor:∣∣∣G1(x, t)−G1(x, t
′)

t− t′

∣∣∣ � ‖A′‖∞.

On the other hand, introducing

F2,n(M) = sup
Ix,t∈Ic

M

2|t−t′|≤|x−t|

∣∣∣A(x)− λ

x− t

∣∣∣n−1

,

we have that A′ ∈ CMO again implies that ‖F2,n‖∞ � 4n‖A′‖nBMO and

limM→∞F2,n(M) = 0. Therefore,∣∣∣Gn(x, t)−Gn(x, t
′)

(x− t)n+1

∣∣∣ � n‖A′‖∞F2,n

(
max

(∣∣log2(|x− t|
)∣∣, |x+ t|

)) |t− t′|
|x− t|2 .

When n = 1, the previous argument fails. Instead, we pick a δ, 0 < δ < 1,

and write∣∣∣G1(x, t)−G1(x, t
′)

(x− t)2

∣∣∣= ∣∣∣G1(x, t)−G1(x, t
′)

t− t′

∣∣∣ |t− t′|1−δ

|x− t|1−δ

|t− t′|δ
|x− t|1+δ

.

Define

F2,1(M) = sup
Ix,t∈Ic

M

2|t−t′|≤|x−t|

∣∣∣G1(x, t)−G1(x, t
′)

t− t′

∣∣∣ |t− t′|1−δ

|x− t|1−δ
.

It is clear that ‖F2,1‖∞ � ‖A′‖∞. We prove now that limM→∞F2,1(M) = 0.

Suppose that limM→∞F2,1(M) = � > 0. Then there exists a sequence (Mk) with

Mk →∞ and corresponding sequences (xk), (tk), and (t′k) such that Ixk,tk ∈ Ic
Mk

,

2|tk − t′k| ≤ |xk − tk|, and

(22)
∣∣∣G1(xk, tk)−G1(xk, t

′
k)

tk − t′k

∣∣∣ |tk − t′k|1−δ

|xk − tk|1−δ
> �/2.

There could not exist a constant C > 0 such that

|tk − t′k|
|xk − tk|

≥C
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for all k, for then∣∣∣G1(xk, tk)−G1(xk, t
′
k)

tk − t′k

∣∣∣ |tk − t′k|1−δ

|xk − tk|1−δ

≤ 12−δ

C

∣∣∣G1(xk, tk)−G1(xk, t
′
k)

xk − tk

∣∣∣ → 0, k→∞,

by the fact that A′ ∈CMO. Hence, it must be that

lim
k→∞

|tk − t′k|
|xk − tk|

= 0.

This also contradicts (22), however, since the first factor of the left-hand side

is bounded, seeing as A′ ∈ L∞. By this contradiction we conclude that

limM→∞F1,2(M) = 0.

Appealing to these estimates and the antisymmetry of Kn, we may easily

construct a set of admissible functions Ln, Sn, and Dn so that the conditions of

Definition 2.3 are fulfilled with δ = 1 for n≥ 2 and every δ < 1 for n= 1. Hence,

Kn is a compact Calderón–Zygmund kernel.

We turn now to the verification of the weak compactness condition. For every

compact interval I with center c(I), we introduce the kernel

KI
n(x, t) = |I|Kn

(
|I|x+ c(I), |I|t+ c(I)

)
and note that

(23)
∣∣KI

n(x, t)
∣∣ ≤ 1

|x− t|F3,n

(
max

(∣∣log2(|I||x− t|
)∣∣, ∣∣|I|(x+ t) + 2c(I)

∣∣)),
where

F3,n(M) = sup
Ix,t∈Ic

M

∣∣∣Gn(x, t)

(x− t)n

∣∣∣.
As before it is clear that F3,n is a decreasing function with ‖F3,n‖∞ � 2n‖A′‖nBMO

and limM→∞F3,n(M) = 0. For φ ∈ S(R), we write φI(x) = |I|−1/2φ(x−c(I)
|I| ).

Given φ,ϕ ∈ S(R), we have by the antisymmetry of Kn that

2〈TnϕI , φI〉=
∫
R2

Kn(x, t)
(
φI(x)ϕI(t)− φI(t)ϕI(x)

)
dxdt

=

∫
R2

KI
n(x, t)

(
φ(x)ϕ(t)− φ(t)ϕ(x)

)
dxdt.

Since |KI
n(x, t)| � 2n|x− t|−1 uniformly in I , there exists for each pair (ϕ,φ) a

constant Cϕ,φ, depending only on a finite number of Schwarz class seminorms,

with the following property: for every ε > 0 there is an M ≥ 1, independent of ϕ

and φ, such that∣∣∣∫
{|x−t|>M}∪{|x−t|< 1

M }∪{|x+t|>M}
KI

n(x, t)
(
φ(x)ϕ(t)− φ(t)ϕ(x)

)
dxdt

∣∣∣
≤ 2nCϕ,φε.
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To see this, simply note that

φ(x)ϕ(t)− φ(t)ϕ(x)

x− t
∈ S(R2)

is a Schwarz function of two variables. Furthermore, in view of (23) we have∣∣∣∫
{ 1

M <|x−t|<M}∩{|x+t|<M}
KI

n(x, t)
(
φ(x)ϕ(t)− φ(t)ϕ(x)

)
dxdt

∣∣∣
≤CnC

′
ϕ,φF3,n

(
max

(
log2

( |I|
M

)
,− log2

(
|I|M

)
,
rdist(I,D1)

M

))
,

(24)

for some constants Cn and C ′
ϕ,φ, depending only on n and a finite number of

seminorms of ϕ and φ, respectively. Note, in particular, that |x + t| < M and

|c(I)|>M |I| imply that

∣∣|I|(x+ t) + 2c(I)
∣∣ > ∣∣c(I)∣∣ � rdist(I,D1)− 1

M
.

