On the cuspidalization problem for
hyperbolic curves over finite fields

Yasuhiro Wakabayashi

Abstract In this article, we study some group-theoretic constructions associated to
arithmetic fundamental groups of hyperbolic curves over finite fields. One of the main
results of this article asserts that any Frobenius-preserving isomorphism between the
geometrically pro-l fundamental groups of hyperbolic curves with one given point
removed induces an isomorphism between the geometrically pro-I fundamental groups
of the hyperbolic curves obtained by removing other points. Finally, we apply this result
to obtain results concerning certain cuspidalization problems for fundamental groups of
(not necessarily proper) hyperbolic curves over finite fields.

1. Introduction

In the present article, we consider the following problem.

PROBLEM

Suppose that we are given a hyperbolic curve over a finite field in which [ is
invertible. Then, given the geometrically pro-l fundamental group of the curve
obtained by removing a specific point from this hyperbolic curve, is it possible to
reconstruct the geometrically pro-I fundamental groups of the curves obtained
by removing other points which vary “continuously” in a suitable sense?

group-
theoretic
reconstruction!

_>
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\<>/ O“Varying xz”

We shall formulate the above problem mathematically.

Let [ be a prime number, and let X be a hyperbolic curve over a finite field
K in which [ is invertible. For n a positive integer, we denote by X, the nth
configuration space associated to X (hence, X; = X), and write IIx, for the
geometrically pro-I/ fundamental group of X,. In the case n =2, the fiber of a
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projection Xo — X over a K-rational point x € X may be naturally identified
with X \ {z}, so we may regard X5 — X as a continuous family of cuspidaliza-
tions of X. Therefore, the above problem can be formulated as follows (where YV
denotes a hyperbolic curve over a finite field L in which [ is also invertible, and
we use notation for Y that is similar to that for X).

THEOREM A
Let

a1y (o — Iy (g

be a Frobenius-preserving isomorphism (see Definition 5.7(a)) which maps a spe-
cific decomposition group D, of x onto a specific decomposition group D, of y.
Here, we shall denote by @ : 11y = Iy (resp., D, D,) the isomorphism (resp.,
the image of D, in Ilx, the image of D, in Ily ) obtained by passing to the quo-
tients x\ (o1 — Ilx (resp., y\(yy — Iy ). Then there exists an isomorphism

(6] :HX2 —)Hy2

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it is compatible with the
natural switching automorphisms up to an inner automorphism (of either the
domain or codomain) and fits into a commutative diagram

[
HX2 e HY2

) 2

IIx L} 11y
that induces « by restricting as to the inverse images (via the vertical arrows)
of D, and D,,. In particular, if 2’ (resp., y') is a K-rational point of X (resp.,
an L-rational point of Y ) and we assume that the decomposition groups of ', y'
correspond via «, then we have an isomorphism

O/ . HX\{$/} l} Hy\{y/}

(which may not be unique) such that o and o induce the same isomorphism
IIx S 1y.

Now let us explain the content of each section briefly. In Section 3, we recall
the notion of the (log) configuration space associated to a hyperbolic curve and
review group-theoretic properties of the various fundamental groups associated
to such spaces. In particular, the splitting determined by the Frobenius action
on the pro-I étale fundamental group Ay, of X, xx K gives rise to an explicit
description of the graded Lie algebra obtained by considering the weight filtration
on Ay, (see Definition 3.6). This explicit description will play an essential role
in the proof of Theorem A.

In Section 4, we discuss a certain specific choice (among composites with
inner automorphisms) of the morphism between geometrically pro-I fundamental
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groups obtained by switching the two ordered marked points parameterized by
the second configuration space. This choice will play a key role in the proof of
Theorem A.

Section 5 is devoted to proving Theorem A. Roughly speaking, starting from
a given geometrically pro-/ fundamental group Ilx\ .}, we reconstruct group-
theoretically a suitable topological group, that is, HI;(‘Qe (see Definition 5.1), which
contains the geometrically pro-/ fundamental group of the second configuration
space, by using the explicit description of graded Lie algebra studied in Section 3.
Next, we reconstruct the automorphism on 1‘[1)‘(‘2‘e induced by the specific choice
of the switching morphism studied in Section 4. Finally, we verify that IIx, can
be generated, as a subgroup of Hg(‘ij, by the given fundamental group Ilx\ (.}
and the image of this fundamental group via the specific choice of the switching
morphism studied in Section 4; this allows us to reconstruct Ilx, as a subgroup
of TI%ie.

X2

In Section 6, as an application of (a slightly generalized version of) Theo-
rem A, we give a group-theoretic construction of the cuspidalization of an affine
hyperbolic curve X over a finite field at a point infinitesimally close to the cusp x.
That is to say, we give a construction, starting from the geometrically pro-l fun-
damental group ILy of X, of the geometrically pro-l fundamental group II5ios of
the log scheme obtained by gluing X to a tripod (i.e., the projective line minus
three points) at a cusp x of X.

THEOREM B

Let X (resp., Y) be an affine hyperbolic curve over a finite field K (resp., L),
and let x be a K -rational point of X \ X (resp., y an L-rational point of Y \'Y ).
Let

Ot:HXL>HY

be a Frobenius-preserving isomorphism such that the decomposition groups of x
and y (which are well defined up to conjugacy) correspond via «. Then there
exists an isomorphism

ax7y . Hylog — H?log
x Y

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it maps the conjugacy class
of the decomposition group of T to the conjugacy class of the decomposition group
of § and induces a upon passing to the quotients Hylmog — Iy, H?Log — Iy .

group-
theoretic
reconstruction!

_>
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At the end of this article, we consider the cuspidalization problem for (geo-
metrically pro-l) fundamental groups of configuration spaces of (not necessarily
proper) hyperbolic curves over finite fields (see Theorem 6.4).

THEOREM C
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L). Let

aliﬂx%ﬂy

be a Frobenius-preserving isomorphism. Then for any n € Z>, there exists an
isomorphism

Qo :HXn L)HYTL

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it is compatible with the
natural respective outer actions of the symmetric group on n letters and makes
the diagram (i=1,...,n+1)

An41

HXn+1 — HYn+1

n| 2

oy
Ux, —— Iy,

commute.

Finally, we make a remark on the results in the present article. When the curves
involved are of genus at least 2, Theorem A may be obtained as an immediate
consequence of [12, Theorem 3.1] and [2, Theorem 4.1 and Corollary 4.1(i)]. Also,
Theorem C is already proved in [12] for the case where n =2 and X is proper
and in [2] for the case where n >3 and X is proper. On the other hand, the
proof of Theorem A given in the present article is considerably simpler and more
direct than the proofs in [12] and [2]. Indeed, in the present article, we shall
apply Theorem A to give (see Theorem C) a substantially simpler proof of [2,
Theorem 4.1] than that given in [2], which, moreover, includes the affine case for
the first time.

2. Notations and conventions

Numbers. We shall denote by Q the field of rational numbers, by Z the ring
of rational integers, and by N C Z (resp., Z>, C Z) the additive submonoid of
integers n > 0 (resp., the subset of integers n > a for a € Z). If | is a prime
number, then Z; (resp., Q;) denotes the I-adic completion of Z (resp., Q).

Topological groups. For an arbitrary Hausdorff topological group G, the nota-
tion

Gab
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will be used to denote the abelianization of G, that is, the quotient of G by the
closed subgroup of G topologically generated by the commutators of G. We shall
say that G is slim if each open subgroup of G is center-free.

For each closed subgroup H of G, let us write

Ng(H):={geG|g-H-g~' =H}

for the normalizer of H in G. We shall say that a closed subgroup H C G is
normally terminal in G if the normalizer Ng(H) is equal to H.

We shall write Aut(G) for the group of automorphisms of the topological
group G, Inn: G — Aut(G) for the homomorphism obtained by letting G act on
G by inner automorphisms, and Out(G) := Aut(G)/Inn(G).

If G’ is a topological group, then one may define an equivalence relation ~
on Hom(G', @), the set of continuous group homomorphisms from G’ to G, by

fi~ fo=3geG: fi=Inn(g)o fo,

where fi, fo € Hom(G',G). We shall refer to an element of the quotient set
Hom(G',G)/ ~ of Hom(G',G) by ~ as an outer homomorphism. Note that ~ is
compatible with composition of homomorphisms, so composition of outer homo-
morphisms make sense.

If G is center-free, then the natural sequence

Inn

1—G— Aut(G) — Ouwt(G) — 1

is evidently exact. If the profinite group G is topologically finitely generated, then
the groups Aut(G) and Out(G) are naturally endowed with a profinite topology,
and the above sequence may be regarded as an exact sequence of profinite groups.

If, moreover, J — Out(G) is a homomorphism of groups, then we shall write

G4 J = Aut(G) Xoua) J

for the outer semidirect product of J with G. Thus, we have a natural exact
sequence

G- G T J— 1.

ut
It has been shown (see [2, Lemma 4.10]) that if an automorphism ¢ of G T
ut
preserves the subgroup G C G % J and induces the identity morphism on G and

the quotient J, then ¢ is the identity morphism of G O;t J.

Log schemes. Basic references for the notion of log scheme are [7] and [6]. In
this article, log structures are always considered on the étale sites of schemes.
For a log scheme X'°8, we shall denote by X (resp., Mx) the underlying scheme
of X8 (resp., the sheaf of monoids defining the log structure of X'°8). Let
X2 and Y'% be log schemes, and let f°%: X'°8 — Y1°8 he a morphism of
log schemes. Then we shall refer to the quotient of Mx by the image of the
morphism f*My — Mx induced by f°% as the relative characteristic sheaf of
f'°8_ Moreover, we shall refer to the relative characteristic sheaf of the morphism
X'°g 5 X (where, by abuse of notation, we write X for the log scheme obtained



130 Yasuhiro Wakabayashi

by equipping X with the trivial log structure) induced by the natural inclusion
O* < Mx as the characteristic sheaf of X'°8.

We shall say that a log scheme X'°8 is fs if M x is a sheaf of integral monoids
(see [6, Section 1.1]) and, locally for the étale topology, has a chart modeled on a
finitely generated and saturated monoid (see [6, Section 1.1]). If X'°8 is fs, then
for n a nonnegative integer, we shall refer to the n-interior of X'°® as the open
subset of X on which the associated sheaf of group envelopes (see [6, Section 1.1])
of characteristic sheaf of X'°8 is of rank < n. Thus, the O-interior of X8 is often
referred to simply as the interior of X108,

Curves. Let f: X — S be a morphism of schemes. Then we shall say that f
is a family of curves of type (g,r) if it factors X < X — S as the composite of an
open immersion X < X whose image is the complement X \ D of a relative divi-
sor D C X which is finite étale over S of relative degree r and a morphism X — S
which is proper, smooth, and geometrically connected and whose geometric fibers
are one-dimensional of genus g. We shall refer to X as the compactification of X.
We shall say that f is a family of hyperbolic curves (resp., tripod) if f is a family
of curves of type (g,7) such that (g, r) satisfies 29 — 2+ > 0 (resp., (g,7) = (0, 3)
and the relative divisor D is split over 5).

