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Abstract We show that the Ozsváth–Szabó contact invariant c+(ξ) ∈HF+(−Y ) of a

contact 3-manifold (Y, ξ) can be calculated combinatorially if Y is the boundary of a cer-

tain type of plumbingX and if ξ is induced by a Stein structure onX. Our technique uses

an algorithm of Ozsváth and Szabó to determine the Heegaard–Floer homology of such

3-manifolds. We discuss two important applications of this technique in contact topol-

ogy. First, we show that it simplifies the calculation of the Ozsváth–Stipsicz–Szabó

obstruction to admitting a planar open book for a certain class of contact structures.We

also define a numerical invariant of contact manifolds that respects a partial ordering

induced by Stein cobordisms. Using this technique, we do a sample calculation showing

that the invariant can get infinitely many distinct values.

1. Introduction

The last decade was the scene of many achievements in 3-dimensional contact

topology. In his seminal work [11], Giroux established a one-to-one correspon-

dence between contact structures and open book decompositions of a closed ori-

ented 3-manifold. This allowed Ozsváth and Szabó [22] to find a Heegaard–Floer

homology class that reflects certain properties of a given contact structure. In

another direction, based on Giroux’s work, Ozbagci and Etnyre [8] defined an

invariant, the support genus, which is the minimal page genus of an open book

decomposition compatible with a fixed contact structure. Previously, Etnyre [5]

had proved that being supported by a genus zero open book puts some restric-

tions on intersection forms of symplectic fillings of a contact structure. His result

was later improved by Ozsváth, Stipsicz, and Szabó, who showed that the image

of the Ozsváth–Szabó contact invariant in the reduced version of Heegaard–Floer

homology is actually an obstruction to being supported by a planar open book.

More precisely, they proved the following.

THEOREM 1.1 ([17, THEOREM 1.2])

Suppose that the contact structure ξ on Y is compatible with a planar open book

decomposition. Then its contact invariant c+(ξ) ∈HF+(−Y ) is contained in Ud ·
HF+(−Y ) for all d ∈N.
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In spite of having useful corollaries, this theorem may not be easy to apply in

all cases because one needs to calculate the group HF+ and identify the contact

invariant in this group. The former problem can be solved if we restrict our

attention to a certain class of manifolds. In [19], Ozsváth and Szabó gave a purely

combinatorial description of Heegaard–Floer homology groups HF+ of some 3-

manifolds which are given as the boundary of certain plumbings of disk bundles

over 2-sphere. The present work is about pinning down the contact invariant

within this combinatorial object.

To state our main results, we shall assume that G is a negative definite

plumbing tree with at most one bad vertex (see Section 3 for the definition).

Let X(G) and Y (G) be the 4- and 3-manifolds determined by the plumbing

diagram, respectively. Denote by Char(G) the set of all characteristic covectors

of the lattice H2(X(G),Z). We form the group K+(G) = (Zn≥0 ×Char(G))/∼.

The relation ∼ is defined in Section 3. Recall that the Heegaard–Floer homol-

ogy group HF+ of any 3-manifold is equipped with an endomorphism U . In

[19] (see also (3.1) below), Ozsváth and Szabó established the following isomor-

phism:

(1.1) Hom
( K+(G)

Z>0 ×Char(G)
,F

)
�Ker(U)⊂HF+

(
−Y (G)

)
.

Recall from [22] that if ξ is a contact structure, its Ozsváth–Szabó contact

invariant c+(ξ) is a homogeneous element in Ker(U)⊂HF+(−Y (G)). It is also

known that c+(ξ) is nonzero if ξ is induced by a Stein filling. The following propo-

sition pins down the image of contact invariant under the above isomorphism.

See Remark 4.1 for generalizations.

PROPOSITION 1.2

Let J be a Stein structure on X(G), and let ξ be the induced contact structure

on Y (G). Under the identification described in (1.1), the contact invariant c+(ξ)

is represented by the dual of the first Chern class c1(J) ∈H2(X,Z).

When combinedwithTheorem 1.1, this proposition allows us to determine whether

certain contact structures admit planar open books. Recall from [18] that the cor-

rection term for any spinc structure t of a rational homology 3-sphere Y is the

minimal degree of any nontorsion class in HF+(Y, t) coming from HF∞(Y, t).

THEOREM 1.3

Let J be a Stein structure on X(G), and let ξ be the induced contact structure

on Y (G). Denote the correction term of the induced spinc structure t on −Y (G)

by d. Also, let d3(ξ) be the 3-dimensional invariant of the contact structure ξ.

Suppose that we have either d3(ξ) �=−d−1/2 or rank(HF+
d (−Y (G), t))> 1. Then

ξ cannot be supported by a planar open book.

By [17] (see also Section 3 below), checking the conditions stated in this theorem

is simply a combinatorial matter. Corollary 1.7 of [17], which holds for arbitrary
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rational homology 3-spheres, implies the above statement when d3(ξ) �=−d−1/2.

This could be taken as evidence to conjecture that Theorem 1.3 also holds for

every rational homology 3-sphere.

REMARK 1.4

There is another version of the Ozsváth–Szabó contact invariant c(ξ) which lives

in ĤF (−Y ) and is related to c+(ξ) by ι(c(ξ)) = c+(ξ), where ι is the natural map

ι : ĤF (−Y )→HF+(−Y ). The invariant c(ξ) can be calculated combinatorially

as shown in [25] and [1]. However, for the present applications the usage of c+ is

essential.

The techniques of this paper can also be used to study a natural partial ordering

on contact 3-manifolds up to some equivalence. Following [6] and [9], we write

(Y1, ξ1)� (Y2, ξ2) if there is a Stein cobordism from (Y1, ξ1) to (Y2, ξ2). Moreover,

we write (Y1, ξ1)∼ (Y2, ξ2) if these contact manifolds satisfy (Y1, ξ1)� (Y2, ξ2) and

(Y2, ξ2)� (Y1, ξ1). Clearly, the relation ∼ is an equivalence relation on the set of

contact manifolds and � is a partial ordering on the set of equivalence classes.

One can define a numerical invariant of contact manifolds respecting this partial

ordering. Let

σ(Y, ξ) =−max
{
d : c+(ξ) ∈ Ud ·HF+(−Y )

}
.

Note that the σ-invariant can be infinite. In fact by Theorem 1.1, if (Y, ξ) admits

a planar open book, then σ(Y, ξ) =−∞. The key property of σ is the following.

THEOREM 1.5

We have σ(Y1, ξ1)≤ σ(Y2, ξ2) whenever (Y1, ξ1)� (Y2, ξ2).

