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Abstract Let (S,L) be a polarized abelian surface of Picard rank 1, and let φ be the

functionwhich takes eachample linebundleL′ to the least integerk such thatL′ isk-very

ample but not (k+1)-very ample.We useBridgeland’s stability conditions andFourier–

Mukai techniques to give a closed formula for φ(Ln) as a function of n, showing that it is

linear in n for n > 1. As a by-product, we calculate the walls in the Bridgeland stability

space for certain Chern characters.

1. Introduction

The notion of k-very ampleness was introduced in the 1980s initially to under-

stand the idea of higher-order embeddings. Weaker notions of k-spanned (see

[BS1], [BFS]) and k-jet ampleness (see [BS2]) were also considered. The defini-

tions given all relate to asking that, for a variety V and ample line bundle L

on V , the natural map Γ(L) → Γ(L/I) surjects for certain classes of sheaf I
of 0-subschemes of V . The notions differ in how fat points are treated. In this

paper we only consider the strongest notion of k-very ampleness. Since k-very

ampleness implies (k − 1)-very ampleness, it is natural to consider the critical

value of k when a line bundle L is k-very ample but not (k+1)-very ample. We

shall denote this by φ(L). In the case when the Néron–Severi group is generated

by a single element (as we shall be assuming), we can view the function φ as a

function of a positive integer. It is then natural to hope that φ(Ln+1) is related

to φ(Ln). Unfortunately, k-very ampleness is not very well behaved with respect

to tensoring. It is not even clear that φ(Ln) can be expressed as a nice function

of n. It is typically bounded above by a degree dimV polynomial and below by

a linear function of n, and one would expect it to be eventually polynomial for

large enough n. We show, in fact, that φ(Ln) equals c1(L)
2(n− 1)− 2 for n≥ 2

for a polarized abelian surface (S,L) for which NS(S) = 〈L〉.
One type of variety where much progress has been made is abelian varieties.

There are a number of, by now, classical results on the very ampleness of line

bundles. For example, L3 is always very ample for any ample line bundle L.

A little more recently, Debarre, Hulek, and Spandaw showed that a suitably
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generic (1, d) polarization on a g-dimensional abelian variety is very ample for

d > 2g . For the case g = 2 and Picard rank 1, this was extended by Bauer and

Szemberg [BS] to compute φ(1) (see Proposition 4.1 below for the details). The

issue of k-very ampleness and k-spannedness was also studied by Terakawa [T2,

Corollary 4.2], who showed that they coincide for a polarized abelian surface.

He also gave necessary and sufficient conditions for when a line bundle is k-very

ample (see [T1], [T2, Theorem 1.1]), but these depend on the existence of certain

divisors and the resulting inequalities are tricky to solve.

There is a clear relation between k-very ampleness and so-called weak index

theorem conditions arising in Fourier–Mukai theory for abelian varieties. These

ideas have been extended by Pareschi and Popa [PP1], who introduced the notion

of M -regularity and related it to k-jet ampleness in [PP2].

This paper is organized as follows. For the rest of the Introduction we define

the φ-function and recall some facts already established in the literature. We

also recall some facts about Fourier–Mukai transforms and deduce some easy

results about φ. In Section 2 we give a brief introduction to Bridgeland’s stability

conditions needed to prove the main theorem in this paper. In Section 3 we recall

the notion of walls and show that for the Chern character (r, l, χ) there are no

walls. We also use general stability machinery to provide a useful technical lemma

(Lemma 3.5) needed to prove our main theorem. In the final section, we show

how to use the technical lemma to bound φ from above and then prove that

the bound is sharp by computing walls in the stability space associated to the

Chern character (1, nl, (n − 1)2d + d + 1). We then induct on n to deduce the

main theorem, making use of our technical lemma again.

THEOREM 4.3

If (S,L) is a polarized abelian surface with NS(S) = 〈L〉 and c1(L)
2 = 2d, then

φ(Ln) = 2(n− 1)d− 2.