We shall denote by

mgﬁ[T]Jrs
the moduli stack of (r 4 s)-pointed stable curves of genus g for which s sections
are equipped with an ordering. This moduli stack may be obtained as the quotient
of the moduli stack of ordered (r 4 s)-pointed stable curves of genus ¢ (see [8] for
an exposition of the theory of such curves) by a suitable symmetric group action

on 7 letters. We shall denote by M];ji.

Mg,[r]Jrs with the log structure associated to the divisor with normal crossings

|+ the log stack obtained by equipping

which parameterizes singular curves.

Fundamental groups. A basic reference for the notion of Kummer étale cover-
ing is [6]. For a locally Noetherian, connected scheme X (resp., locally Noether-
ian, connected, fs log scheme X!°8) equipped with a geometric point 7 — X
(resp., log geometric point #'°% — X'°8) we shall denote by 7 (X,Z) (resp.,
71 (X108 71°8)) the étale fundamental group of X (resp., logarithmic fundamen-
tal group of X'°%; see [1, Chapter 5, Section 7]). Since one knows that the étale
and logarithmic fundamental groups are determined up to inner automorphisms
independently of the choice of base point, we shall omit the base point, and write
m1(X) (resp., w1 (X1°%)).

For a scheme X (resp., fs log scheme X'°8) which is geometrically connected
and of finite type over a field K in which a prime number [ is invertible, we
shall refer to the quotient Iy of m(X) (resp., quotient Iy of 1 (X'°8)) by
the closed normal subgroup obtained as the kernel of the natural projection
from 71 (X x g K) (resp., 71 (X8 x i K)) (where K is a separable closure of
K) to its maximal pro-l quotient Ay (resp., Axis) as the geometrically pro-l
étale fundamental group of X (resp., geometrically pro-l logarithmic fundamental
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group of X'°8). Thus (if we write G for the Galois group of a separable closure
of K over K, then) we have a natural exact sequence

1—Axy —IIxy —Gg—1
(resp., 1 — Axios — U x10e — Gx —> 1).

Note that if the log structure of X°% is trivial, then we have natural isomorphisms
Axror = Ax, Hxios — M x.

If K is finite, then write G;( C Gk for the (unique) mazimal pro-l subgroup
of Gk (so G;{ =~ 7,;). Also, for a profinite group II over G, we shall use the
notation

=T xg, G CTI

and refer to it as the restricted pro-l group of II.

3. Fundamental groups of (log) configuration spaces

The purpose of this section is to recall the notion of the (log) configuration
space associated to a curve and review group-theoretic properties of the various
fundamental groups associated to such spaces. Let [ be a prime number, let K
be a finite field in which [ is invertible, let K be a separable closure of K, where
we shall denote by G, the Galois group of K over K, and let X be a hyperbolic
curve over K of type (g, r).

DEFINITION 3.1

(a) For n € Z>1, write X*” for the fiber product of n copies of X over K.
We shall denote by

the nth configuration space associated to X, that is, the scheme which represents
the open subfunctor

S {(fry s fn) €XXM(S) | fi# [ ifi# 5}
of the functor represented by X *".
(b) Let us denote by Yiﬁg the nth log configuration space associated to X

(see [15]); that is,

—log —log

Xn = SpeCK Xm_lqofr] Mg,[r]—i—n’
log

ol 1 1

by the curve X — Spec K, and the (1-)morphism ﬂgofan — ﬂgofr] is obtained
by forgetting the ordered n marked points of the tautological family of curves

over ﬂiil 4~ In the following, for simplicity, we shall write X' for Yllog.

where the (1-)morphism Spec K — M  is the classifying morphism determined

PROPOSITION 3.2
. ) _ ~log .
(a) The O-interior (see the Introduction) of the log scheme X,fg 1s naturally
isomorphic to the nth configuration space X,, associated to X.
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(b) The log scheme YIT?g 1s log reqular and its underlying scheme is connected
and reqular.
(c) The projection p® : Y:g — Yfi, induced from the (1-)morphism

M;O’Egmn — M;ianl obtained by forgetting the kth (k=1,...,n) ordered

points of the tautological family of curves over Mlg(ji“]-*-"’ is log smooth (see
the Introduction). Its underlying morphism of schemes is the natural projection
Pk : Xn — X1 obtained by forgetting the kth factor and, hence, is flat and has
connected and reduced fibers over the geometric points of X,_1.

Proof
See, for example, [2, Proposition 2.2]. a

DEFINITION 3.3
We shall denote (see the Introduction) by

My,  (resp., Ax,)
the geometrically pro-I étale fundamental group of X,, (resp., X, xx K) and by

Hyl;vg (reSp., Hylogxn )

the geometrically pro-l log fundamental group of YI:g (resp., the fiber product
X' of n copies of X% over K ). Moreover, we shall denote (see the Intro-

duction) by
H:I;(n’ A}n (g Axn)’ H%logﬂ H%loan

the respective restricted geometrically pro-I groups.
Also we shall write

PR Ax, —» Ax piIlx, > 1x,

n—17

for the morphisms induced by the projection pp x g K : X, xxg K = X, _1 Xx
K, pi: X,, - X,,_1 obtained by forgetting the kth factor (these morphisms of
profinite groups are only defined up to conjugacy in the absence of appropriate
choices of base points of respective schemes), and write

AN AT Ak
U .AX (_)Ax,n, Zk 'AX (_>HX7,

n/n—1 n/n—1

for the kernels of the surjections pf : Ay, - Ay, ,, pl:1lx, — Ix, ,. Then
we have the exact sequences

1—>AXH—>H§)—>G§)—>1,

n

i ;DA
1— A% Ak, 5 Ax, —

R
1 A];(n/n—l : HXn : Hanl L,

where the symbol (—) denotes either the presence or absence of T.
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Also, we have a square diagram

(=)

Hg(_n)_l Py H( ) H( ) Gg{_) XG&g) Hg(_)
ni), —— ni), — ..

which can be made commutative without conjugate indeterminacy by choosing
compatible base points, arising from a natural commutative diagram

X, 2 X, — XnX

l I l

log
~log P
X

logxn
s T xs X%

Then, it follows from Propositions 3.2(a) and 3.2(b) together with the log purity
theorem (see [6], [9]) that the three vertical homomorphisms are isomorphisms.
In the following, we shall identify I with 11, H(_h),w with

—1057

n

I o e % oo T,

) 1) by

~los ~los
X Xnl1

and the surjection pil :Tly, — Ix, , with the surjection II

—1

means of these specific isomorphisms.

PROPOSITION 3.4
(a) A’)f(n/n_l may be naturally identified with the maximal pro-l quotient of

the étale fundamental group of a geometric fiber of the projection morphism py :
X, =X 1.

(b) The images of the % : A’j(n/nil — Ay, , where k=1,...,n, generate
Ax,, .
(c) The profinite groups Ax,, Ak Xonor? H}n, and H}XTL are slim (see the

Introduction).

Proof
Assertion (a) follows from [15, Proposition 2.2] or [19, Proposition 2.3]. Assertions
(b) and (c) follow from induction on n together with the exact sequence

i Ph
1—>A’;(Wn_1—>AX —Ax, , —1

displayed in Definition 3.3. Indeed, with regard to (b), A%

Alj(nil/%2 (for k=1,...,n—1) via p2 : Ay, — Ax,

: k k
this map AXH/WI - A%

B maps to

and it is verified that

is surjective by regarding it as the morphism

—19

—1/n—2
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induced by an open immersion between the hyperbolic curves that arise as geo-
metric fibers of the projection morphisms involved. With regard to (c), the slim-
ness of Ax is well known (see, e.g., [10, Lemma 1.3.10]); the slimness of HE(
follows from the fact that the character of GE( arising from the determinant of
A% coincides with some positive power of the cyclotomic character; the other
statements follow from the fact that an extension of slim profinite groups is itself
slim. ]

Next, we recall from [12, Section 3] the theory of the weight filtration of funda-
mental groups and the associated graded Lie algebra.

DEFINITION 3.5

Let [ be a prime number, let G, H, and A be topologically finitely generated pro-I
groups, and let ¢ : H — A be a (continuous) surjective homomorphism. Suppose
further that A is abelian, and suppose that G is an [-adic Lie group.

(a) We shall use the term central filtration {H (n)},>1 on H with respect to
the homomorphism ¢ for the filtration defined as follows:

H(1):=H,
H(2) = Ker(6),
H(m) := ([H(m1), H(mz)] | m1+ma=m) for m>3,

where (N; | i € I) is the group topologically generated by the N;’s.
In the following, for a,b,n € Z such that 1 <a <b, n > 1, we shall write

H(a/b) := H(a)/H(b),
)i= @D H(m/m +1),

m>1

Gr(H)(a/b):= @ H(m/m+1),

b>m>a
Gr, (H) := Gr(H) ®z, Q,
Grg, (a/b) := Gr(H)(a/b) ®z, Qi
H(a/o0) := l'&lH(a/b).

b>a

(b) We shall denote by Lie(G) the Lie algebra over Q; determined by the
l-adic Lie group G. We shall say that G is nilpotent if there exists a positive
integer m such that if we denote by {G(n)} the central filtration with respect
to the natural surjection G — G2 (see (a)), then G(m) = {1}. If G is nilpotent,
then Lie(G) is a nilpotent Lie algebra over Q; and, hence, determines a con-
nected, unipotent linear algebraic group Lin(G), which we shall refer to as the
linear algebraic group associated to G. In this situation, there exists a natural
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(continuous) homomorphism (with open image)
G — Lin(G)(Qy)

(from G to the l-adic Lie group determined by the Q;-valued points of Lin(G))
which is uniquely determined (since Lin(G) is connected and unipotent) by the
condition that it induces the identity morphism on the associated Lie algebras.
In the situation of (a), if 1 <a € Z, then we shall write

Lie(H (a/o0)) = l'&nLie(H(a/b)L
b>a

Lin(H(a/o0)) = l'&nLin(H(a/b)),
b>a

where we note that each H(a/b) is a nilpotent l-adic Lie group.

DEFINITION 3.6
For n € Z>1, we shall denote by

{Ax, (m)}

the central filtration of Ax, with respect to the natural surjection Ax, — Aa?bxn

(where X denotes the smooth compactification of X (see the Introduction)), and
refer to it as the weight filtration on Ax, .