Clearly, if two contact manifolds have different σ-invariants, they lie in different

∼ equivalence classes. The following theorem tells us that there are infinitely

many such equivalence classes.

THEOREM 1.6

Any negative integer can be realized as the σ-invariant of a contact manifold.

In fact, we are going to construct contact manifolds with distinct σ-invariants

by doing Legendrian surgery on certain stabilizations of certain torus knots (see

Theorem 7.1 below). After completing the first draft of this paper, the author

[13] found an explicit formula for the σ-invariant of a contact manifold obtained

by contact surgery on a Legendrian knot in the 3-sphere if the knot has smooth

L-space surgery. The formula depends only on the Alexander polynomial, the

Thurston–Bennequin number, and the rotation number of the knot, and it gen-

eralizes Theorem 7.1. The technique, however, is different from the one used

here.
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REMARK 1.7

Recently Latschev and Wendl [14] defined an analogous invariant of contact

manifolds, which they call algebraic torsion, in arbitrary odd dimension within

the context of symplectic field theory. In dimension 3, both invariants provide

obstructions to exact symplectic cobordisms, so one may wonder if they are

somehow related. So far, the author cannot see an obvious relation. One reason

is that [14, Theorem 1.1] says that contact manifolds with algebraic torsion are

not strongly fillable, whereas the author’s examples are all Stein fillable.

This paper is organized as follows. In Section 2, basic properties of Heegaard–

Floer homology and the contact invariant are briefly reviewed. Section 3 is

devoted to the algorithm of Ozsváth and Szabó to determine the generators of

Heegaard–Floer homology of 3-manifolds given by plumbing diagrams. Remarks

given at the end of the section allow us to find relations easily by combinatorial

means. We prove Proposition 1.2 and Theorem 1.3 in Section 4. Some simple

examples are given in Section 5. We discuss the planar obstruction in Section 6.

Theorem 1.6 is proved in Section 7. The proof of Theorem 1.5 is given in Sec-

tion 8.

2. Heegaard–Floer homology and the contact invariant

Let Y be a closed oriented 3-manifold, and let t be a spinc structure on Y . In

[20] and [21], Ozsváth and Szabó define four versions of Heegaard–Floer homology

groups ĤF (Y, t), HF+(Y, t), HF−(Y, t), and HF∞(Y, t). These groups are all

smooth invariants of (Y, t). When Y is a rational homology sphere, they admit

absolute Q-gradings. The groups HF+, HF−, and HF∞ are also Z[U ] modules

where multiplication by U decreases the degree by 2. Any spinc cobordism (X, s)

between (Y1, t1) and (Y2, t2) induces a homomorphism well defined up to sign

F ◦
X,s :HF ◦(Y1, t1)→HF ◦(Y2, t2).

Here HF ◦ stands for any one of ĤF , HF+, HF−, or HF∞. We work with

F= Z/2Z coefficients in order to avoid sign ambiguities. Also, we drop the spinc

structure from the notation when we directly sum over all spinc structures.

Given any contact structure ξ on Y , Ozsváth and Szabó [22] associate an

element c(ξ) ∈ ĤF (−Y ) which is an invariant of the isotopy class of ξ. In this

paper we are interested in the image c+(ξ) of c(ξ) in HF+(Y ) under the natural

map. We list some of the properties of this element below.

(1) c+(ξ) lies in the summand HF+(−Y, t) where t is the spinc structure

induced by ξ.

(2) c+(ξ) = 0 if ξ is overtwisted.

(3) c+(ξ) �= 0 if ξ is Stein fillable.

(4) c+(ξ) ∈Ker(U).

(5) c+(ξ) is homogeneous. When Y is a rational homology sphere, it has

degree −d3(ξ)− 1/2, where d3(ξ) is the 3-dimensional invariant of ξ.
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(6) c+(ξ) is natural under Stein 2-handle attachments: Suppose that the

contact manifold (Y ′, ξ′) is obtained from (Y, ξ) by Legendrian surgery. Let

(W,J) be the associated Stein cobordism, and let s be the canonical spinc

structure. Then the induced homomorphism F+
W,s : (−Y ′, tξ′) → (−Y, tξ) satis-

fies F+
W,s(c

+(ξ′)) = c+(ξ).

The contact invariant c+(ξ) is studied by Plamenevskaya [24]. The following

result is going to be used in this paper when we prove our main theorem. We

state it in a slightly more general form than in [24], but Plamanevskaya’s proof

is valid for our case as well.

THEOREM 2.1 ([24, THEOREM 4])

Let X be a smooth compact 4-manifold with boundary Y = ∂X. Let J be a Stein

structure on X that induces a spinc structure s1 on X and contact structure ξ1
on Y . Let s2 be another spinc structure on X that does not necessarily come

from a Stein structure. Suppose that s1|Y = s2|Y but the spinc structures s1, s2
are not isomorphic. We puncture X and regard it as a cobordism from −Y to

S3. Then

(1) F+
X,s2

(c+(ξ1)) = 0;

(2) F+
X,s1

(c+(ξ1)) is a generator of HF+
0 (S3).

Note that in this theorem if the spinc structures s1|Y and s2|Y are not the same,

then conclusion (1) follows trivially.

REMARK 2.2

Theorem 2.1 was later generalized by Ghiggini in [10] where he requires J to

be only an ω-tame almost complex structure for some symplectic structure ω

on X(G) that gives a strong filling for the boundary contact structure. In this

paper, we work with rational homology spheres. For these manifolds, any weak

filling can be perturbed into a strong filling (see [16]).

3. The algorithm

In this section, we review Ozsváth and Szabó’s combinatorial description of the

Heegaard–Floer homology of plumbed 3-manifolds given in [19] to set our nota-

tion. The proof of our main theorem heavily relies on understanding the alge-

braic structure of their combinatorial description. Particularly one should under-

stand the U -action in this combinatorial object. We describe this action in (3.2).

Strictly speaking, Ozsváth and Szabó’s algorithm determines only the part of the

Heegaard–Floer homology group that lies in the kernel of the U -map. In order

to determine the full group, one should find all the minimal relations. Although

these relations can be found in some special cases, no general technique is known

to find all of them. Toward the end of the section we discuss a systematic method
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to find some (not necessarily minimal) relations. These relations turn out to be

minimal in the cases of interest (Example 6.4).

Let G be a weighted graph. For every vertex v of G, let m(v) denote the

weight of v, and let d(v) denote the number of edges connected to v. A vertex v

is said to be a bad vertex if m(v) + d(v)> 0. Enumerating all vertices of G, one

can form the intersection matrix whose ith diagonal entry is m(vi) and (i, j)th

entry is 1 if there is an edge between vi and vj , and is 0 otherwise. Throughout,

we assume that G satisfies the following conditions.