1.1. k-very ample
Let V be a complete algebraic variety of dimension g over an algebraic closed

field K, let X be a 0-dimensional subscheme of V with |X|= d= dim(H0(OX)),

and let L be an invertible sheaf on V .

DEFINITION 1.1

For each 0-scheme X on V we can consider the restriction map ρX to X for the

space of sections of L, which fits into the exact sequence:

0→H0(V,L⊗IX)→H0(V,L)
ρX→H0(OX)→H1(V,L⊗IX)

→H1(V,L)→ 0.

Then L is called k-very ample if ρX is surjective for all purely 0-dimensional

subschemes X of length |X| ≤ k+ 1.
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REMARK 1.2

The following statements follow easily from the definition:

• L is 0-very ample if and only if L is generated by a global section.

• L is 1-very ample if and only if it is very ample.

• If L is k-very ample, then L is (k− 1)-very ample.

Let Amp(S) be the ample cone of S. By the properties above there exists an

integer k for all L ∈ Amp(S) such that L is k-very ample but not (k + 1)-very

ample.

DEFINITION 1.3

Define a map

φ : Amp(S)→ Z≥−1,

which takes L into the least integer k such that L is k-very ample but not (k+1)-

very ample. Define φL(n) := φ(Ln), which we write as φ(n) if L is understood.

There is no obvious reason why this should be a good function of n for any

variety, and even for P2, it is hard to compute. Specific values for some varieties

are, however, well known.

EXAMPLE 1.4

Let (V,L) be a principally polarized abelian variety. Then φL(2) = 0.

The following lemma, indirectly proved in [BS, Propositions 3.2, 3.3], gives the

value of φL(1), and we will re-prove it (in slightly greater generality for arbitrary

type (d1, d2)) in Section 4 in the spirit of this paper.

PROPOSITION 1.5 ([BS])

If L is an ample line bundle on an abelian surface X with NS(X) = 〈L〉 and

c1(L)
2 = 2d, then

φL(1) =
⌊d− 3

2

⌋
.

Upper and lower bounds for φ are also known. It is clear that if H1(L) = 0 (as is

the case, for example, for an ample line bundle on an abelian variety), then an

upper bound for φ(n) can be given by χ(Ln)−1 since χ(Ln⊗IX) = χ(Ln)−|X|.
For a polarized abelian surface, this is n2d−1. A more careful analysis (from the

condition L2 ≥ 4k+6 in [T2, Theorem 1.1]) gives 1
2 (n

2d− 3), which is consistent

with Theorem 4.3. A nontrivial lower bound is much harder to come by but

Reider’s theorem (for the most useful version, see [AB, Section 2]) provides one,

at least when certain divisors do not exist, as it says that if c1(L
n)2 > (k + 2)2,

then Ln is k-very ample. If we apply this to the Picard rank 1 abelian surface



36 Wafa Alagal and Antony Maciocia

case where such divisors do not exist, we see that φ(n)≥ 	
√
2dn� − 3. But this

is not even sharp for d= 1 and n= 2.

Reider’s theorem arose in the situation where L⊗ IZ is used to construct

vector bundles of rank 2. Key in his construction is the Bogomolov inequality for

semistable sheaves. We will also use this in various places and recall it here (see

[HL, Theorem 7.3.1] for a proof).

DEFINITION 1.6

A torsion-free sheaf E is μ-stable (resp., μ-semistable) with respect to l if for

each proper subsheaf F we have

μ(F )< μ(E)
(
μ(F )≤ μ(E)

)
,

where μ(E) = c1(E) · lg−1/r(E).

Recall the Bogomolov inequality, which provides us with a very useful necessary

condition for μ-semistability.

PROPOSITION 1.7

Let V be a smooth projective variety of dimension n, and let l be an ample divisor

on V . If E is a μ-semistable (with respect to l) torsion sheaf of rank r on V ,

then

(r− 1)c21(E) · ln−2 ≤ 2rc22(E) · ln−2.