PROPOSITION 3.7

If we equip A’%n/n_l with the central filtration induced from the identification
given by Proposition 3./ (a) and its weight filtration, then the sequence of mor-
phisms of graded Lie algebras

LA A
1—ar(ak )T aray,) T arax, ) —1

induced by the second displayed exact sequence of Definition 3.3 is exact.

Proof
See [2, Proposition 4.1]. O

Next, let us fix a section o : Gxg — Ilx, of the surjection Ilx, — G i arising from
the structure morphism of X,. This section ¢ determines the action of Gx on
Ax, by conjugation, and hence also on

Grg,(Ax,)(a/b),  Lie(Ax,(a/b)),  Lin(Ax,(a/b))(Q),
where a,b € Z such that 1 <a <b.

PROPOSITION 3.8

Let us assume that K is a finite field whose cardinality we denote by qr, and
write Fr € Gi for the Frobenius element of Gx. Then, relative to the natural
conjugate actions determined by o, we have the following statements.
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(a) The eigenvalues of the action of Fr on Liex, (a/a + 1) are algebraic
numbers all of whose complex absolute values are equal to q(;(/Q (i.e., weight a).
(b) There is a unique G g -equivariant isomorphism of Lie algebras

Lie(Ax, (a/b)) = Grg,(Ax,)(a/b)
which induces the identity isomorphism
Lie(Ax, (c/c+1)) 5 Grg,(Ax, )(c/c+1)

for all c € Z>1 such that a <c <b.

Proof

Assertion (a) follows from the “Riemann hypothesis for abelian varieties over
finite fields” (see, e.g., [16, p. 206]). Assertion (b) follows formally from assertion
(a) by considering the eigenspaces with respect to the action of Fr. |

The following proposition is a special case of a result proven previously (see [18]).
For simplicity, we discuss only the case used in the proofs of the present article.

PROPOSITION 3.9
For n=1,2, the graded Lie algebra Gr(Ax, ) has the following presentation.

(a) The case n=1 (i.e., X,, = X ) has generators (1<j<r,1<i<g)(;€
Ax(2/3) and oy, B; € Ax(1/2) and relation Z;.:l G+ >0 lau, 8] =0, where ¢;
(7 =1,2,...,r) topologically generates the inertia subgroup in Ax (well defined
up to conjugacy) associated to the jth cusp (relative to some ordering of the cusps
Of X XK F}

(b) The case n =2 has generators (1<j<r, 1<i<g, k=1,2) (€
Ax,(2/3), ¢f e A§2/1(2/3), and oF, BF € A’%z/l(l/Z) and relations (1< 3,5 <r,

GAG1<ii <g, K} ={1,2}) (+ X7, ¢F + X0, [oF, 5] =0, [ak,(F] =

[ f?C_;c/}:O’ [.;'C’Cf//]:()? [afaai'c//]:[ i ik',]:()’ and
[ak ,Bkl/]: ¢ ifi=1,
e 0 ifitd,

where ¢ topologically generates the image in Ax,(2/3) of the inertia subgroup in
Ax, (well defined up to conjugacy) associated to the diagonal divisor of X X
X, and CJI»“ generates the image in A§2/1(2/3) of the inertia subgroup in A_’)“(z/l
associated to the jth cusp (relative to some ordering of the cusps of X xx K) of
the kth factor of X5.

4. Switching morphism on configuration spaces

We continue to use the notation of Section 3. In this section, we shall introduce
. ! . . .
certain closed subschemes of X QOg equipped with induced log structures (denoted
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by D& and Y;Og) and consider various automorphisms induced by the automor-
phism of leog determined by switching the two factors of X. The geometry of
such log schemes allows us to prove the uniqueness of certain specific conjugates
of induced switching morphisms between fundamental groups that satisfy certain
conditions. This uniqueness (see Proposition 4.5) plays a key role in the proof of
Theorem A.

First, we define a log scheme

Dlog

to be the log scheme obtained by equipping the diagonal divisor X C X (which
is the restriction of the (1-)morphism M, ;141 — M, ;42 obtained by gluing

—1
the tautological family of curves over M gofr] 41 to a trivial family of tripods along

the final ordered marked section) with the log structure pulled back from Yl;g.

Thus, if we write d : D' — Yl;g for the natural diagonal embedding, then it
follows immediately from the definitions that p, o d = py o d : D'°8 — Ylog is a
morphism of type N (see [3]), that is, the underlying morphism of schemes is
an isomorphism, and the relative characteristic sheaf (see the Introduction) is
locally constant with stalk isomorphic to N.

Observe that the (1-)automorphism on ﬂ;o’i] Lg OVer M;Ofr] given by switch-
ing the two ordered marked points of the tautological family of curves over
——log . . _ . . .
M a[r]+2 induces automorphisms s, §, and sp, which fit into a commutative
diagram as follows:

d —lo p:=(p1,p —lo —lo
Dlos 4, X8 pE@ipe) glos o

() | ] 5|

d <log  p:=(p1,p2) =zlo ~
plos 4, 8 pEleupe) glos %

LEMMA 4.1

In the notation of the above situation,

(a) 5 is the morphism determined by switching the two factors; and
(b) sp is the identity morphism on the underlying scheme.

On the sheaf of monoids defining the log structure of D8, for any étale local
section s of Mp such that s =0 defines the diagonal divisor X C X,

sp(s) = —s.

Proof

Recall (see [8, Corollary 2.6]) that Xs is obtained by blowing up X xx X
along the intersection of the diagonal divisor and the pullbacks of the cusps
via pi,p2 : X9 — X. Thus, one verifies easily that assertions (a) and (b) follow
immediately from the fact that the ring homomorphism corresponding to s in an
affine neighborhood of any diagonal point may be expressed as
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ARk A— A®K A,
Zaj@)a; > Za&@aj,
J J

and hence, it maps s to —s for any local section s such that s =0 defines the
diagonal divisor X C X x g X. O

REMARK 4.1.1
Lemma 4.1(b) can be interpreted as the assertion that the automorphism induced
by sp on the sheaf of monoids Mp defining the log structure of D'°% may be
expressed, relative to the étale local splitting of Mp — Mp/O% =N correspond-
ing to s, as

Ne 0% = Na 0%,

(m,v) — (m,(=1)"v).

Next, we introduce the log scheme Y?g that appears in the discussion at the
beginning of this section. Let z'°8 — X' °® be a strict morphism (see [6, Sec-
tion 1.2]) such that the underlying scheme of 2'°¢ is K-isomorphic to Spec(K).
We shall write

—log

—log
= o8 Xplos Xo

Xz
~log .__ ,.log % ]D)log
X =X Ylog 5

where the morphism Yl;g — X' (resp., D'°8 — Ylog) in the fiber product defin-
ing Yfg (resp., #'°8) is p; (resp., p1 od = py o d), and we refer to Yfg (resp.,
7'°8) as the cuspidalization of X at = (resp., diagonal cusp of leog). We note
that both the log structure of £'°% and the underlying scheme of Ylog depend on
the choice of z € X.

The case x € X. In this case, x = £'°%; that is, the log structure of z'°% is
trivial. As we discussed in Section 3, the underlying scheme of Y?g is naturally
isomorphic to X; this isomorphism maps # to x and the interior of Y;Og onto

The case x € X \ X. In this case, the log structure of #'°¢ has a chart modeled
on N, which determines a local uniformizer of X at x. The scheme X, consists
of precisely two irreducible components, one of which maps to the point z € X
(resp., maps isomorphically to X) via Ylog P20y Ylog; denote this irreducible
component by Pg (resp., X, via a slight abuse of notation). Thus, X and Pg are
joined at a single node v,.. Let us refer to X (resp., Pg, v, ) as the major cuspidal
component (resp., the minor cuspidal component, the nexus) at x, and denote
by Ylog/, @ﬁg/, v°¢ the log schemes obtained by equipping X, Pk, v, with the
respective log structures pulled back from Y?g (see [14, Definition 1.4]). Note
that the 1-interior of Ylog, (resp., ﬁllzg,) is naturally isomorphic to X (resp., is a
tripod).



Cuspidalization problem for hyperbolic curves 139

cusps

Cuspidalization
at v € X(K)

Now, if we denote by

H]D)log 5 Hylog

—l
the geometrically pro-I log fundamental groups of D°g, X mog, respectively, then
—l —l
the map ¢; : X 5 £ X 20g of log schemes induces an outer homomorphism [4I] :

05 — Ilx, of profinite groups (see the Introduction), and the above diagram
((¥)™) induces a diagram of outer homomorphisms of profinite groups as follows:

i I
H]D)log ] HX2 ] HX XGr HX
l

(=)™ 812 [s7) 5 |2

dl‘[
@] IIx xg, lx

]

Mo Iy, 2

Note that the homomorphisms corresponding to the arrow [i]] and the arrows
in the diagram ((*)'") are only defined (i.e., in the absence of appropriate choices
of base points of respective log schemes) up to conjugacy, and that [5'!] coincides
with the morphism obtained by switching the two factors. The main purpose of
this section is to give characterizations of certain specific choices within these
conjugacy classes of homomorphisms.

DEFINITION 4.2
(a) We shall denote by

(CY)  (resp., (C2),(Co). (CY))

a choice of a specific homomorphism (i.e., in the sense that it is not subject to
conjugacy indeterminacy)
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T .
7 Hy}tog — sz

(resp., pil 1 Ty, — I, p : Tx, — Mx,d" : Mpes — Ix,)

—l —l —l —l
induced by the morphism of log schemes 71 : XIOg — X2Og (resp., p1 : XQOg — X Og,

—log —log —log
pr:X, — X O,Dls o X,7).

(b) We shall denote by
(C)  (resp., (Cp))
a choice of a specific subgroup (i.e., of a specific decomposition group)
Djz C Tl5pi0s (resp., Dx C1lx,)
associated to #'°8 of YLOg (resp., the diagonal divisor of X5), among the various

conjugates of this subgroup. Note that such a choice determines a choice of a
specific subgroup (i.e., of a specific inertia group)

I; .= DimAXé/l QHYLog (resp., Ix := DXQAXé/l QHX2)
among the various conjugates of this subgroup.
(c) Assume that we have fixed a choice (CZ) of a specific decomposition

group Dj C o (hence also of a specific inertia group Iz C HY}?g). Then we
shall denote by

(CE%)
a choice of a specific section
o) G(K_) — Dé_),
where the symbol (—) denotes either the presence or absence of 1 (thus, a choice
(CX) determines a unique choice (CIX) by restriction), of the natural surjection
Dé_) — G(K_) (see Remark 4.2.1), and by
(C5)
a choice of a specific 1-cocycle map
§:Gh — I

representing the Kummer class —1 € (K*)”" (see Remark 4.2.1).
Before proceeding, we pause to make a remark concerning Definition 4.2.