(1) G is a connected tree.

(2) The intersection matrix of G is negative definite.

(3) G has at most one bad vertex.

There is a 4-manifold X(G) obtained by plumbing together disk bundles

Di, i = 1, . . . , |G|, over 2-sphere where Di is plumbed to Dj whenever there is

an edge connecting vi to vj . Let Y (G) be the boundary of X(G). Ozsváth and

Szabó [19] give a purely combinatorial description of Heegaard–Floer homology

group HF+(−Y (G)). From now on, we identify spinc structures on 4-manifolds

with their first Chern classes. Since all our 4-manifolds are simply connected and

have nonempty boundary, this does not cause any ambiguity. However, we should

be careful in the 3-manifold level when 2-torsion exists in the first homology. We

deal with such an example in Section 6 (see Remark 6.5).

The second homology H2(X(G),Z) is a free module generated by vertices

of G. Let Char(G) be the set all characteristic (co)vectors of this module; that is,

every element K of Char(G) satisfies 〈K,v〉=m(v) (mod 2) for every vertex v.

Let T + be the graded algebra F[U,U−1]/UF[U ], where the formal variable U

has degree −2. Form the set H+(G)⊂Hom(Char(G),T +) where any element φ

of H+(G) satisfies the following property: if K is a characteristic vector, v is a

vertex, and n is an integer such that

〈K,v〉+m(v) = 2n,

we have that

Um+nφ
(
K + 2PD(v)

)
= Umφ(K) if n > 0

or

Umφ
(
K + 2PD(v)

)
= Um−nφ(K) if n < 0.

The set of spinc structures on Y (G) gives rise to a natural splitting for

H+(G). If t is a spinc structure on Y (G), one can consider the subset Chart(G)

consisting of those characteristic vectors whose restriction on Y (G) is t. The set

H+(G, t) is the set of all maps in H+(G) with support Chart(G). It is easy to see

that H+(G) =
⊕

t
H+(G, t).

The group H+(G) is graded in the following way. An element φ ∈ H+(G)

is said to be homogeneous of degree d if, for every characteristic vector K with
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φ(K) �= 0, φ(K) ∈ T + is a homogeneous element with

deg
(
φ(K)

)
− K2 + |G|

4
= d.

We are ready to describe the isomorphism relating H+(G) to the Heegaard–

Floer homology of Y (G). Fix a spinc structure t on −Y (G). Let K be a charac-

teristic vector on Chart(G). Puncture X(G) and regard it as a cobordism from

−Y (G) to S3. It is known that X(G) and K induce a homomorphism

FX(G),K :HF+
(
−Y (G), t

)
→HF+(S3)� T +.

Now the map T+ : HF+(−Y (G), t) → H+(G, t) is defined by the rule

T+(ξ)(K) = FX(G),K(ξ)

THEOREM 3.1 ([19, THEOREM 2.1])

We have that T+ is a U -equivariant isomorphism preserving the absolute Q-

grading.

To simplify the calculations, we work with the dual of H+(G). Let K+ be the

quotient set Z≥0 × Char(G)/ ∼, where the equivalence relation ∼ is defined as

follows. Denote a typical element of Z≥0 ×Char(G) by Um ⊗K. (We drop Um⊗
from our notation if m= 0.) Let v be a vertex, and let n be an integer such that

2n= 〈K,v〉+m(v).

Then we have that

Um+n ⊗
(
K + 2PD(v)

)
∼ Um ⊗K if n≥ 0

or

Um ⊗
(
K + 2PD(v)

)
∼ Um−n ⊗K if n < 0.

Define a pairing K+(G)×H+(G)→ Z by (φ,Um ⊗K)→ (Umφ(K))0, where

(·)0 denotes the projection to the degree 0 subspace of T +. It is possible to

show that this pairing is well defined and nondegenerate, and hence, it defines

an isomorphism between H+(G) and Hom(K+(G),Z). Using the duality map

and isomorphism T+ one can identify kerUn+1 ⊂HF+(−Y (G)) as a quotient of

K+(G) for every n≥ 0.

LEMMA 3.2 ([19, LEMMA 2.3])

Let Bn denote the set of characteristic vectors Bn = {K ∈ Char(G) : ∀v ∈ G,

|〈K,v〉| ≤ −m(v) + 2n}. The quotient map induces a surjection from

n⋃
i=0

U i ⊗Bn−i

onto the quotient space

K+(G)

Z>n ×Char(G)
.
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In turn, we have an identification

(3.1) Hom
( K+(G)

Z>n ×Char(G)
,F

)
� kerUn+1 ⊂H+(G).

One should regard the above isomorphism as one between F[U ] modules where

the U -action on the left-hand side of (3.1) is defined by the following relation:

(3.2) U.(Up ⊗K)∗(Ur ⊗K ′) =

{
1 if Up ⊗K ∼ Ur+1 ⊗K ′,

0 if Up ⊗K � Ur+1 ⊗K ′,

where (Up ⊗K)∗ denotes the dual of Up ⊗K.

Lemma 3.2 gives us a finite model for kerUn+1 for every n≥ 0. It is known

that these groups stabilize to give HF+. Therefore, one can understand HF+ by

studying the quotients K+(G)/Z≥n × Char(G) for all n ≥ 0. The first quotient

is well understood thanks to an algorithm of Ozsváth and Szabó. Below, we

describe the algorithm and discuss a possible extension.

A characteristic vector K is called an initial vector if, for every vertex v, we

have that

(3.3) m(v) + 2≤ 〈K,v〉 ≤ −m(v).

Start with an initial vector K0. Form a sequence (K0,K1, . . . ,Kn) of char-

acteristic vectors as follows: Ki+1 is obtained from Ki by adding 2PD(v) where

v is a vertex with 〈Ki, v〉=−m(v). The terminal vector Kn satisfies one of the

following:

(1) m(v)≤ 〈Kn, v〉 ≤ −m(v)− 2 for all v.

(2) 〈Kn, v〉>−m(v) for some v.

The sequence (K0,K1, . . . ,Kn) is called a full path, and characteristic vector

Kn is called the terminal vector of the full path. We say that a full path is called

good if its terminal vector satisfies property (1) above and bad if the terminal

vector satisfies (2). We list some of the properties of full paths; the reader can

consult [19] (especially [19, Proposition 3.1]) for proofs.

• Two characteristic vectors in B0 are equivalent in K+(G) if and only if

there is a full path containing both of them where the set B0 is defined as in

Lemma 3.2.

• If an initial vector K0 has a good full path, then any other full path starting

with K0 is good.

• If K0 and K ′
0 are initial vectors having good full paths and K0 �=K ′

0, then

K0 �K ′
0 in K+(G).