Together with the trivial facts that |I||x− t|> |I|/M and |I||x− t|< |I|M when

(x, t) lies in the domain of integration of (24) and that rdist(I,D1)/M ≤ 2 when

|c(I)| ≤M |I|, we obtain the desired estimate in (24) for an appropriate Cn. We

conclude that Tn satisfies the weak compactness condition. For future reference

we also record the implied bound on the weak boundedness constant of Tn present

in the above considerations. Namely,∣∣〈TnϕI , φI〉
∣∣ � 2n‖A′‖nBMOC

′
ϕ,φ.

Finally, we shall show that Tn(1) belongs to CMO by evaluating it inductively

in a principal value sense. The justifications for these computations are analogous

to those that appear in considerations of Cauchy-type operators in connection

with the classical T (1)-theory (see, e.g., Christ [2]).

For x with |x|< r <R and ε > 0, integrate by parts to obtain that∫
|t|<R

|t−x|>ε

Kn(x, t)dt=
1

n

[Gn(x, t)

(x− t)n

]t=R

t=−R
− 1

n

[Gn(x, t)

(x− t)n

]t=x+ε

t=x−ε

+

∫
|t|<R

|t−x|>ε

Gn−1(x, t)

(x− t)n

×
(
A′(t) +

1

2
A′

(
x− 1

4
(x− t)

)
− 3

2
A′

(
x− 3

4
(x− t)

))
dt,

with the understanding that G0 ≡ 1. Splitting the latter integral into three parts

according to its summands and making the linear changes of variables x− t =

4(x− z) and x− t= 4
3 (x−w) in the last two terms we find that∫

|t|<R
|t−x|>ε

Kn(x, t)dt

=
1

n

[Gn(x, t)

(x− t)n

]t=R

t=−R
− 1

n

[Gn(x, t)

(x− t)n

]t=x+ε

t=x−ε
+

∫
|t|<R

|t−x|>ε

Gn−1(x, t)

(x− t)n
A′(t)dt(25)
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+
2

4n

∫
|x−4(x−z)|<R

|z−x|>ε/4

Gn−1(x,x− 4(x− z))

(x− z)n
A′(z)dz

− 2
(3

4

)n
∫
|x− 4

3 (x−w)|<R
|w−x|>3ε/4

Gn−1(x,x− 4
3 (x−w))

(x−w)n
A′(w)dw.

Since A′ ∈ CMO it is clear that the first two terms tend to zero, uniformly for

|x|< r, as ε→ 0 and R→∞.

Suppose now that n= 1. Seeing as r is arbitrary, we then find in the limit

that

T1(1) =H(A′) +
1

2
H(A′)− 3

2
H(A′) = 0,

where H denotes the usual Hilbert transform. Note that the Hilbert transform

is bounded as a map H : CMO→CMO.

At this point we have verified the compactness of T1 on Lp, 1< p<∞, and

as a map T1 : L
∞
CMO → CMO. We now proceed with the inductive step to prove

the same for Tn, n≥ 2. In this case, passing to the limit in (25) gives

(26) Tn(1) = Tn−1(A
′) +

2

4n
T̃n−1(A

′)− 2
(3

4

)n

T̂n−1(A
′),

where T̃n−1 and T̂n−1 are the operators associated to the kernels

K̃n−1(x, z) =
Gn−1(x,x− 4(x− z))

(x− z)n
,

K̂n−1(x,w) =
Gn−1(x,x− 4

3 (x−w))

(x−w)n
.

These kernels are very similar in character to Kn−1, and all computations per-

formed up to this point can be repeated with minor modifications for them.

In particular, K̃n−1 and K̂n−1 are compact Calderón–Zygmund kernels, T̃n−1

and T̂n−1 satisfy the weak compactness condition, T̃1(1) = T̂1(1) = 0, and for

n≥ 2, both T̃n(1) and T̂n(1) are linear combinations of Tn−1(A
′), T̃n−1(A

′), and

T̂n−1(A
′) with coefficients exponential in n.

Using these results and the fact that A′ ∈ L∞ ∩CMO, we obtain by induc-

tion that Tn : Lp → Lp, 1 < p <∞, and Tn : L∞
CMO → CMO are compact maps

for n≥ 1. Furthermore, by inspecting the constants in the above calculations and

appealing to classical T (1)-theory (see [2]), we obtain bounds on the correspond-

ing operator norms; there exists a constant C > 0 such that

‖Tn‖Lp→Lp ≤Cn‖A′‖n∞, ‖Tn‖L∞
CMO→CMO ≤Cn‖A′‖n∞.

We conclude that TΓ−HΓ : Lp(Γ)→ Lp(Γ) is compact when ‖A′‖∞ < 2/C, hence

finishing the proof of Proposition 4.2. �
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