For the case of an abelian surface this reads as

2r(E)χ(E)≤ c21(E).

We will also need to consider a finer stability for sheaves.

DEFINITION 1.8

A torsion-free sheaf E is Gieseker stable (resp., Gieseker semistable) with respect

to l if for each subsheaf F we have

P (F )<P (E)
(
P (F )≤ P (E)

)
,

where P (E) = χ(E ⊗Ln)/r(E) is the reduced Hilbert polynomial.

We let MGS
ch denote the moduli space of Gieseker semistable sheaves on S

with Chern character ch (or, more generally, Simpson semistable sheaves when

the rank is 0). The virtual dimension of MGS
(r,c,χ) is 2c2d − 2rχ + 2 and these

spaces are nonempty exactly when this dimension is at least 2 (i.e., exactly when

the Bogomolov inequality holds). The case when the dimension is exactly 2 was

proved by Mukai [Muk, Proposition 6.22], and the remaining cases are dealt with

in [Y, Theorem 0.1]. We will need nonemptiness specifically for the cases where

c=±l and χ= 1 or χ= 2, which are studied in detail in [Y, Section 6].
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1.2. Fourier–Mukai transforms
Let V and V̂ be smooth projective varieties. Consider the flat projections V

π←
V × V̂

π̂→ V̂ . Let P ∈D(V × V̂ ), where D(V × V̂ ) denotes the derived category of

bounded complexes of coherent sheaves on V × V̂ . The Fourier–Mukai transform

Φ is the functor

(1.1) Φ :D(V )→D(V̂ )

which takes A into Rπ∗(Lπ̂
∗A

L
⊗P) (see [Huy1]). Denote its cohomology by Φi.

In fact, we shall only consider the classical Fourier–Mukai transform where P is

the Poincaré bundle on an abelian surface V = S. Then Φ has a quasi-inverse

given (up to shift) by the transform

(1.2) Φ̂ :D(Ŝ)→D(S)

with kernel P̂ ∈D(Ŝ × S), where P̂ = s∗P and s : S × Ŝ → Ŝ × S is
(
0 −1
1 0

)
.

DEFINITION 1.9

An object E satisfies WITn if Φi(E) = 0 for all i 
= n.

DEFINITION 1.10

An object E satisfies ITn if Hi(E ⊗ Px̂) = 0 for all x̂ ∈ Ŝ, the dual of S, and

i 
= n. In this case, Φn(E) is a locally free sheaf.

EXAMPLE 1.11 ([Mum])

Any ample line bundle L on an abelian variety is IT0. Any sheaf which is WIT0

is automatically IT0 by the semicontinuity theorem.

PROPOSITION 1.12

If (S,Φ) is an abelian variety and L is IT0, then L is k-very ample if and only if

L⊗ IX is WIT0 (and hence IT0) for all 0-dimensional subschemes X of length

|X| ≤ k+ 1.

Proof

To prove the “if” part of the proposition, suppose that L is k-very ample, and

suppose that L⊗ IX is not WIT0 for some purely 0-dimensional subscheme X

of length |X| ≤ k + 1, so there exists x̂ ∈ Ŝ such that H1(LPx̂IX) 
= 0. Pick

x for which x̂ = ψL(x), where ψL : S → Ŝ is the étale map which takes x into

τ∗xL ⊗ L−1; then H1(τ∗−x(L)IX) 
= 0 and so H1(τ∗−x(L ⊗ Iτ−xX)) 
= 0. Hence,

H1(L⊗Iτ−xX) 
= 0, where |τ−xX| ≤ k+ 1, and this contradicts the assumption.

To prove the “only if” part of the proposition, since L⊗IX is WIT0 for all

purely 0-dimensional subschemes X of length |X| ≤ k+1, we have H1(L⊗IX) =

0. Hence, L is k-very ample by definition. �
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PROPOSITION 1.13

Let (S,L) be an irreducible principally polarized abelian surface. Then Ln is not

(2n− 3)-very ample.