• A terminal vector Kn of a bad full path is equivalent to Um⊗K ′ in K+(G)

for some m> 0 and K ′ ∈Char(G). A terminal vector of a good full path cannot

be equivalent to such an element of H+(G).

Note that these properties allow us to find the generators of kerU . They

are simply the initial vectors having good full paths. In other words, we know
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the generators of the lowest grade subgroup of HF+(−Y (G)). Recall from [18]

that the lowest degree d(Y, t) of nontorsion elements in HF+(Y, t) is called the

correction term for a spinc manifold (Y, t). The algorithm above provides us

an efficient method to calculate the correction term d(−Y (G), t) for any spinc

structure t (see [19, Corollary 1.5]):

(3.4) d
(
−Y (G), t

)
=min−K2 + |G|

4
,

where the minimum is taken over all characteristic vectors admitting good full

paths which induce the spinc structure t.

The whole group H+(G) � HF+(−Y (G)) is determined by the relations

amongst the generators of Ker(U). Given two characteristic vectors Ki, Kj

admitting good full paths and inducing the same spinc structure on Y (G), a

relation between K1 and K2 is a pair of integers (n,m) satisfying Un ⊗K1 ∼
Um ⊗K2. If the nonnegative integers (n,m) are minimal with that property, we

call the corresponding relation minimal. Here we describe a systematic method

to find relations. Say that K is a characteristic vector, and say that n is a pos-

itive integer. We want to understand the equivalence class in K+(G) containing

Un ⊗K. We define three operations that do not change this equivalence class:

(R1) Un ⊗ K → Un ⊗ K ′, where K ′ is obtained from K by applying the

algorithm to find full paths;

(R2) Un ⊗K → Un−1 ⊗ (K + 2PD(v)), where v is a vertex with 〈K,v〉 +
m(v) =−2;

(R3) Un ⊗K → Un+1 ⊗ (K + 2PD(v)), where v is a vertex with 〈Kn, v〉+
m(v) = 2.

Now assume that K is a characteristic initial vector which admits a good

full path. In order to find particular representatives with small U -depths for

the equivalence class containing Un ⊗K, we apply (R1), and then apply (R2)

if possible, else (R3). Then we repeat the same procedure as necessary until it

terminates at an element Ur ⊗K ′, where one cannot apply any of the moves

(R1), (R2), or (R3) any more. (Recall that we do not allow the exponent of U

to be negative.) We call the vector K ′ a root vector of Um ⊗K. (The exponent

r is automatically determined by m and degrees of K and K ′.) A root vector is

not unique; it depends upon choices we made along the way, like the choice of

the vertex at which we apply (R2) or (R3). However, the set of root vectors is

a finite set which can be found easily, and it can be used to establish relations

amongst the generators of Ker(U). This simple observation will be useful when

we do our calculations.

PROPOSITION 3.3

Let K1 and K2 be two characteristic initial vectors admitting good full paths.

Suppose that n and m are nonnegative integers such that the root vector sets of

Un⊗K1 and Um⊗K2 intersect nontrivially. Then we have Un⊗K1 ∼ Um⊗K2.
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Proof

This follows from the definitions. �

4. Main theorem

Proof of Proposition 1.2

Let s be the canonical spinc structure, and let s′ be any other spinc struc-

ture on X(G). Note that c1(s)� c1(s
′). Recall that the isomorphism Ker(U)�

Hom([K+(G)]/[Z>0 ×Char(G)],F) is given by means of the pairing

P : Ker(U)×Hom
( K+(G)

Z>0 ×Char(G)
,F

)
→ F,

P (a,L) =
(
F+
X(G),L(a)

)
0
.

In view of this observation, it is enough to show that the following two equations

hold: (
F+
X(G),s

(
c(ξ)

))
0
= 1,(4.1) (

F+
X(G),s′

(
c(ξ)

))
0
= 0.(4.2)

These are simply the conclusions of Theorem 2.1. �

REMARK 4.1

The following is a list of possible ways to generalize Proposition 1.2. In each case

the proof is similar to the one given above. Unfortunately, it is not possible to

combine all these generalizations at the same time.

• The graph G may have two bad vertices instead of one. In this case, the

group on the left-hand side of (1.1) gives only even-degree elements in Ker(U)⊂
HF+(−Y (G)).

• We may work with a negative semidefinite graph instead of a negative def-

inite graph. This implies that b1(Y ) = 1. For the proof, we use the generalization

of the Ozsváth–Szabó algorithm given in [27].

• Instead of Stein fillings, we can use weak symplectic fillings of the contact

structure. In the proof, we should use Ghiggini’s generalization of Plamenevskaya’s

theorem (see Remark 2.2).

Proof of Theorem 1.3

Let K = c1(J). By Theorem 1.1 and Proposition 1.2, it is enough to show that

K∗ /∈ Im(Uk) for some k ∈ N. To do that we will use the identification in (3.1),

keeping in mind that the U -action is determined by (3.2). Let {K1,K2, . . . ,Kr} be
the set of characteristic initial vectors admitting good paths such that deg(K∗

i )≤
deg(K∗) =−d3(ξ)− 1/2 and Ki|Y (G) = t for all i= 1, . . . , r. Basic properties of

the contact invariant imply that this set is not empty if one of the assumptions

is satisfied. It is known that, on any rational homology sphere and for any spinc

structure, the Heegaard–Floer homology decomposes as HF+ = T + ⊕ HFred.
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This decomposition tells us that in large even degrees the Heegaard–Floer homol-

ogy is generated by a single element. So, one can find integers n0, n1, . . . , nr such

that

Un0 ⊗K ∼ Un1 ⊗K1 ∼ · · · ∼ Unr ⊗Kr.

Moreover, by choosing these numbers large enough, we can guarantee that the

dual of Un0 ⊗K is the unique generator of the degree −d3(ξ)−1/2+2n0 subspace

of HF+(−Y ). Then by (3.2),

Un0(Un0 ⊗K)∗ =K∗ + (Un1−n0 ⊗K1)
∗ + · · ·+ (Unr−n0 ⊗Kr)

∗.

Therefore, K /∈ Im(Un0). �

5. Examples

In this section, we discuss two examples. These examples have no particular

importance on their own, but they are simple enough to give a clear explanation

of the ideas used in this paper.