REMARK 4.2.1

(a) Recall that the natural surjection Dz — G (which, since G is abelian,
is uniquely determined without any conjugacy indeterminacies) has a section.
Indeed, when = € X (resp., € X \ X), fixing a choice of such a section is equiv-
alent to extracting roots of any local uniformizer(s) of the divisor(s) D C X5
(resp., DC X5 and X, C X») at 7.
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(b) We shall consider the restriction map H' (G, I;) = H (G, I+) of coho-
mology groups induced by the natural inclusion G}{ — G . Since G}{ is the
maximal pro-I subgroup of Gk and I is isomorphic to Z;(1) as a Gx-module,
this restriction map determines an isomorphism of H (G, I;) with H' (G, I)
and, hence, also with the maximal pro-I completion (K*)" of the multiplicative
group K* of K. Therefore, if we denote by Zl(G},Ij) (resp., ZY(Gg,Iz)) the
set of (continuous) 1-cocycles of G}( (resp., G ) with coefficients in Iz, then it
makes sense to refer to any element of Zl(G}(, I;) (resp., Z' (G, I3)) belonging
to the inverse image of a € (K*)" = HY(G., Iz) (resp., = HY (G, I+)), via the
natural surjection, as a (continuous) 1-cocycle representing the Kummer class a.

LEMMA 4.3

For any choice (CZX) (resp., (Cx)) of a specific decomposition group Dz C Hyl;og
(resp., Dx Cllx, ), Iz (resp., Ix ) is normally terminal in Akwl (see the Intro-
duction), and Dé_) (resp., Dg;))—where the symbol (=) denotes either the pres-
ence or absence of t—coincides with NHY?E{ (I:)) (resp., Ny, (Ix)()) (see
the Introduction,).

Proof

Recall that, by definition, we have Iz = Dz N Aﬁ(z/l Cllx, and Ix = Dx N
A&z/l CIlIx,. Next, let us recall the well-known fact (see, e.g., [17, (2.3.1)])
that Iz and Iy are normally terminal (see the Introduction) in A}X2/1. Thus,
the respective assertion follows immediately from the fact that pi! maps Dy
onto IIx. On the other hand, the nonrespective assertion follows immediately
from the observation that the images of Dz and HyLog coincide via pi! o ill. This
observation is a consequence of the geometry of the corresponding morphisms of
log schemes, which implies that both of these images coincide with a decomposi-
tion group that is a subset of or equivalent to Il x associated to the point x. [

LEMMA 4.4

(a) If we fix a choice (CX) of d : lpes — Ix,, then there exists a unique
choice (C’g) of Dx Clx, such that the image of d coincides with Dx. By
contrast, if we fiz a choice (C3y) of Dx C1lx,, then there exists a (not necessarily
unique) choice (C5) of d™: Tlps — Iy, such that the image of d' coincides
with Dx.

(b) If we fiz a triple of choices (C;X), (Cpy), and (C5X), then there exists a
unique pair consisting of a choice (C’;g) of pil : lx, — lx and a choice (C3) of
Dx Cllx, that satisfy the following conditions.

(1) The image of the inertia group Ix C Dx inIlx, coincides with the image
of Iz via il

(2) The homomorphism (pi!,pit) : Iy, — lx xg, llx maps Dx onto the
image of the diagonal embedding I1x — Ilx Xq, lx.
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Proof

Assertion (a) follows immediately from the definitions of IIpwe and Dx. Next,
we consider assertion (b). First, let us observe that it follows immediately from
the various definitions involved that Ix and I; are Ilx,-conjugate. Since, by
Lemma 4.3, Dx coincides with the normalizer of I'x in Ily,, it suffices to take
Dx to be the normalizer of Iz in IIx, and p2H to be such that the condition
pil = pll is satisfied on Dx. Uniqueness follows immediately from conditions (1)
and (2) and the surjectivity of the restriction of pi to Dx. O

PROPOSITION 4.5
If we fiz arbitrary choices (C7Y), (Cpt), (CX), (CIX), and (C5Y), then there eists
a unique triple of choices consisting of (Cpy), (C3), and a choice of a specific

S ~log ~ =l
automorphism induced by s: Xy~ =5 Xo©

It st
st S0l

—which we shall denote by (CIX)—satisfying the two conditions (1) and (2)
stated in Lemma /.4 (b), as well as the following conditions.

(1) The morphism 3" : H} Xt HE( = H} Xat HE( induced by passing to

the quotient HJ;Q i HE( Xt H} determined by pl, pit coincides with the mor-
phism obtained by switching the two factors.

(2) st preserves D; - HJ;Q, and the restriction STlD; :D; = D} corre-
sponds to an automorphism induced by sp : D98 5 D8 wig the identification
Hl};log = D} determined by some choice of a specific homomorphism d' : Tpios —
IIx, whose image coincides with Dx (see Lemma 4./ (a)).

(3) The continuous function GTK — H;Q defined by

g+ (stoa®)(g)-ol(g)™"

is valued in Iz C Hg(z and coincides with the § determined by (C5X).

In particular, st induces the identity morphism on Ix C HJ;Q.

Proof
We begin by proving the existence portion. Let us consider the following (not
necessarily commutative) diagram

dt

p?
., It M x g T

() o] | |

dt pt
. I, I x gy 1Tk

induced by ((*)'") and consisting of the horizontal arrows arising from the choice
(Cﬁ) fixed in advance, the pair of choices (szg ), (C) obtained by applying
Lemmas 4.4(a) and 4.4(b), and arbitrary choices of the vertical arrows. By the
surjectivity of pf, we can take sf, 37 such that the right-hand square of the
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diagram ((*)") commutes, and condition (1) is satisfied. The commutativity of
the rectangle in ((¥)") up to conjugacy implies that there exists \ € H} Xt HE(
such that 3" o (pf o d") =Inn()\) o (pf 0 d") o s' (where Inn()\) denotes the inner
automorphism obtained by conjugating by A). By the construction of the choice
(C3) (see Lemma 4.4(b.2)), p o d’ maps H]Blog
elements of Hk Xat H}; thus, Inn(\) preserves this diagonal subgroup. Since

onto the subgroup of diagonal

H} is center-free (by Proposition 3.4(c)), we thus conclude that A is a diagonal
element. Thus, by taking a lifting A € H]};log of \ and replacing st by Inn(}ﬁl) o
s', we can make the rectangle in ((+)") commute in the strict sense. Next, we
observe (by applying again the commutativity of the rectangle in ((¥)") up to
conjugacy) that s od’ = Inn(pu)odfost for some p € H;Q. By the commutativity
of the rectangle in ((*)"), u projects via p' into the center of H};( Xt H} and,
hence (by Proposition 3.4(c)), to the unit element. Therefore, by replacing st by
Inn(u~ ') ost, we conclude that we may choose s, s, and 51 so that the diagram
((+)") commutes, and moreover, conditions (1) and (2) are satisfied.

Next, observe that by restricting s’ to D&, we obtain a commutative diagram

fl

Pl
1 Ix pl, —=% i, 1
sfllez STID;{lz idll
Pt i
1 Ix pl, —2=% i, 1

in which the right-hand vertical arrow is the identity automorphism of H}. Write
M C Q for the monoid of positive rational numbers with /-power denominators,
and write N for the monoid of global sections of the sheaf of monoids defining
the log structure on a universal geometrically pro-l két covering (see [6, Def-
inition 3.1]) of x'°8 X glos D¢, When € X (resp., z € X \ X), N admits a
direct sum decomposition N 2M@® K~ (resp., N=EM@& M@ K ), where (see
Remark 4.2.1(a)) the first factor (resp., first two factors) of the direct sum arise(s)
from extracting roots of a local uniformizer of the divisor D C X at & (resp., of
local uniformizers of the two irreducible divisors defining the log structure of Y;Og
at ¥) in a fashion compatible with the choice (CX) of o. Here, in the respective
case, we assume that the first factor M corresponds to the divisor D C Xo. Next,
observe that it follows from Lemma 4.1(b), together with the well-known local
structure of X5 in a neighborhood of #, that the automorphism of N = M PK”
(resp., N =M M@ KX) induced by the automorphism s’ of I may be

expressed in the form Dlos
() (e )

(respes (5 7o k) = (s e (™ k) )
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for a suitable choice of a projective system {(—1)!"},,cz., of l-power roots
of —1. In particular, we conclude that the restriction sf|;, is the identity mor-
phism, and that the 1-cocycle Gk >gr (stoo)(g)-of(g)~t is valued in Ix = I3
(see Lemma 4.4(b.1)). Therefore, by replacing s, s’ by their composites with a
suitable Ix-inner automorphism, we may assume that condition (3) is satisfied.
This completes the proof of the existence assertion.

Next we prove the uniqueness portion. If si, s; are two maps that satisfy con-
ditions (1), (2), and (3), then SJ{ o(sh)™' =Inn(n) € Aut(HEQ) for some 7 € H;w
and it follows from condition (2) that Inn(n) preserves the subgroup D; - H};Q.
Since Dg( is normally terminal in HEQ (see Lemma 4.3), we thus conclude that 7

is in D}. Moreover, it follows from condition (1) and the fact that HE( is center-

Pl
free (see Proposition 3.4(c)) that 7 lies in Ker(D; % HE( Xt H}), that is,
n € Ix. On the other hand, since the section o' acts faithfully on Ix via the

cyclotomic character, condition (3) implies that n is the unit element, that is,
that si = s£ g

REMARK 4.5.1

In the case | # 2, —1 coincides with the unit element 1 in (K*)”. Therefore, in
the statement of Proposition 4.5, by taking the choice (C}) to be such that the
1-cocycle map § is trivial, we may obtain an s' satisfying st oot =oT.

5. The proof of Theorem A

This section is devoted to proving Theorem A. We begin with a review of the
notation and setup. Let [ be a prime number, let K be a finite field in which [
is invertible, and let K be a separable closure of K. We shall denote by G the
Galois group of K over K. Next, let X be a hyperbolic curve over K of type
(9x, 7x), and let 2'°% be a strict K-rational log point of X8 = Yllog; write
Yfg = glog Xxglos o Yl;g, Flog .= glog X 5los D¢, In addition, we assume that
we have fixed choices (C}Y), (CX), (CF), (C), (C5) (ie., in the sense that
they are not subject to conjugacy indeterminacy).

As a first step, we define two actions of G on various topological groups,
graded Lie algebras, and linear algebraic groups associated to the fundamental
groups of Yfg and Xs. As we shall discuss in the following, these two actions are
mapped to one another via the morphisms induced by the switching morphism
obtained in Section 4.