Proof

Let X be a 0-dimensional subscheme of DL of length 2(n− 1). Then we have a

sequence

0→ Ln−1 → Ln ⊗IX →Q→ 0.

Suppose that Q is IT0. The Chern character of Q is ch(Q) = (0, l, (2n−1)−|X|).
The transform of Q, denoted Q̂, has the Chern character ch(Q̂) = ((2n − 1) −
|X|,−l,0) = (1,−l,0), but Q̂ is locally free, which is impossible. So Q is not IT0

and then Ln ⊗IX is not IT0. �

Such X we call collinear, as H0(L ⊗ IX) 
= 0, so there exists x ∈ S such that

X ⊂ τxDL, a translation of the polarization divisor.

COROLLARY 1.14

Let (S,L) be an irreducible principally polarized abelian surface. Then φ(n) ≤
2n− 4 for n≥ 2.

2. Bridgeland stability conditions

Now we will give a brief review of Bridgeland’s stability conditions (see [Bri]).

We follow the conventions of [Mac] and [AB]. Define for any s ∈R the following:

Fs =
{
E ∈CohS

∣∣ E is torsion-free and μ+(E)≤ 2ds
}
,

Ts =
{
E ∈CohS

∣∣ E is torsion or μ−
(
E/ tors(E)

)
> 2ds

}
,

where μ+(E) is the slope of the largest slope μ-destabilizing subsheaf of E and

μ−(E) is the slope of the lowest slope μ-destabilizing quotient of E. We set

As =
{
A ∈D(S)

∣∣Ai = 0, i /∈ {0,−1},H−1(A) ∈ Fs,H
0(A) ∈ Ts

}
.

A group homomorphism Zs,t takes the Chern character ch(A) into

Zs,t(A) =
〈
e(s+ti)l, ch(A)

〉

= −χ+ 2dcs+ dr(t2 − s2) + 2tdi(c− rs).

For each A ∈As the slope μs,t(A) ∈Q∪ {+∞} of A is given by

μs,t(A) = −Re(Zs,t(A))

Im(Zs,t(A))
(2.1)

=
χ− 2dcs− dr(t2 − s2)

2td(c− rs)
(2.2)

if Im(Zs,t(A)) 
= 0 and +∞ otherwise.
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DEFINITION 2.1

We say that E ∈ As is σs,t-stable (resp., σs,t-semistable) if for all injections

F → E in As we have μs,t(F ) < μs,t(E) (resp., μs,t(F ) ≤ μs,t(E)). It is well

known that these give sensible stability conditions on any smooth surface. When

s= 0, we will write σt for σ0,t.

Then the slope of E = Ln ⊗IX where ch(E) = (1, nl, n2d− |X|) is

μs,t(E) =
n2d− |X| − 2dns− d(t2 − s2)

2td(n− s)
.

Note that n > s as E ∈ Ts.

REMARK 2.2

Now suppose that F ∈ As with ch(F ) = (r, cl , χ) destabilizes Ln ⊗ IX . Then

we have a short exact sequence F → E → Q in As. Taking cohomology we see

that H−1(F ) = 0. Then F ∈ Ts and so c > rs. Notice also that H−1(Q) ∈ Fs is

torsion-free, and since 0→H−1(Q)→ F →E is exact, F is also torsion-free.

We also have

μs,t(F )− μs,t(E)> 0.

Therefore

(2.3)
χ− 2dcs+ dr(s2 − t2)

2td(c− rs)
− n2d− |X| − 2dns− d(t2 − s2)

2td(n− s)
> 0.

Define f(F,E) to be the numerator of (2.3). Then

f(F,E) =
(
χ− 2dcs+ dr(s2 − t2)

)
(n− s)

−
(
n2d− |X| − 2dns− d(t2 − s2)

)
(c− rs)

= (n− s)χ− c
(
n2d− |X| − d(s2 + t2)

)
+ r

(
n2ds− |X|s− dn(s2 + t2)

)
.