EXAMPLE 5.1

LetG be the graph indicated in Figure 1. Index the vertices so that the central one

comes first. Our aim is to find all the characteristic covectors in the intersection

lattice of X(G) which admit good full path. We will denote each K ∈H2(X(G))

as a row vector [〈K,v1〉, . . . , 〈K,v4〉], where vi is the homology class of the sphere

corresponding to the ith vertex for all i = 1, . . . ,4. If K is characteristic and

satisfies (3.3), then 〈K,vi〉 = 0 or 2 for every i. Therefore, we need to find out

which of the possible 16 covectors admit good full paths. To represent full paths,

we indicate the index of the vertex whose twice Poincaré dual is added to the

characteristic vector. The algorithm terminates at the very first step for K1 =

[0,0,0,0]. For K2 = [0,2,0,0], we have the following good full path: 2,1,3,4,1,2.

By symmetry, K3 = [0,0,2,0] and K4 = [0,0,0,2] also admit good full paths. For

[2,0,0,0], the full path 1,2,3,4 terminates at a bad vector. Also, it is easy to

show that if 〈K,vi〉 = 2 for more than one i values, then K admits a bad full

path. Therefore, K1, . . . ,K4 are the only characteristic covectors admitting good

full paths.

Next we claim that each one of K1, . . . ,K4 restricts to a different spinc struc-

ture t1, . . . , t4 on the boundary. One way of seeing this is to apply the criterion

mentioned in Remark 6.5. Another way is the following: Recall that the set of

spinc structures on any 3-manifold can be identified with its first homology. In

this case the first homology of Y (G) is given by Z4/ Im I(G), where I(G) is the

Figure 1
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intersection matrix. Observe that det(I(G)) = 4, so −Y (G) has 4 spinc structures.

Each one of these spinc structures is torsion, so the Heegaard–Floer homology

of −Y (G) is nontrivial in the corresponding component. Since we have exactly 4

covectors contributing to the Heegaard–Floer homology, they must lie in different

spinc components. This shows that −Y (G) (and hence Y (G)) is an L-space (i.e.,

its Heegaard–Floer homology is the same as a Lens space).

Let us calculate the degree of each Ki. In the formula deg(K) = (K2+ |G|)/4,
the inverse of the intersection matrix should be used when squaring K. We see

that deg(K1) = 1 and deg(Kj) = 0 for j = 2,3,4. Since the isomorphism given

in (3.1) is given in terms of dual covectors, we should take the negative of the

degrees when we think of Ki’s as elements of the Heegaard–Floer homology. As

a result, HF+(−Y (G), t1) = T +
(−1) and HF+(−Y (G), ti) = T +

(0), for i= 2,3,4.

Having calculated the Heegaard–Floer homology of the boundary, we now

want to see how the Ozsváth–Szabó invariant of a contact structure sits in

this group. We equip X(G) with the obvious Stein structure J : First make the

attaching circles of handles corresponding to the vertices Legendrian unknot with

tb = −1 (see Figure 2). Since each handle is attached with framing tb− 1, the

unique Stein structure on the 4-ball extends across these handles (see [4]). To

identify the contact invariant, we need to determine the Chern class of J . The

value of c1(J)(vi) is given by the rotation number of the corresponding Legen-

drian unknot. In this case the rotation numbers are all 0, so c1(J) =K1. Hence,

the Ozsváth–Szabó invariant of the induced contact structure is the unique gen-

erator of HF+(−Y (G), t1) in degree −1. Note that the invariant is in the image

of Uk for every k, so we do not get any obstruction to planarity.

EXAMPLE 5.2

This example is a follow-up of the calculation of the Heegaard–Floer homology

of the Brieskorn sphere Σ(3,5,7) given in [19]. This 3-manifold is given by the

plumbing graph G which we indicate in Figure 3. We order the vertices so that

Figure 2.

Figure 3. Plumbing graph for Σ(3,5,7). Unlabeled vertices have weight −2.
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the central node comes first, the −3-sphere second, then the four vertices in the

middle, and finally, the six vertices on the right. It is shown in [19] that only the

following characteristic covectors admit good full paths:

K1 = (0,−1,0,0,0,0,0,0,0,0,0,0),

K2 = (0,1,0,0,0,0,0,0,0,0,0,0),

K3 = (0,1,0,0,0,0,0,0,0,0,0,−2),

K4 = (0,1,0,0,0,−2,0,0,0,0,0,0).

We have that deg(K1) = deg(K2) = 0, and deg(K3) = K4 = 2. So the correction

term for the unique spinc structure is −2. Next we consider the Stein structures

on X(G). We make each unknot Legendrian as before, but this time we should do

a stabilization for the −3 framed unknot to get the framing tb−1. Depending on

how we do the stabilization, we obtain two Stein structures J1, J2 whose Chern

classes are given by K1 and K2. Let ξ1 and ξ2, respectively, denote the induced

contact structures on the boundary. Since −deg(Ki) is not minimal, neither

contact structure is compatible with a planar open book by Theorem 1.3. This

also can be seen by using simple criteria found by Ozsváth, Stipsicz, and Szabó

(see Theorems 6.2 and 6.3).

Finally, we would like to show why c+(ξi) is not in the image of U , for i= 1,2.

By Theorem 1.2 the contact invariant c+(ξi) is represented by the dual K∗
i . It

was shown in [19] that the minimal relations are given as follows:

U ⊗K3 ∼ U ⊗K4,

U2 ⊗K3 ∼ U ⊗K1 ∼ U ⊗K2.

Therefore, (U2 ⊗K3)
∗ is the unique generator of degree 2 and U(U2 ⊗K3)

∗ =

(U ⊗K3)
∗ +K∗

1 +K∗
2 , by (3.2). So neither K∗

1 nor K∗
2 is in the image of U .

6. Planar obstruction

In this section, we illustrate an application of Theorem 1.3 and show that certain

Stein fillable contact structures do not admit planar open books. Obstructions

to being supported by planar open books were known to exist before. Some of

these obstructions can be checked by using simple criteria. The importance of our

examples is that no other simple criterion is sufficient to prove their nonplanarity.

Before discussing our examples we give a brief exposition on what is known about

obstructions to planarity.

The first known obstruction to planarity was found by Etnyre [5]. It puts

some restrictions on intersection forms of symplectic fillings of planar open books.

THEOREM 6.1 ([5, THEOREM 4.1])

If X is a symplectic filling of a contact 3-manifold (Y, ξ) which is compatible with

a planar open book decomposition, then b2+(X) = b20(X) = 0, the boundary of X

is connected, and the intersection form QX embeds into a diagonalizable matrix

over integers.
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Ozsváth, Szabó, and Stipsicz found another obstruction in [17]. Their obstruction

is a consequence of Theorem 1.1 above, though its statement has no reference to

Floer homology.

THEOREM 6.2 ([17, COROLLARY 1.5])

Suppose that the contact 3-manifold (Y, ξ) with c1(s(ξ)) = 0 admits a Stein filling

(X,J) such that c1(X,J) �= 0. Then ξ is not supported by a planar open book

decomposition.