DEFINITION 5.1
a) The choice (C,) of a section o : Gxg — Dz determines, by composin,
Y p g
with the natural morphism Dz — Ilgoe (resp., Dz = x,, Dz — xx2), a nat-
z T
71 °P1

ural action of Gk by conjugation on Aﬁ(m = Ker(Ilos '—" Ix) (resp., Ax,,
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Axx2) and hence also on
Gry,,, := Grg (A%, ,,)
(resp., Grx, :=Grg,(Ax,), Gryx2 := Grg, (Axx2)),
Lieﬁ(w1 = Lie(A&Q/l(l/oo))
(resp., Liey, :=Lie(Ax,(1/00)),Lieyx2 := Lie(Axx2(1/00))),
Link, , := Lin(Ak, ,(1/50))(@)
(resp., Liny, :=Lin(Ax,(1/00))(Q;),Linxx2 := Lin(A xx2(1/00)) (Q;)).

In the following, we regard these objects as being equipped with these G-
actions. From the discussion in Definition 3.5(b), we have the following commu-
tative diagram consisting of G g-equivariant morphisms:

1 i1 P
AXM —— Ax, —— Axx=

l l !

-Lin Lin

.1 T . p .
L111X2/1 —— Liny, — Linxx=
and topological groups equipped with G g-actions
AI)J(IZE = AXXZ XLinXXQ Lian, Hl)gze = AI)'(A: ><1GK
as well as Gi-equivariant homomorphisms of topological groups
Int$ : Ax, — A%Q,j, Ity : Ty, — HI)}IE

(b) Next, the choice (Cy), (Cs) yields a new section of the surjective homo-
morphism Dz —» G

O'(s:GK—>D5;,

g = 0(g)-a(g),

which is a homomorphism of topological groups. Then the section o5 determines,
in a similar way to (a), a natural action of Gx by conjugation on

Cry,,, = Cro,(Ak, )
(vesp., Grx, := Grg, (Ax, ), Grxxz := Grg, (Axx2)),
Liey, , :=Lie(Ak, ,(1/00))
(resp., Liey, := Lie(AXz(l/oo)),Luiesz := Lie(Axx2(1/00))),
Liny, , :=Lin(Ak, , (1/50)) (@)

(resp., Liny, := Lin(AX2(1/oo))(Ql)7L§nsz :=Lin(Axx2(1/00))(Q)),
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where, in the following, we regard these objects as being equipped with the G-
actions just defined, as well as topological groups equipped with G g-actions

AR o= Axe Xz, Linyg, TR == AR« G
Next, let us recall that by applying Proposition 4.5, together with the choices
(Ci)), (Cp,), (Cz), (Cs) and the choice (C1) determined naturally by (C,), we
obtain a choice (C{) of a specific automorphism s : H;Q — HJ;Q. Let s': Tx, =
IIx, be an automorphism that induces the outer automorphism determined by
—log —1
the switching morphism sy : X 208’ — X ;g and is compatible with s’ : H}z —
H_sz- Then, by Lemma 5.2 below, we obtain G k-equivariant isomorphisms of
topological groups
AN AL Li e | rrLie _~, TyLi
A’e—>Ale S iy — 1S

induced by s and a (non-Gk-equivariant) commutative diagram as follows:

A II
s s
AX2 —_— AX2 HX2 e HX2
Int%l llntf( Intg(l llntg
AlLie rrlie
s s
AE{A; s ALIC HI)?ZC HLIC

LEMMA 5.2

The Gk-action induced by os (see Definition 5.1(b)) on Ax, (hence also on
Grx,, Liex,, Liny,, and AY®) coincides with the action

Gk — Aut(Ax,),
g — Inn(s"oill 0o(g)).

Proof

This follows immediately from Proposition 4.5(3), together with the definition of
the G g-action induced by o5. |
LEMMA 5.3

We have that Tty and Int'y are injective (see [2, Lemma 4.3] in the case where
X is proper).

Proof

It suffices to verify that Ax, — Liny, is injective. But this follows from the
discussion in Definition 3.5(b) and the fact that (), -, Axx2(m) =1 (see [I8,
Corollary 2.6]). O

Next, we shall construct certain graded Lie algebras equipped with a G g-action—
which we shall denote by L% and £%—by using various subgroups of H—log

Comparing these graded Lie algebras to the graded Lie algebras discussed above
(see Lemmas 5.5, 5.6) will allow us to reconstruct various groups associated to
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Ix, from those associated to Ilses (see Proposition 5.8). This will play an
important role in the proof of Theorem A.

DEFINITION 5.4
(a) For each j=1,2,...,r, let us fix a choice of the inertia subgroup I; C

I .IT
Aﬁ(z/l = Ker (Il PLY T1 ) associated to the jth cusp (relative to some order-

ing of the cusps of X xx K) among the various A}(Q/l—conjugates of these sub-
groups. Then, we have canonical isomorphisms

77]‘1,[5;;)]]‘ (j:1,2,...77").

Indeed, recall that the kernel of the natural quotient (A}(z/l)ab —» A%b coin-

cides with the submodule @, _, I;: C (A}(Z/l)ab; thus, since the subgroup Iz

of (Aﬁ(z/l)ab is contained in this kernel, it follows that the composite I; —
@D I — 1, =D

j'=1
factor multiplied by —1 yields the required isomorphism.
For n = 1,2, we shall denote by V" the completion with respect to the filtra-

tion topology of the free Lie algebra generated by

.
dn
vii=Lo (@ eay)

Jj=1

I; of this inclusion with the natural projection to the jth

equipped with a natural grading (hence also a filtration) by taking Iz, I, to be
of weight 2 and A% to be of weight 1.
(b) If X has genus at least 1, then we shall write

My := Homyg, (HQ(A77 L), Ly).

Note that Mx is canonically isomorphic to Iz as a G g-module. Indeed, recall the
natural quotient (Aﬁgz/1 J{I;)j=1,..r) > Ax; the associated maximal cuspidally

.

central quotient (see [12, Definition 1.1(i)]) yields an extension of A by I;. This
extension determines a generator of the rank one free Z;-module H?(A+, ;) &
Homy, (Mx,Iz) (see, e.g., [11, Lemmas 4.2(i), 4.2(ii), 4.2(iii)]) and, hence, an
isomorphism Mx = I, as desired.
The cup product on the group cohomology of A+
2
/\Hl(Ay,Mx) —)HZ(Ay,MX ®Zz Mx) %MX
determines an isomorphism
(H'(Ax, Mx) =) Hom(A%, Mx) — A% (=~ Hom(H' (Ax, Mx), Mx))

and, hence, composites of natural homomorphisms

2 2
¢: I > Mx — NAR, o NAR — Mx =5 T
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If X has genus 0, then we take ¢, ¥ to be the zero maps.

(¢) We define L to be the quotient of V™ by the relations determined by the
images of the following morphisms (which are patterned after the presentations
given in Proposition 3.9).

(1) When n=1,

Iz — VY(2/3); mes (idg, + Y n; + ¢)(m).
(2) When n=2 (1<i<g, 1<j,j' <r, j#j, {k,}'}={1,2}),

- Ii — V2(2/3); m= mA+ ik (s + ¢) (m);

- Iz ®z, A;—b —V2(3/4); m @ a s [ig onj(m),ir (a));

- Iz — V2(4/5); m > [i, o mi(m), g 0 nyr (m)];

c NP AR —V2(2/3); ana’ = [in(a), ik (a))] — Y(a Ad),

where [-,-] denotes the Lie bracket, and for k=1,2, iy : (PI; @ A’ A%) —
DI e A A%’ )®2 denotes the inclusion into the kth factor.

(d) The natural Gg-action on each direct summand in V" determines a
natural G g-action on V™. One verifies immediately that the ideal generated by
the relations defined in (c) is preserved by this G g-action. Thus, we obtain a
natural G g-action on the graded Lie algebra

Eﬁc (resp.,ﬁ?x)
and a G g-equivariant homomorphism
it — %

of graded Lie algebras determined by the map on generators given by

Lo (J@@-@A@b) Lo (;{?Ij@A;‘?)@27

(av b) — (a7 il (b)) )
as well as a G g-equivariant isomorphism
s L% =

of graded Lie algebras determined by the map on generators given by
- o2 A ®2
Lo(@Lesy) —Loe(@Leay)
Jj=1 j=1
(a7 bla bQ) = (CL, b27 bl)

LEMMA 5.5

Consider the homomorphism of graded Lie algebras V' — Grg, (Akz/l) deter-
mined by the natural inclusions A% — Grg, (A§(2/1)(1/2), I3 — Grg, (A}(z/l)@/
3), and I; — Grg, (A§(2/1)(2/3), This homomorphism of graded Lie algebras fac-
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tors through LY, and the resulting homomorphism bl : LY — Gr@l(A}(z/l) 18
a Gg-equivariant isomorphism of graded Lie algebras, whether we regard
Gr@l(A§<2/l) as the underlying graded Lie algebra (i.e., without G -action) of

¢ 1
Gr}(z/l or as the underlying graded Lie algebra of Ger/l'

Proof

The asserted G g -equivariance follows immediately from the definitions. Thus,
it suffices to verify that h! is an isomorphism. When z is not a cusp of X, this
follows immediately from Proposition 3.9(a) applied to X,. Thus, it suffices to
verify that h! is an isomorphism in the case where x is a cusp of X. Let S be
a mixed characteristic trait (i.e., the spectrum of a Henselian discrete valuation
ring) whose residue field is isomorphic to the residue field of =, and write S'°%
for the log scheme obtained by equipping S with the log structure determined
by the closed point of S. Next, let us take a stable log curve Ylgg — S'°2 whose
special fiber is isomorphic to Y}Eog — z'°8 and such that the interior U of Xgog
is a hyperbolic curve over the fraction field of S. Then (see the discussion from
[14, Section 0] in the characteristic zero case) we obtain a natural isomorphism
Ayl:g 5 Ay by composing a certain specialization isomorphism Ayizog 5 Aylsog
with an isomorphism A?;g 5 Ay arising from the log purity theorem. Hence, the

fact that h! is an isomorphism follows immediately by applying this isomorphism

Ayiog 5 Ay together with Proposition 3.9(a). O
LEMMA 5.6
Let

Lie , 7:.1 : “Lie 7% .1 < Lie . 7 - ~oTd

17 .L1eX2/1 — Liex,, 1] .L16X2/1 — Liex,, sy :Liex, — Liex,

be the G -equivariant homomorphisms of graded Lie algebras induced by il :

06 — Ilx,, it 05 = 1lx,, and s M, = Ilx,, respectively. Then there

exist G -equivariant isomorphisms of graded Lie algebras
o v 1
1,1l ~ oyl 1. p1 ~ 7Y
hx : Lx — Liex, hx :Lx — Liey, ,
2 .2 N y2 . p2 ~oTY
hx : L5 — Liex,, hx : L5 — Liex,

which fit into the following commutative diagrams consisting of Gk -equivariant
morphisms:

L L L
1 ] 2 1 51 2 Sx
cL —T o2 cL o2 P S}

hﬁ(lz hg(ll E;lz f&lz hilz ig(lz

jLie YLie Lie

v 1 7 v
-1 1 . r 1 < . s Y
L16X2/1 — Liexy, L16X2/1 —— Liex, Liey, X Liex,
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Proof
Consider the homomorphism of graded Lie algebras V2 — Grg, (Ax, ) determined
by

I; ® (@Ij ® Aayb)eﬂ — Grg, (Ax,),
j=1

(a,b1,b2) — ZIII(CL + bl) + SEI( Oill_l(bQ).