We shall be most interested in the case when s= 0. Then the destabilizing con-

dition becomes

(2.4) f(F,E) = nχ− c
(
n2d− |X| − dt2

)
− dnrt2 > 0.

Therefore

nχ− cn2d+ c|X|> (nr− c)dt2,

and c≤ nr because μ(H−1(Q))≤ 0 and μ(F )≤ μ(F/H−1(Q))≤ μ(E). Hence, a

necessary condition for the existence of such a destabilizing object is

(2.5) nχ− cn2d+ c|X|> 0.

Recall from [Bri, Proposition 14.2] that, in the large volume limit as t → ∞,

the σt-semistable objects E with μ(E) > 0 are exactly the Gieseker semistable

sheaves (when s= 0). The case when μ(E)< 0 is similar. In this case, r(E)< 0

when s= 0.
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PROPOSITION 2.3

Suppose that F ∈A0 with μ(F )< 0. Then F is σt-semistable for all t� 0 if and

only if H0(F ) is supported in dimension 0 and H−1(F ) is a Gieseker semistable

vector bundle.

Proof

The proof follows in same way as that of [Bri, Proposition 14.2] by observing

that if E is Bridgeland stable for all t� 0, then H0(E) must be supported in

dimension 0; otherwise, μ0,t(H
0(E)) is finite and H0(E) destabilizes E for t� 0.

Moreover, H−1(E)[1] is locally free since

0→OZ →H−1(E)[1]→H−1(E)∗∗[1]→ 0

is a short exact sequence in A0 and then OZ →E would destabilize E. The fact

that H−1(E) is Gieseker semistable follows in the same way as in [Bri]. �

REMARK 2.4

An alternative approach can be seen using an observation of Yanagida and Yosh-

ioka [YY, Proposition 2.6], who show that the Bridgeland stability is preserved

under [1] ◦ Δ, where Δ(E) = RHom(E,OS) at least when c1 · 	 
= 0. So if F

is σt-semistable, then F∨ is σt-semistable and μ(F∨) > 0. Then [Bri, Proposi-

tion 14.2] implies that F∨ is a Gieseker semistable sheaf. Therefore, F∨∨ ∼= F

takes the required form. In particular, observe that H0(F ) 
= 0 exactly when F∨

is not locally free.

REMARK 2.5

Huybrechts [Huy2] showed that Φ[1] preserves A0 and it can also be shown (see,

e.g., [MM, Proposition 3.2]) that E ∈A0 is σt-stable if and only if Φ(E) is σ1/t-

stable. (Semistability is similar.)

3. Walls and moduli spaces

DEFINITION 3.1

We let MBS,t
ch denote the moduli space of σt-semistable objects in A0.

It is well known that these spaces are projective varieties for a wide selection

of spaces. For the case of K3 and abelian surfaces it follows from the sliding

down the wall trick of [Mac] and applying Remark 2.5, but it was also inde-

pendently observed by Minamide, Yanagida, and Yoshioka [MYY, Theorem 5.3]

in the Picard rank 1 case and proved more generally for K3 surfaces in [BM,

Theorem 1.3].

For example, in the large volume limit as t→∞, MBS,t
ch =MGS

ch when c1(ch) ·
l > 0 and r(ch) > 0. Equality here means that the points represent exactly the

same objects in Coh(S) ∩ A0 up to isomorphism. When the slope is negative,

Remark 2.4 implies that the large volume limit of MBS,t
ch for large t is given by

objects E∨[1], where [E] ∈MGS
ch∗:=(ch0,− ch1,ch2)

and so MBS,t
ch

∼=MGS
ch∗ .
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It may happen for some value of t that the two moduli spaces are not equal.

In fact, there will be a strictly decreasing sequence t0, t1, . . . of values of t on either

side of which MBS,t
ch differ. We call these walls. (Sometimes they are called mini-

walls when we fix s.) Our aim will be to identify these walls when ch = (0, l, χ)

and ch = (1, nl, n2d−|X|). In the first case we show that there are no walls which

generalize [Mac, Proposition 4.2].