Yet another criterion is stated in [17]. It partially implies Theorem 1.3 above.

THEOREM 6.3 ([17, COROLLARY 1.7])

Suppose that Y is a rational homology 3-sphere. The number of homotopy classes

of 2-plane fields which admit contact structures which are both symplectically

fillable and compatible with planar open book decompositions is bounded above

by the number of elements in H1(Y ;Z). More precisely, each spinc structure s is

represented by at most one such 2-plane field, and moreover, the Hopf invariant of

the corresponding 2-plane field must coincide with the correction term d(−Y, s).

Below, we give examples of nonplanar Stein fillable contact structures on a Seifert

fibered space. The nonplanarity of some of our examples does not follow from

Theorem 6.1, 6.2, or 6.3.

EXAMPLE 6.4

Consider the star-shaped plumbing graph consisting of eight vertices where the

central vertex has weight −4, a neighboring vertex has weight −3, and all the

others are of weight −2 (see Figure 4). The boundary 3-manifold Y is the Seifert

fibered space M(−4, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
3 ). The reason why we have so many self-

intersection −2 spheres is that we want to avoid L-spaces where Theorem 1.1

does not provide an obstruction to admitting a planar open book (compare with

Example 5.1). For the topological characterization of L-spaces among Seifert

fibered spaces see [15].

The intersection form is negative definite and has determinant 128. Moreover,

it can be embedded into a symmetric matrix which is diagonalizable over integers.

To see this, index the vertices so that the central one comes first and the weight

−3 vertex is the last. Let e1, e2, . . . , e11 be a basis for R11 such that ei · ei =−1

Figure 4. Plumbing description of Y . All unmarked vertices have weight −2.
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for all i= 1,2, . . . ,11. The embedding is defined by the following set of equations:

v1 →−e1 − e2 − e3 − e4,

v2 → e2 − e7,

v3 → e2 + e7,

v4 → e3 − e8,

v5 → e3 + e8,

v6 → e4 − e9,

v7 → e4 + e9,

v8 → e1 + e10 + e11.

First, we calculate HF+(−Y, t) for every spinc structure t. For similar calcu-

lations, see [3], [26], [27], and [19, Section 3.2]. As before, we write any character-

istic vector K in the form K = [〈K,v1〉, . . . , 〈K,v8〉]. There are 768 characteristic

vectors satisfying (3.3), and 138 of them have good full paths. When we distrib-

ute these to spinc structures of Y , we see that for 10 spinc structures Ker(U)

has rank 2, and for the rest it has rank 1. Table 1 shows HF+ for these 10 spinc

structures.

REMARK 6.5

As pointed out in [19], the set of spinc structures on Y can be identified with

2H2(X(G), ∂X(G)) orbits in Char(G). Therefore, two characteristic vectors K1,

K2 induce the same spinc structure on the boundary if and only if all the entries

of (1/2)I(G)−1(K1 −K2) are integers where I(G) is the intersection matrix.

We would like to point out how we do the Heegaard–Floer homology calcu-

lation shown in Table 1 by utilizing Proposition 3.3. Let us consider the first

spinc structure indicated in the table which contains two initial vectors K1 =

[2,0,0,0,0,0,0,−1] and K2 = [−2,0,0,0,0,0,0,3], each admitting a good full

path. These vectors are inequivalent because their terminal vectors are different.

We claim that U ⊗K1 ∼ U ⊗K2. To see this, we shall show that both elements

have a common root vector. Indeed, if we take U ⊗K1 and apply the follow-

ing moves in the given order: (R2(v1),R1(v2),R1(v3), . . . ,R1(v7),R3(v1),R1(v8),

R2(vi)), where i is any element of {2, . . . ,7}, we get the root vector [2,0, . . . ,0,

−4︸︷︷︸
i

,0, . . . ,0,−3]. The same vector can be obtained from U ⊗K2 by applying

(R1(v8),R2(vi)). Having proved that U ⊗K1 ∼ U ⊗K2, we next note that this

relation is necessarily minimal, which proves that the Heegaard–Floer homology

in this spinc is as indicated in Table 1. Other spinc structures can be handled

similarly.
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Table 1. HF+ of M(−4, 1
2 , . . . ,

1
2 ,

1
3 ) for 10 spinc structures

Spinc Characteristic vectors Degree Relation HF+(−Y )

1
[2,0,0,0,0,0,0,−1] 7/8

U ⊗K1 = U ⊗K2 T +
−7/8 ⊕ F−7/8

[−2,0,0,0,0,0,0,3] 7/8

2
[−2,0,0,0,0,0,0,1] 7/8

U ⊗K1 = U ⊗K2 T +
−7/8 ⊕ F−7/8

[0,0,0,0,0,0,0,3] 7/8

3
[−2,0,0,0,0,0,0,−1] −1/8

U ⊗K1 = U2 ⊗K2 T +
−15/8 ⊕ F1/8

[0,0,0,0,0,0,0,1] 15/8

4
[2,0,0,0,0,0,0,1] −1/8

U ⊗K1 = U2 ⊗K2 T +
−15/8 ⊕ F1/8

[0,0,0,0,0,0,0,−1] 15/8

5 + j

[−2,0, . . . , 2︸︷︷︸
j+2

, . . . ,0,−1] 3/4

U ⊗K1 = U ⊗K2 T +
−3/4 ⊕ F−3/4

[0,0, . . . , 2︸︷︷︸
j+2

, . . . ,0,1] 3/4

j = 0, . . . ,5

Spinc Root vectors

1
[2,0, . . . ,0, −4︸︷︷︸

i

,0, . . . ,0,−3]

i= 2, . . . ,7

2

[0,0,0,0,0,0,0,−5],

[0,0, . . . ,0, −4︸︷︷︸
i

,0, . . . ,0,1],

i= 2, . . . ,7

3
[0,0, . . . ,0, −4︸︷︷︸

i

,0, . . . ,0,−1],

i= 2, . . . ,7

4 [−2,0,0,0,0,0,0,−3]

5 + j

[2,0, . . . , −4︸︷︷︸
i

, . . . , −2︸︷︷︸
j+2

, . . . ,0,−1]

i= 2, . . . ,7

j = 0, . . . ,5

Next, we consider the obvious Stein structures that arise from the handle-

body diagram associated to G. Following Eliashberg, we isotope the attaching cir-

cles of 2-handles into Legendrian position so that their framing becomes one less

than the Thurston–Bennequin framing. For −2 framed unknots, there is a unique

way to do that. For the other unknots which correspond to v1 and v8, take Legen-

drian isotopes with rotation numbers i and j, respectively, where i=−2,0,2 and

j = −1,1. Denote the resulting Stein structure as Ji,j , and denote the induced

contact structure by ξi,j (see Figure 5 for a picture of J2,−1). Note that the first

Chern class of Ji,j is given by the characteristic vector Ki,j = [i,0,0,0,0,0,0, j].