Then it follows from Proposition 3.9(b) that this homomorphism of graded Lie
algebras factors through £%, and that the resulting homomorphism h? : £3 —
Grg,(Ax,) is a Gi-equivariant isomorphism of graded Lie algebras, whether we
regard h? as the morphism of underlying graded Lie algebras (i.e., without G-
actions) h?: L% — Grx, or as the morphism of underlying graded Lie algebras
h2 L3 — Grx,. If we denote by i$" : Grr%(z/1 — Gry,, 15" dr;(z/l — Gry,, and
s?{ : Gry, = er2 the Gk-equivariant homomorphisms of graded Lie algebras
induced by Z{I : Hylog — x,, zlf : H?log —Ilx,, and 8% 1y, Y IIx,, respec-
tively, then we obtain G K-equivariant commutative diagrams as follows:

L L L
1 i 2 1 1 2 2 SX 2
hllz h2l2 Ellz ﬁﬂz }ﬁlg ;Lzlz
1 i$r v 1 igr g s§r v
GrXQ/1 — Grx, erz/l —— Grx, Grx, —— Cry,

On the other hand, it follows from Proposition 3.8 that we have G -equivariant
commutative diagrams as follows:

-Gr 7Gr Gr
1 (2 v 1 (2 S Sx 192
Gry,, — Grx, Gry,, — Grx, Grx, —— Gry,.
| | | | | |
1 ive v 1 e < glie o
. . 2 2 . 5 ;
LleX2/1 Em— LleX2 LleX2/1 Emm— Llex2 L1€X2 — Llex2

By composing the vertical arrows in these commutative diagrams, we obtain the
required isomorphisms. O

Now, let L be a finite field of cardinality prime to [, let Y be a hyperbolic
curve over L of type (gy, ry), and let y'°® be a strict L-rational log point of
710g = 7110g. We shall use notation for objects obtained from Y (e.g., Y3, YLOg,

Iy,, H?log) that is similar to that from X.
Yy

DEFINITION 5.7
(a) Consider an isomorphism of profinite groups « : IIx =% IIy (resp.,
0 5 I505). Then the natural surjections IIx — Gk, Iy — G (resp.,
z y
Hsos — G, Ilgpoe — G1) arising from the structure morphisms over finite
fields may be characterized group-theoretically (see [20, Proposition 3.3]) as
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the (unique) maximal (Z-)free abelian quotient. Thus, o induces an isomor-
phism Gx = Gp. We shall say that o is Frobenius-preserving if the isomorphism
Gx = G, obtained as above preserves the Frobenius elements.
(b) We shall denote by
~ Xloenylos
(C’ify_’y) (resp., (Cas Y ))

a choice of a specific Frobenius-preserving isomorphism ITy = ITy (resp., I5os —
H?;og) which maps the decomposition group of z (resp., the diagonal cusp &) onto
the decomposition group of y (resp., the diagonal cusp §) up to conjugation.

PROPOSITION 5.8
) . los ~xylos
Let us fix specific choices of (CY), (CY), (CY), and (Czy Y ). Denote by
~ ) . ) Xlog Ylog,
o HY?;’%' — H?l;g the isomorphism determined by (Cy.y - ). Let us assume

that the decomposition subgroups determined by (CX), (Cg) are compatible with
respect to «.

(a) There exists a unique pair consisting of a choice (C}) of a specific
1-cocycle 0 : G, — I := Ker(Dy — Ily) and a choice (CY) of a specific sec-
tion 7: G — Dy which are compatible with (C5*) and (CX), respectively, via
(CX,7Y) in an evident fashion.

(b) There exists a Gk -equivariant isomorphism a2 AL‘e
logical groups satisfying the following conditions.

(1) a8 is also G -equivariant when we regard it as a map Alie 5 Ale
under the natural zdentzﬁcatwns Ale 5 Agg:, Al 5 AL‘e without G i -actions.

(2) If we denote by oz2 .HL‘e = TIge, ”HL‘ HLle IZII{/;E the semidirect
products 0fa2AL‘e with the isomorphism G g — GL (i.e., determined by o) relative
to the respective actions of G and G, then these morphisms make the following
diagrams commute:

L‘e of topo-

Int} osl! L1c . S
— Lie X Lie
HXLog H E— HX><2 HX2 — ]___[){2
G‘J/Z OéglLieJVZ axal? alz-ILieJ( CU!ZHLieJV
Intil osl! . rilie
H?log Y1 H%;e — Iy x> HLle sy HLle
y

Proof

Assertion (a) follows immediately by transport of structure. Next, we consider
assertion (b). Since « is assumed to be Frobenius-preserving, it follows from [13,
Corollary 2.7(1)] that (9x,7x) = (9y,ry) and that « induces an isomorphism

pt . Aab = Aib and a bijective correspondence between the respective sets of

*og — . . . .
cusps of X, o8 Y, %% as well as isomorphisms of the inertia subgroups of cusps cor-

respondlng via thls bijection. By applying these isomorphisms (together with the
constructions of LY, £, £}, £2), Lemma 5.6 yields Gx-equivariant isomor-



152 Yasuhiro Wakabayashi

. v 1 v 1 :
glie . 1 : Lie . T i :
phlSHlS al LleX — Lley/l, e L16X2/1 & L1eY2/17 a3™® : Liey, = Liey,, and
°: Liey, 2 Liey, . These morphisms give rise to a G g-equivariant commutative
diagram as follows:

Lle L' “Lze
L1eX2/1 -, Liex, =, LleX2 — Llex2/1

a“ell a%ielZ &%‘elz &nelz

LlF‘ Li(= “Lls-
L16Y2/1 LN Liey, LN Lley2 P Lley2/1
Then it follows from the functoriality of Lin(-) that we obtain a Gk-equivariant
commutative diagram as follows:

-Lin SLm “Lin 1

.1 7 . X Y 7 Y
LlnX2/1 —_— ]:Jln)(2 —_— LlnX2 — LlnXZ/l
aLinJ/? aéinlz &;—JHJ/Z DvtLinJ(Z
L]Il L]Il L]n

L1nY2/ LIS Liny, L SN Llny2 — LIHYZ/

Note (see [12, Remark 35]) that modifying the choice (C2X) of a specific section
Gx — Djz by a cocycle G — Iz determined by the choice (C;;X ) affects the Galois
invariant isomorphisms of Proposition 3.8(b) by conjugation by an element cx
of the subgroup obtained by tensoring I; with Q;; a similar statement holds,
with respect to some cy, for objects associated to Y when we modify (CY) by

(CY). One may verify easily that a maps cy to cy and, hence, that oM® =

&™" as a morphism of underlying topological groups (i.e., without G x-actions).
Next, recall that the morphisms %" and s¥" o i} are compatible with the

corresponding morphisms zIfm and s¥" o zIf“‘ associated to Y via the natural

identification of Liny, with Liny, (i.e., without G g-actions). Also, let us recall
L]n

that Liny, (resp., Liny,) is generated by the images of Link " L Liny, (resp.,
VLln in Lln
LIHX2/1 Ly L1nX2) and the composite LlnX2/ % Linx, S LmX2 = Liny, (resp.,

“Lin Lm
Lin

7 . . . 9
L1nX2/1 L Liny, = Liny, 2 Liny, ). Since the restrictions of a5™ and &% to

these image subgroups coincide by virtue of the equality o™" = &M, we obtain

that o™ = a%". Therefore, by conbtruction oy (= &5 induces the required
G i-equivariant isomorphism a2 AL‘e Alf/le of topological groups satisfying

conditions (1) and (2). This completes the proof of assertion (b). O

One of main results of this article, that is, a slightly generalized version of The-
orem A, is the following.

THEOREM 5.9

Let X (resp., Y) be a hyperbolic curve over a finite field K (resp., L), let x be a
K -rational point of X (resp., y be an L-rational point of Y ), let Xo (resp., Ya) be
the second configuration space associated to X (resp., Y), let Y}Sg (resp., 7;03;)
be the cuspidalization of X at x (resp., of Y at y; see Definition /.2), and let
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Dz C Il (resp., Dy C H?log) be a specific decomposition group of the diagonal
x y
cusp T°¢ (resp., §'°8; see the discussion following Remark /.1.1). Let
(63 HY;og ;> H?L()g

be a Frobenius-preserving isomorphism (see Definition 5.7(a)) which maps Dz
onto Dy. Let us denote by @ :Ilx = Iy the isomorphism obtained by passing
to the quotients Hy;og — Ilx, HYLOg — Iy . Let us denote by D, CIlx (resp.,
D, CIly ) the decomposition group of x (resp., the decomposition group of y)
determined by the image of Dz in Ilx (resp., as the image of Dy in Ily ) via the
quotient lspos — Ilx (resp., lgaos — Iy ).

xz Y
Then there exists an isomorphism
Qa9 . HX2 — Hy2

which s uniquely determined up to composition with an inner automorphism
(of either the domain or codomain) by the condition that it is compatible with
the natural switching automorphisms (see the discussion following Remark 4.1.1)
and with the specific decomposition groups associated to the respective diagonal
divisors determined by Dz, Dy (see Lemma J./ (b)), which fits into the following
commutative square:

HX2 L} Hy2
(%) p?l lp?
HX L) Hy

and induces « upon restriction to the inverse images (via the vertical arrows of
(+x)) of Dy CIIx and D, CIIy.

Proof
Let us fix specific choices of (C’ff), (C’;ﬁ), (C’Z), (C’;/l). By applying Proposi-

< log ~ 571
X 85y o8

tion 5.8 to these choices and the choices of (CX), (C’;/)7 (Cay v ) given by
hypothesis, we obtain a commutative diagram as follows:

rLie

It ogl! . s .
Lie X Lie
Tos Tk Iy

rLie _miLie
L e e
o .1 mplie

1I Inty oy HLie Sy HLie
ylos 2 Y2

Now observe that, by the various constructions involved, sg(mc o SEI(UC = idng(a;,
and nge oIntY ol coincides with Int'y oLl for some il : Hylzog — Hleog (within
the conjugacy class of homomorphisms determined by i) induced by is : Yfg —
Ylgog. Thus, it follows from Proposition 3.4(b) that (Int% O'L‘ll_[)(]:[ylm(‘)g) and (sg(Lie o

Int'y o i{l)(A}(z/l) generate Ilx,, and that IIx, is preserved by the action of sgue.
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Similarly, ITy, is generated by (Int} o Z.li[)(H?Log) and (8{5Lic oInt}t o ilf)(A%@ﬂ%

and Ily, is preserved by the action of sgue. Therefore, since the above diagram
is commutative, o};““ maps llx, onto Ily,. Thus, the restriction oy of agILiC
to I x, makes the diagram (xx) commute and is compatible with the switching
automorphisms. Since the specific inertia subgroup of IIx, associated to the
diagonal divisor determined by Djz is the image of Iz C Il5ies via Int’} o il (see
Lemma 4.4(b)), the isomorphism as, which is an extension of the isomorphism ¢,
is compatible with the corresponding specific decomposition groups associated
to the respective diagonal divisors. This completes the proof of the existence
assertion.