LEMMA 3.2

For s= 0 there are no walls for ch = (r, l, χ) for any χ, r ∈ Z.

Proof

If E ∈ A0, then c1(E) · l ≥ 0 and c1(E) = 0 if and only if μ0,t(E) =∞. If E has

c1(E) = l and sits in a short exact sequence

0→K →E →Q→ 0

in A0, then either

(i) c1(K) = 0, in which case the sequence destabilizes E for all t; or

(ii) c1(Q) = 0, in which case the sequence does not destabilize for any t.

It follows that there are no walls in A0. �

REMARK 3.3

It follows that MGS
(0,l,χ) =MBS,t

(0,l,χ) for all t and s= 0 and, by Remark 2.5, ch =

(χ,−l,0) also has no walls for s= 0. Hence, for all t > 0,

MBS,t
(χ,l,0) =MGS

(χ,l,0), when χ≥ 0,

and

MBS,t
(χ,l,0) =ΔMGS

(−χ,l,0)[1], when χ< 0.

DEFINITION 3.4

We say that the moduli space MBS,t
(r,cl,χ) of Bridgeland stable sheaves of Chern

character (r, cl , χ) satisfies IT0 (resp., WIT0) if and only if, for each E represent-

ing an object of MBS
(r,cl,χ), E satisfies IT0 (resp., WIT0).

For example, MBS,t
(1,nl,n2d−k) is IT0 for all t if and only if Ln is (k− 1)-very ample

and so φL(n)≥ k− 1. Note that if M is a fine moduli space and [E] ∈M, then

E is IT0 if and only if all F ∈ [E] ∈M are IT0. This may not be true when the

moduli space is not fine (and there exist non-Gieseker stable sheaves) because

the IT0 condition is not preserved by S-equivalence. However, the moduli spaces

we consider below will all be fine.

The following technical result will be useful in the next section.

LEMMA 3.5

We have that MGS
(0,l,χ) is IT0 if and only if χ≥ d+ 1.
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Proof

We use Proposition 2.3, Remarks 2.4 and 3.3, and Lemma 3.2 to give isomor-

phisms

MGS
(0,l,χ)

Φ[1]∼= MBS,t
−(χ,−l,0)

[1]Δ∼= MBS,t
(χ,l,0) =MGS

(χ,l,0)

for all t > 0. Then [E] ∈MGS
(0,l,χ) is IT0 if and only if [Φ(E)[1]] ∈MBS,t

−(χ,−l,0) ∩
MGS

(χ,−l,0)[1], which holds if and only if ΔΦ(E) ∈ MGS
(χ,l,0) is locally free. But,

since all representative sheaves of MGS
(χ,l,0) must be μ-stable, we see that there

are nonlocally free sheaves in MGS
(χ,l,0) if and only if MGS

(χ,l,1) 
= ∅. This happens

exactly when the Bogomolov inequality holds for the Chern character (χ, l,1), in

other words, when χ≤ d, as required. �

4. Polarization line bundles

Let L be a polarization line bundle on an abelian surface S such that NS(S) = 〈L〉.
Let c1(L) = l, and let l2 = 2d. In this section we will prove some lemmas that

help us to find the value of φL(n). We start with the case n= 1.

PROPOSITION 4.1

If L is an ample line bundle with c1(L)
2 = 2d on an abelian surface X, then

φL(1) =
⌊d− 3

2

⌋
.

Proof

The Chern character of E = L⊗IX is (1, l, d− |X|). Then ch(Φ(E)) = (d− |X|,
−l,1). Such objects are all locally free sheaves exactly when there are no sta-

ble sheaves with Chern character (d− |X|,−l,2). These exist exactly when the

Bogomolov inequality holds for such a Chern character (see Definition 3.1). This

gives us the criterion 2(d− |X|)≤ d, so |X| ≥ d/2. Hence, MGS
(1,l,d−|X|) is IT0 if

and only if |X| ≤ �(d− 1)/2�. Then φL(1) = �(d− 3)/2�. �

The n= 1 case is exceptional, and we now assume that n > 1 and find an upper

bound for φL(n).