It is easy to verify that d3(ξi,j) + 1/2 = (K2
i,j + |G|)/4 = deg(Ki,j). According

to Theorem 1.3, the contact structures ξ±2,±1 do not admit planar open books.

By the algorithm given in [7] these contact structures do admit genus one open
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Figure 5. Legendrian handlebody diagram giving J2,−1. The curve on the left corresponds to v1, and the

other represents v8. They are both oriented counterclockwise. We omit the other unknots linking to v1 in

order to simplify the picture.

Figure 6. Ln.

books, so their support genera are all one. One cannot use Theorem 6.2 directly

to get this conclusion because the Chern classes of the corresponding spinc struc-

tures are all of order 4. Though Theorem 6.3 also implies our conclusion for ξ2,1
and ξ−2,−1, it does not apply to ξ2,−1 or ξ−2,1. So the latter two are the contact

structures we promised at the beginning of the example.

REMARK 6.6

The main result of [8] implies that the support genera of plumbings with at most

two bad vertices are at most one. On the other hand, the algorithm of Ozsváth

and Szabó does not work if the number of bad vertices is greater than two.

Therefore, the techniques used in this paper do not seem to be sufficient to find

an example of a contact structure with support genus strictly greater than one.

We are planning to return to this problem in a future project using a different

approach.

7. Calculation of σ

In this section we prove Theorem 1.6 by calculating explicitly the σ-invariant of

a family of contact 3-manifolds. Our argument is based on a previous work of

Rustamov [26].

For every positive integer n, consider the contact manifold (Yn, ξn) obtained

from (S3, ξstd) by doing Legendrian surgery on the (2,2n + 1) torus knot Ln

stabilized 2n − 1 times as in Figure 6. Observe that the Thurston–Bennequin

invariant of Ln is zero, so the topological surgery coefficient is negative one. In

fact, the 3-manifold Yn is the Brieskorn homology sphere Σ(2,2n+ 1,4n+ 3).
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THEOREM 7.1

We have that σ(Yn, ξn) =−(pn − 1), where pn is the nth element of the sequence

1,1,2,2,3,3, . . . .

Clearly, Theorem 7.1 implies Theorem 1.6. Another immediate application of

Theorem 7.1 is that (Yn, ξn) cannot be supported by a planar open book. This

was first pointed out in [17]. Finally, combining this theorem with the fact that

the σ-invariant respects the partial ordering coming from Stein cobordisms, we

have the following corollary.

COROLLARY 7.2

There is no Stein cobordism from (Yn, ξn) to (Ym, ξm) if m>n+1. In particular,

one cannot obtain (Ym, ξm) from (Yn, ξn) via Thurston–Bennequin minus one

(tb− 1) surgery on a Legendrian link.

The above corollary should be compared to a classical result of Ding and Geiges

in [2], where it was proved that any two contact manifolds can be obtained from

each other via a sequence of (tb− 1) or (tb+ 1) contact surgeries. In fact, one

can always choose such a sequence which contains at most one tb+ 1 surgery.

Therefore, the corollary tells us that the existence of (tb+1) surgery is essential

even though the contact manifolds at both ends are Stein fillable.

Proof of Theorem 7.1

Let V be the 4-manifold obtained by attaching a Weinstein 2-handle to a 4-ball

along Ln. Eliashberg’s theorem [4, Theorem 1.3.1] states that V admits a Stein

structure. Let s be the canonical spinc structure on V , and denote the homology

class determined by the 2-handle (for some orientation of Ln) by h. The way we

stabilize Ln ensures that

(7.1) c1(s)(h) = rot(Ln) =±1.

Here rot(Ln) stands for the rotation number of Ln. Note that the sign of the

rotation number depends on how we orient Ln. Next, V is blown up n+2 times,

and we do the handleslides indicated in Figure 8. We see that the resulting 4-

manifold is given by the plumbing graph G in Figure 7. The manifold X(G) is

no longer Stein, but it does admit a symplectic structure. Let s′ be the canonical

spinc structure on this symplectic manifold. Let ei denote the homology class of

the ith exceptional sphere. We have that

(7.2) c1(s
′)(ei) = 1, i= 1,2, . . . , n+ 2.

Order the vertices of G so that first four are the ones with weight −1, −2,

−3, and −4n− 3, respectively, and all the remaining ones corresponding to −2’s

on the right are ordered according to the distance from the root, starting with
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Figure 7. Plumbing graph for Brieskorn homology sphere Σ(2,2n+ 1,4n+ 3).

Figure 8. Sequence of blowups from Yn to plumbing.

the closest one. Rustamov [26] proves that

HF+(−Yn) = T +
0 ⊕ F

pn

(0) ⊕
n−1⊕
i=1

(Fpi
qn−i

⊕ Fpi
qn−i

),
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where qi = i(i+1), Fr
(k) = F[U ]/UrF[U ], and Ur−1 lies in degree k. More precisely,

he shows that KerU ⊂HF+(−Yn) is generated by the characteristic vectors

Ki = (1,0,−1,−4n− 3 + 2i,0,0, . . . ,0), i= 1,2, . . . ,2n.

He also proves that the minimal relations are given as follows:

Upi ⊗Ki ∼ Upi+qn−i/2 ⊗Kn+1,(7.3)

Upi ⊗K2n+1−i ∼ Upi+qn−i/2 ⊗Kn,(7.4)

where i = 1,2, . . . , n. Note that the characteristic vectors Kn and Kn+1 are in

the bottom level, and their degree is zero.

Our aim is to pin down the contact invariant c+(ξn) in HF+(−Yn). Note

that Proposition 1.2 in the stated form cannot be applied directly as it concerns

Stein fillings of plumbed manifolds. However, as indicated in Remark 4.1, it is

also true for strong symplectic fillings. The only difference in the proof is that one

uses Ghiggini’s generalization [10] of Plamenevskaya’s theorem [24, Theorem 4].

Alternatively, one can use the blowup formula and handleslide invariance for

this particular case to see that (4.1) and (4.2) hold. In any case, we see that

the contact invariant c+(ξn) is represented by the first Chern class c1(s
′) of the

canonical spinc structure. In Figure 8, we keep track of the homology classes in

order to pin down the first Chern class. By (7.1) and (7.2), we have c1(s
′) =Kn

or Kn+1, depending on the orientation of Ln. Then the contact invariant is not

in the image of Upn because of the relation Upn ⊗Kn ∼ Upn ⊗Kn+1. It is in the

image of Upn−1, since all of the relations given in (7.3) and (7.4) involve higher

powers of U on their right-hand side and these relations are minimal. �

8. Monotonicity of σ

In this section, we establish the monotonicity of the σ-invariant under Stein

cobordisms. We start by proving a lemma whose proof is purely algebraic.