Next, we consider uniqueness. Let g, dia : IIx, 5 ITy, be isomorphisms, both
of which make the diagram (:*) commute and induce a|A§(2/1 (i.e., the restriction
of a to A%Q/l) upon restriction to the kernels of the vertical arrows of (xx). Then

Gy L6 ¢y determines an automorphism of the exact sequence

-T1 IT
1 U1 Py
1—>AX2/1 — Iy, — lIx — 1,

which induces the identity automorphisms on Akm and Ilx. This implies that

% Lo ¢iy is the identity morphism (see the last paragraph concerning topological
groups in the Introduction). O

COROLLARY 5.10
Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L), and let x,
x' be K-rational points of X (resp., y, y' be L-rational points of Y ). Let

(67 Hylmog — H?Log

be a Frobenius-preserving isomorphism such that the decomposition groups of T
and § (which are well defined up to conjugacy) correspond via «. Suppose that
the isomorphism @ : Ilx = Iy induced by passing to the quotients 06 — Iy,
H?;yog —» IIy maps the conjugacy class of the decomposition group of x’' to the
congugacy class of the decomposition group of y'. Then there exists a Frobenius-
preserving isomorphism

O/ : Hylo,g — H?lo/g

x y

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it induces & upon passing to
the respective quotients and maps the conjugacy class of the decomposition group
of the diagonal cusp x' to the conjugacy class of the decomposition group of the
diagonal cusp y'.

Proof
The existence assertion follows from Theorem 5.9 and the fact that if D, CIlx,
D, C1IIy denote the decomposition groups of z’, ', respectively, then we have

natural isomorphisms Ilsies = Dyr Xy Hx,, Hgpios = Dyr X1y, 1y,
x Y
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Next, we consider the uniqueness assertion. Let &', &’ H—log =5 H—log be
Frobenius-preserving isomorphisms, both of which induce @ upon passlng ‘go the
respective quotients and map some specific decomposition group of the diago-
nal cusp 2/ to the same decomposition group of the diagonal cusp y’. Write
B:=(d")"tod € Aut(Ilgiog). Then it follows from the existence portion of The-
orem 5.9 that  induces an element B2 € Aut(Ilx,) which induces the identity
morphism of IIxx2 upon passing to the natural quotient IIx, — IIyx2. Note
that [y defines an element [35] € Out™(Ax,). Moreover, since 5 induces the
identity morphism of IIxx2, it follows that [32] maps to the identity element
of Out(Ax) (see [5] for the definition of and results concerning Out™®). But
Out™(Ax,) — Out(Ax) is injective (see, e.g., [5, Theorem A]), so we have
[B2] = 1; that is, the restriction of 83 to Ax, coincides with an inner automor-
phism Inn(b) determined by an element b of Ax,. By the construction of (s,
Inn(b) (preserves the subgroup A1 of Ax, and) induces the identity mor-
phism of Ax upon passing to the quotlent Ax, —» AX2/AX2/1 >~ Ax. Since
Ax is center-free (see Proposition 3.4(c)), we thus conclude that b maps to
the identity element of Ax via Ax, - Ax. In particular, b is an element of
IIies. Thus, we have two automorphisms f, Inn(b) on Il X' which coincide

upon passing to the quotient Il+- Xlog ™ D, Cllx as well as upon the restriction
to A} X S Cll+ Xlos- This implies that B =1Inn(b) (see the last paragraph concern-

ing topologlcal groups in the Introduction) and, hence, completes the proof of
the uniqueness assertion. (Il

REMARK 5.10.1

Any Frobenius-preserving isomorphism is quasi-point-theoretic (see [20, Corol-
lary 2.10, Proposition 3.8], [13, Remark 10(iii)]), that is, induces a bijection
between the sets of decomposition groups of the points of X, Y. Therefore, in
the statement of Corollary .10, given a closed point z” of X, there always exists
a closed point 4" of Y which corresponds, at the level of conjugacy classes of
decomposition groups, to " via @ (but this choice is not necessarily unique).

6. Cuspidalization problems for hyperbolic curves

In this last section, we apply Theorem 5.9 to obtain group-theoretic construc-
tions of the cuspidalization of a hyperbolic curve at a point infinitesimally close
to a cusp (see Theorem 6.3) as well as of arithmetic fundamental groups of con-
figuration spaces of arbitrary dimension (see Theorem 6.4).

We maintain the notation and setup of the discussion at the beginning of
Section 5. Moreover, until the end of Theorem 6.3, we shall assume that X is
affine (i.e., 7 > 0), and that = is a split cusp of X, that is, z € X(K) \ X (K).
As discussed following Remark 4.1.1, the major and minor cuspidal components

~log’ =l
X , P ;g at x, together with the nexus V¢ at x, determine strict (see [6, Sec-

tion 1.2]) closed sub-log schemes of X° o - ¢ These closed sub-log schemes determine



156 Yasuhiro Wakabayashi

subgroups well defined up to conjugacy

Hylog/ ’ Hﬁlxog’ ’ Hl,alcOg - Hyiog

which we shall refer to, respectively, as the major verticial, minor verticial, and
nezxus subgroups (see [14, Definition 1.4]).

LEMMA 6.1
Write

Dy = Im(Iguos " P,

(Thus, D, CIlx is a specific decomposition group of x, that is, well defined
without any conjugacy indeterminacies.)

(a) For any choice of a specific magjor verticial subgroup Hylog/ - HY.lTog; the
composite morphism

(piroift,pLoill)

Hylog/ a Hylog DI X Gx HX

is an isomorphism. (In particular, the major verticial subgroups may be thought
of as defining sections of the natural surjection H—log — IIx Xg, Da.) Moreover,
the inverse of this isomorphism maps the subgroup D XGx Dz €Dy X lx to
the nexus subgroup e © Hylog .

—1
(b) In a similar vein, let P;g be the first log configuration space associated
to a tripod Py over K (see Definition 3.1(b)). Then for any choice of a specific
minor verticial subgroup H@;g/ - Hyl;)g, the composite morphism

(pp' P 0i")
IT

HFl;ég/ — Hy};)g F}gg XGK Dw

—awhere pg denotes the homomorphism Ilspos — Igios (well defined up to con-
x K

. . . . ~ =l . . ~
Jugation) induced by the natural morphism X;Og — ]P’;g given by contracting X
(C 71) to v, —is an isomorphism.

Proof

We shall only consider assertion (a), since assertion (b) follows from a similar
argument. Let us consider the commutative diagram of natural morphisms of log
schemes

log log log
v ——— % xguw

| l

—log’ —slog
X ° —— X " xgals

where the horizontal arrows are the strict closed immersions. Now recall that
(1) két coverings may be constructed by means of descent with respect to (non-
logarithmic) étale morphisms; (2) restriction from a Henselian trait to its closed
point induces an equivalence between the respective categories of két coverings
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(see [6]). Since the bottom horizontal arrow X% - X% xx 2% in the above
diagram is an isomorphism on the respective complements of the images of the
horizontal arrows in the above diagram, it suffices (by (1) and (2)) to verify that
the induced morphism between the log inertia groups of v°¢ and x!°8 x - %%
(i-e., Ker(Il os — Gc) and Ker(Ilos p10s = Grc)) i an isomorphism (see [6,
Section 4.7] for the terminology log inertia subgroup). Fix a chart, modeled on N,
of 21°% (i.e., roots of a local uniformizer at x in X ). Then such a chart determines
charts, modeled on N @ N, of 28 x ;¢ !°8 and v!°¢. By using these charts, one
verifies easily that the homomorphism of monoids induced by the morphism
vo8 — 7198 x i 21°8 may be expressed as follows:

NoN-— NaN,
(a,b) — (a+b,b).

Then, by applying the functor Hom((-)8P,Z;(1)) to this morphism of monoids,
one verifies immediately that the induced morphism of log inertia groups between
vlo8 and 2'°8 x g 2°% is an isomorphism. g

LEMMA 6.2
Suppose that we fix a choice of a nexus subgroup H ioe © HY‘I;)g among its various
[I105 -conjugates.

(a) There exists a unique pair of inclusions
Hylog/ c Hylog, leog’ - Hylog
(among their various Il o - -conjugates), both of which contain I1 oz © H—log
(b) The inclusions I Jos © Moo CIl5 o5 1T jog C Il plos’ - H s obtained

in assertion (a) make the diagram

H log _— H*log’
vy Py
Mg —— Tgios

commute and co-Cartesian in the category of profinite groups equipped with an
augmentation to Gg whose kernel is pro-l.

Proof
Assertion (a) (resp., (b)) follows immediately from [14, Proposition 1.5(ii)] (resp.,
[14, Proposition 1.5(iii)]). O

Next, we turn to the proof of Theorem B. Theorem 6.3 given below may be
regarded as a slightly weakened version of Theorem B (as stated in the Introduc-
tion). This weakened version, however, will be sufficient to prove Theorem 6.4
below (which corresponds precisely to Theorem C in the Introduction). Moreover,
one may obtain Theorem B (as stated in the Introduction) from Theorem C (see
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Remark 6.4.1). On the other hand, if we did not restrict our attention, in the
statement of Theorem 6.3, to this slightly weakened version of Theorem B, then
it would have been necessary to (essentially) repeat, in our proof of Theorem 6.4
below, arguments already applied in the proof of Theorem 6.3.

THEOREM 6.3
Let X (resp., Y) be an affine hyperbolic curve over a finite field K (resp., L),
and let x (resp., y) be a K-rational (resp., L-rational) point of X \ X (resp.,
Y\Y). Let

Oz:HXL)HY

be a Frobenius-preserving isomorphism such that the decomposition groups of x
and y (which are well defined up to conjugacy) correspond via «. In the following,
we shall apply the notational conventions introduced in the discussion following
Remark J.1.1.