PROPOSITION 4.2

Let (S,L) be a polarized abelian surface such that NS(S) = 〈L〉 and c1(L)
2 = 2d.

Then φL(n)≤ 2(n− 1)d− 2 for n > 1.

Proof

By Lemma 3.5, there is Q with Chern character ch(Q) = (0, l, d) which is not

IT0. Since χ(L−n+1 ⊗Q) = d(3− 2n)< 0 for n > 1, we have Ext1(Q,Ln−1) 
= 0.

Pick a nontrivial extension

0→ Ln−1 →E →Q→ 0,
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and suppose that T ↪→ E is its torsion subsheaf. Then we have the following

diagram:

F Q/T

0 Ln−1 E Q 0

T T

Then Q/T must be supported in dimension 0. But then Ext1(Q/T,Ln−1) = 0

and so Ln−1 → F → Q/T must split, which is impossible as F is torsion-free

and Q/T is torsion. Hence, T = 0. Then E ∼= Ln ⊗ IX for some X of length

|X|= 2d(n− 1) and E is not IT0. �

The following theorem proves that the upper bound of φL(n) in Proposition 4.2

is sharp.

THEOREM 4.3

Let (S,L) be a polarized abelian surface with NS(S) = 〈L〉 and c1(L)
2 = 2d. Then

φ(Ln) = 2d(n− 1)− 2.

Proof

By Proposition 4.2 we need to show that φL(n)≥ 2(n− 1)d− 2, and we do this

by showing that MBS,t
(1,nl,n2d−k) is IT0 for all t and k = 2d(n − 1) − 1. Suppose

that E ∼= Ln ⊗ IX , where |X| = 2d(n − 1) − 1 is not IT0, and suppose that

Ê := Φ(E) is σt-stable for all t � 0. Then Ê is a two-step complex such that

H−1(Ê) is Gieseker stable and H0(Ê) is in the form OZ , by Proposition 2.3. The

Chern character ch(H−1(Ê)) = ((n−1)2d+d+1,−n,1+ |Z|). By the Bogomolov

inequality

(4.1)
(
(n− 1)2d+ d+ 1

)(
1 + |Z|

)
≤ n2d.

Therefore

|Z| ≤ 2d(n− 1)− 1

dn2 − 2d(n− 1) + 1
.

But d(n− 2)2 + 2> 0 and so

dn2 − 2d(n− 1) + 1> 2d(n− 1)− 1.

Hence, |Z| < 1. Therefore H0(Ê) = 0 and so E is IT0. If E is σt-stable for all

t, then it follows that Φ(E) is σt-stable for all t (and so also for t� 0). This

happens when there are no walls. Unfortunately, there are walls in general. To

finish the proof we will identify all the walls and show that all σt-semistable

objects are IT0 directly.
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LEMMA 4.4

If e ∈ A0 destabilizes Ln ⊗ IX with |X| = 2d(n − 1) − 1, then e is a rank 1

torsion-free sheaf.

Proof

By Remark 2.2, H−1(e) = 0 and E := H0(e) ∼= e is torsion-free. Suppose that

ch(E) = (r, g′l, χ), and let q = Ln ⊗ IX/E in A0. Then we have a long exact

sequence in Coh(S):

(4.2) 0→H−1(q)→E → Ln ⊗IX →H0(q)→ 0.

Since H−1(q) ∈ F0 and E ∈A0, we have μ(E)≥ 0≥ μ(H−1(Q)). Then there is an

integer g > 0 such that c1(E) = (nr−g)	. Then c1(H
−1(Q)) = (nr−g−n+m)	≤

0, where m≥ 0. Therefore 0< nr− g ≤ n−m≤ n. Hence, c1(E) can be written

as c1(E) = (n− c)	 for some positive integer c < n. Since we can assume that E

is Bridgeland stable, it must be simple and so the Bogomolov inequality holds

(as this is just the statement that the moduli space of simple torsion-free sheaves

has dimension at least 2). Consequently, we can write

χ(E) =
(n− c)2d

r
− k,

for some rational number k ≥ 0. Since E is a destabilizer of Ln ⊗ IX , we have

f(E,Ln ⊗IX)> 0. Therefore, from condition (2.5), we get

(4.3)
(
(n− c)2d− kr

)
n− (n2d− 2dn+ 2d+ 1)(n− c)r > 0.

Rearranging (4.3), we obtain

(4.4) (n− c)
(
−(n− 1)2dr− dr− r+ dn2 − cdn

)
> krn > 0.

As n− c > 0, we get walls if −(n− 1)2dr− dr− r+ dn2 − cdn > 0, so

1

r
>

(
1− 1

n

)2

+
1

n2
+

1

dn2
≥ 1

2
,

for all n, since d > 0. Hence, r = 1. �

REMARK 4.5

The previous lemma proved that the Chern character of any destabilizer of Ln⊗
IX is given by ch(E) = (1, n− c, (n− c)2d− k), which means that E is in the

form Ln−c ⊗Px̂ ⊗IY , for some x̂ ∈ Ŝ and |Y |= k.

LEMMA 4.6

If Ln−m ⊗Px̂ ⊗IY destabilizes Ln ⊗IX , where |X|= 2d(n− 1)− 1, then m= 1.

Proof

We assume, without loss of generality, that x̂= 0. Suppose that F = Ln−m ⊗IY
with |Y | = k destabilizes E = Ln ⊗ IX . Then μ(F ) − μ(E) ≥ 0. But if μ(E) =
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μ(F ), then μ0,t(E/F ) =∞ and so F does not destabilize. Therefore, from con-

dition (4.4), we get

(n−m)
(
−(n− 1)2dr− dr− r+ dn2 − dnm

)
> krn.

Then we get walls if and only if

(4.5)
(
1− m

n

)
(2dn− dnm− 2d− 1)> k ≥ 0.

Since 1−m/n is positive, this happens if and only if 2dn− dnm− 2d > 1 and

then 2≥ 2− (d+ 1)/(nd)>m> 0. Hence, m= 1. �

LEMMA 4.7

If Ln−1 ⊗Px̂ ⊗ IY destabilizes Ln ⊗ IX for some X where |X|= 2d(n− 1)− 1,

then |Y |< d(n− 2)− 1≤ 2d(n− 2)− 1.

Proof

Without loss of generality we assume x̂= 0. Take F,E as in Lemma 4.6. Then

from (4.5) we get

(4.6)
(
1− 1

n

)
(dn− 2d− 1)> |Y | ≥ 0.

Since 0< 1− 1/n < 1, we have dn− 2d− 1> |Y |. �

To complete the proof of Theorem 4.3, we now induct on n≥ 2. If n= 2, then

d(n− 2) = 0 and so there are no walls, which establishes the result for the case

n= 2.

Suppose that the statement is true for n− 1≥ 2, that is, Ln−1 ⊗ IX is IT0

for all X with |X|= 2d(n− 2)− 1. To prove that Ln ⊗IX is IT0 for all X with

|X|= 2d(n−1)−1, we know that the only possible walls are given by Ln−1⊗IY ,
where |Y |< 2d((n− 1)− 1)− 1. Then there is a short exact sequence

0→ Ln−1 ⊗IY → Ln ⊗IX →Q→ 0.

By induction, Ln−1 ⊗IY is IT0, and by Lemma 3.5, Q is IT0 as well, since

χ(Q) =−(n− 1)2d+ |Y |+ n2d− 2d(n− 1) + 1 = 1+ d+ |Y | ≥ d+ 1.

Hence, Ln ⊗IX is IT0 for all X with |X|= 2d(n− 1)− 1. �
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