Then there exist finite extensions K of K and L of L and an isomorphism

Gy o Xy G — Lgios X, G

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it maps the conjugacy class
of the decomposition group of T to the conjugacy class of the decomposition group

of 4 and induces 04|HXX O = Uy i upon passing to the quotients

-
Hyi?g XGx GK —» HXXK;;, H?Lc)g XGr GL *»HYXLL'

Proof

The asserted uniqueness follows immediately from the uniqueness portion of
Corollary 5.10. Next, we shall consider the existence assertion. First, observe
that there exists a connected finite étale covering f : 7 X , where Zisa hyper-
bolic curve over a finite extension field K of K whose (smooth) compactification
admits at least two distinct K-rational points z, 2’ lying over x at which f is
unramified. Indeed, this follows immediately from the well-known structure of
Ax. In the following, we shall, for simplicity, replace K by K (i.e., assume that
the base fields of X and Z coincide).

Write Z for the partial (smooth) compactification of Z at 2/ (i.e., a unique
open subscheme Z of the smooth compactification of Z containing Z and satis-
fying that Z\ Z = {2'}), and write leog for the cuspidalization of Z at z. Thus,
the underlying scheme Z, of ZLOg is proper. Denote by

7, By, e
the major and minor cuspidal components and the nexus of leog at z, respectively
(see the discussion at the beginning of Section 6). Let us fix specific choices of the
decomposition groups D, C I, of z and D, C Ilx of = such that D, NIl = D..
Denote by D, the image of D, via the quotient II ; — Iz (which may be con-
sidered as the decomposition group of z in IIz). Thus, the natural inclusion
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D, C D, is in fact an equality D, = D,, and we have a natural isomorphism
D, 3 D,. By applying Corollary 5.10 (see also Theorem 5.9) to the hyperbolic
curve Z = Z\ {#'} together with the K-rational points z and 2/, we may recon-
struct, group-theoretically from 1I, the profinite group II 7l together with its
natural augmentation to D,. Also, by [13, Corollary 2.7(iii)], we may reconstruct,
group-theoretically from the natural augmentation 11 Zlos = D.,, the conjugacy
classes of the major verticial, minor verticial, and nexus subgroups of Il Zlos ASSO-
ciated to the cuspidalization at z. Now let us fix specific choices of the major
verticial, minor verticial, and nexus subgroups of Hzlzog

Hzlog/ 3 H?log, 5 Hulzog

such that (1) the subgroup IT Jos C Il 7los MAPS, via the natural morphism Il Zlos =
Iz, onto the subgroup D.; and (2) i oz © Hflog/ - H—log and II oz © Hﬂ(,g/ -
s (These choices are possible by virtue of Lemmas 6.1 (a) and 6.2.) It we

—l
denote by P ;;g the first log configuration space associated to a tripod Px over
K, then we obtain (see Lemma 6.1(b)) a composite

Hulzog — HFZog/ — HFl[c;g X Gk DI.

Here, we may regard Ilz0s as an object group-theoretically reconstructed from
H@wg/ by thinking of Il as the quotient of the kernel of the natural composite
z K
augmentation Hﬁlogr — D, - Gk (i.e., which is naturally isomorphic to Ap, x
zZ

Z,(1)) by its center (i.e., Z;(1); see Proposition 3.4(c)). Also, we obtain (see
Lemma 6.1(a)) a diagram of natural morphisms

Dy Xy Ix «— D, gy D2 =5 D. Xy Da 10 oe
induced, by restriction, from a diagram of natural morphisms

D, X Gk IIx «+ Dz X Gk HZ — D, XGk 1157 (1 Hflog,'

Thus, for suitable choices of the subgroups Hylog/, HFlogz, I 1os C Ilsp106 (see
X T x
Lemma 6.2(a)), we obtain a natural commutative diagram

| ) S —— g —— I e
X iz Plo

| | |
Dy Xy Ty —— Tlos — Tos X6 Do

where the vertical arrows are all isomorphisms by Lemmas 6.1(a) and 6.1(b). In
particular, it follows from Lemma 6.2(b) that IT los MY be identified with the
colimit of the lower horizontal sequence—whlch by the above discussion, may
be reconstructed group-theoretically from the data (Ix, D, CIIx)—in the above
diagram. Therefore, by comparing this diagram to the corresponding diagram for
Y, the proof is completed. O
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Next, we consider Theorem C, that is, the cuspidalization problem for geometri-
cally pro-! fundamental groups of configuration spaces of (not necessarily proper)
hyperbolic curves over finite fields.

THEOREM 6.4 ([12, THEOREM 3.1], [2, THEOREM 4.1])
Let X (resp., Y') be a hyperbolic curve over a finite field K (resp., L). Let

Qg HX ; Hy
be a Frobenius-preserving isomorphism. Then for any n € Z>, there exists an
isomorphism
(0779 HXn L} Hyn

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it is compatible with the
natural respective outer actions of the symmetric group on n letters and makes
the diagram

Qnt1
HXn+1 — HYn+1

Oy _Qn Iy,

n

(i=1,...,n4+1) commute.

Proof

First, we recall that the case where n =2 and X is proper follows from [12,
Theorem 3.1]. Next, we consider the case where n =2 and X is affine. As we
noted in Definition 5.7(a), a; induces an isomorphism

CKO:GK:)GL

of profinite groups. Now, by combining Theorems 5.9 and 6.3 together with the
fact that ay is quasi-point-theoretic (see Remark 5.10.1), we conclude that oy
induces an isomorphism

Gy, Xg, Gi = Iy, xa@, G;,
where G € Gk, G C G, denote open subgroups corresponding to certain finite
extensions K of K and L of L, respectively. If we denote by ozzA the restriction
of ép to Ax,, then (see Theorem 5.9) a5* maps onto Ay, , that is, determines an
isomorphism
a2A : AXz :> AYQ.
Let
vx : Gg — Out"“(Ax,) (resp., vy : G — OutFC(AYQ))

(see [5] for the definition and results concerning Out”“) be the morphism obtained
by lifting elements of Gk (resp., Gp) via the surjection IIy, - Gk (resp.,
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Iy, — G1,) and considering the action of these elements by conjugation. Then
as', o give rise to two composites vy o ag and [a5'] o vx

Yy © ap, [aQA] ovx :Gg — OutFC(Ay2),

where [a] denotes the isomorphism Out™(Ax,) = Out¥“(Ay,) that sends
an element g € Aut(Ax,) to a5 o go (ad)~! € Aut(Ay,). Tt follows from the
constructions of ag, a8 that vy o ap and [a5'] o yx coincide after composi-
tion with the natural morphism Out™®(Ay,) — Out(Ay). On the other hand,
since Out™@(Ay,) — Out(Ay) is injective (see, e.g., [5, Theorem A]), we con-
clude that vy o ag = [a5] o vx . Therefore, by applying the natural isomorphisms
IIx, = Ax, o;t Gk and Iy, = Ay, Oit G, we obtain an isomorphism ITx, = 1ly,,
which satisfies the required uniqueness and compatibility properties (see the con-
struction of da; see also Theorem 5.9). This completes the proof of the assertion
in the case where n =2 and X is affine.

Finally, the assertion in the case n > 3 follows from an inductive argument on
n applied to an argument similar to that given in the above discussion. Indeed,
consider the natural exact sequence

aj
1 —> A(XXKF\{I})nfl —> HXn —J> HX —> 1

ut
(which induces an isomorphism IIx, = Ay, %\ (2}),_, % IIx), where  denotes

a K-rational point of X, and q;j denotes the morphism induced by the projection
X, = X to the jth factor. Since the natural morphism

Out™ (A (x () = OU (A (s T\ () s)

is injective (see [5]), we may carry out a similar argument to the above discussion
by replacing Gx by lIx and Ax, by A(XXKF\{x})n_l' Hence, for j=1,...,n,

we obtain an isomorphism o, : Iy, — Iy, that fits into a commutative diagram

o,
Iy, —— Iy,

P?l lp?

O 1
Ux, , —— Iy, ,

for i=1,...,n— 1. But it follows from the induction hypothesis (concerning the
asserted uniqueness), together with the injectivity applied above, that the o ’s
coincide, for j =1,...,n, up to composition with an inner automorphism, and
that the asserted uniqueness and compatibility with symmetric group actions for
n are satisfied. |
REMARK 6.4.1

As explained in the discussion preceding Theorem 6.3, one may obtain Theorem B
(as stated in Introduction) directly from Theorem 6.4 as follows. Let X, Y, z, y,
and a be as in the statement of Theorem B. Then, by applying Theorem 6.4 in
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the case n =2, we obtain a unique isomorphism
Qa9 HX2 — HY2

that is well defined up to composition with an inner automorphism of either the
domain or codomain, which fits into two commutative diagrams as follows:

HX2 L} Hy2 I—IX2 L} Hy2
p’fl lp? Py l lpg
HX L} Hy HX L) HY

On the other hand, we may have natural identifications Iis = (p§) ™" (Ds),

Hvlyog 5 (pH~Y(D,). Hence, the right-hand diagram above induces (since

a(D,) = D,) an isomorphism
(67 ) NS —)N JIES
Ty X8 Y, ®

by restricting ay to the inverse images (via the vertical arrows) of D, C IIx and
D, CIlIy. On the other hand, it follows from [13, Corollary 2.7(i)] that ¢ , maps
the conjugacy class of the decomposition group of & to the conjugacy class of
the decomposition group of y. Thus, the left-hand commutative diagram above
induces, by restricting the upper horizontal arrow of the diagram to the domain
and codomain of a ,, a commutative diagram((«)")

Qg y
Hylzog —_— H?Log

p?l lp?
HX L} HY

which completes the proof of Theorem B. (The proof of uniqueness is similar to
the proof of the asserted uniqueness in Corollary 5.10.)

Finally, we conclude the article with the following corollary.

COROLLARY 6.5 ([2, COROLLARY 4.1])

Let X (resp., Y ) be a hyperbolic curve over a finite field K (resp., L), and let
ne ZZO' Let

(02 HX L} Hy
be a Frobenius-preserving isomorphism, and let x4 :={x1,...,2,} be an ordered

set of distinct K-rational points of X. Then there exist an ordered set yo :=
{y1,...,yn} of distinct L-rational points of Y and an isomorphism

& TX\ oy, ey = I\ (g, )

which is uniquely determined up to composition with an inner automorphism (of
either the domain or codomain) by the condition that it induces o upon passing
to quotients x\{q,,...c.y = x, y\(y,....y.y = [y and maps the conjugacy
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classes of the decomposition groups of the points in xo to the conjugacy classes
of the decomposition groups of the points in ye in the order of numbering.

Proof

The existence assertion follows, by induction on n, from Theorem 6.4 together
with the fact that any Frobenius-preserving isomorphism between hyperbolic
curves over finite fields preserves the set of decomposition groups of closed points
(see Remark 5.10.1). The asserted uniqueness follows from the uniqueness
asserted in Corollary 5.10 applied successively to the cuspidalizations at cor-
responding points of z, and y,. (Il
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