LEMMA 8.1

Suppose that (Y1, ξ1) and (Y2, ξ2) are contact manifolds, and suppose that there

is a U -equivariant homomorphism

f :HF+(−Y2, tξ2)→HF+(−Y1, tξ1)

with f(c+(ξ2)) = c+(ξ1). Then σ(ξ1)≤ σ(ξ2).

Proof

Suppose that c+(ξ2) ∈ Ud · HF+(−Y2, tξ2). Let α ∈ HF+(−Y2, tξ2) such that

Udα= c+(ξ2). ThenUdf(α) = c+(ξ1), implying that c+(ξ1) ∈ Ud ·HF+(−Y1, tξ1).

This implies that

max
{
d : c+(ξ2) ∈ Ud ·HF+(−Y2)

}
≤max

{
d : c+(ξ1) ∈ Ud ·HF+(−Y1)

}
.

The lemma follows from the definition of the σ-invariant. �
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The following statement establishes the naturality of the contact invariant under

Stein 1-handle cobordisms. Clearly this was known to the experts in the area,

but the author does not know if it was proved elsewhere. See [10, Lemma 2.11]

for a similar statement for Stein 2-handle cobordisms.

LEMMA 8.2

Let (Y, ξ) be a contact manifold, and let W : Y → Y#S1 × S2 be a 1-handle

cobordism. Equip Y#S1 × S2 with the contact structure ξ′ = ξ#ξ0, where ξ0 is

the unique tight contact structure on S1×S2, and regard W as a Stein cobordism.

Let s be the canonical spinc structure. Then the induced homomorphism

FW,s :
(
−(Y#S1 × S2), tξ′

)
→ (−Y, tξ)

satisfies FW,s(c
+(ξ′)) = c+(ξ).

Proof

The proof follows by combining well-known facts about the contact invariant and

1-handle cobordisms. In [12], Honda, Kazez, and Matić explicitly describe the

cycle representing the contact invariant, starting with an open book supporting

the contact structure. In what follows we review their description and prove

that the homomorphism associated to a 1-handle attachment sends the contact

invariant to the contact invariant in the chain level. Henceforth, we assume that

the reader is familiar with the definition of the Heegaard–Floer chain complex

defined using Heegaard diagrams (see [20, Theorem 4]).

Let (Σ, φ) be an open book supporting (Y, ξ). Let a1, a2, . . . , ag be prop-

erly embedded arcs in Σ whose complement is a disk. Let b1, b2, . . . , bg be small

translates of a1, a2, . . . , ag in the direction determined by the orientation of ∂Σ.

Note that each ai intersects bi at a unique point xi, for i = 1, . . . , g. Let S =

Σ1

⋃
∂Σ1∼∂Σ2

−Σ2 be the closed surface obtained by doubling the page Σ. Define

αi to be the circle on S obtained by doubling ai. The circle βi is defined by gluing

the arc bi ⊂Σ1 to the arc φ(bi)⊂Σ2 along their common boundary. Put the base

point z to the big region in Σ1. The quadruple (S,α,β, z) is a Heegaard diagram

for Y . It turns out that the intersection point {x1, x2, . . . , xg} ∈ Tβ ∩Tα gives rise

to a cycle [{x1, x2, . . . , xg},0] in the chain complex CF+(Σ,β,α, z) =CF+(−Y )

(see [12] for details).

An open book (Σ′, φ′) supporting (Y#S1×S2, ξ′) can be obtained by attach-

ing a 2-dimensional 1-handle to the page Σ and extending the monodromy φ triv-

ially over this 1-handle. Next we repeat the procedure described in the previous

paragraph for this new open book. We now have an extra pair of arcs ag+1 and

bg+1 corresponding to the additional handle. Denote the resulting Heegaard dia-

gram by (S′,α′,β′, z), where S′ = S#T 2, α′ =α∪{αg+1}, and β′ = β∪{βg+1}.
The circles αg+1 and βg+1 intersect at two points xg+1 and yg+1. Note that

(T 2,{αg+1},{βg+1}) is the standard Heegaard diagram of S1 × S2 in the sense

of [23, Definition 2.8]. Only one of xg+1 and yg+1 is contained in Σ′
1; say that it is

xg+1. Then the contact invariant c+(ξ′) is represented by [{x1, x2, . . . , xg+1},0].
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Now regard the intersection points xg+1 and yg+1 as the generators of the chain

complex ĈF (T 2,{βg+1},{αg+1}). There is a Whitney disk u connecting yg+1 to

xg+1 whose domain is one of the two small bigons. The Maslov index of u is 1,

so deg(yg+1)> deg(xg+1).

One can describe the chain map F+
W : CF+(S′,β′,α′, z)→ CF+(S,β,α, z)

following [23, Section 4.3]. Note that if r ∈ Tβ′ ∩ Tα′ , then the component of r

on βg+1 is xg+1 or yg+1. The chain map then is given by

F+
W

(
[r, n]

)
=

{[
r− {xg+1}, n

]
if xg+1 ∈ r,

0 if yg+1 ∈ r.

Therefore, FW ([{x1, . . . , xg, xg+1},0]) = [{x1, . . . , xg},0]. Passing to the homol-

ogy, we see that F+
W (c+(ξ′)) = c+(ξ). Finally, we observe that s is the only spinc

on W which extends tξ′ , so F+
W,s(c

+(ξ′)) = F+
W (c+(ξ′)). �

Proof of Theorem 1.5

Suppose that there is a Stein cobordism (W,J) : (Y1, ξ1)→ (Y2, ξ2). It suffices to

construct a U -equivariant homomorphism f :HF+(−Y2)→HF+(−Y1) sending

c+(Y2, ξ2) to c+(Y2, ξ2). Then the theorem follows from Lemma 8.1.

By [4], W can be decomposed as a union of subcobordisms

W =W1 ∪W2 ∪ · · · ∪Wn,

where each Wi is either a 1-handle attachment or a (tb − 1) framed 2-handle

attachment. Let si be the restriction of the canonical spinc structure on Wi,

for all i= 1, . . . , n. Let f = FWn,sn ◦ FWn−1,sn−1 ◦ · · · ◦ FW1,s1 . Each FWi,si is U -

equivariant and respects contact invariants by Lemma 8.2 and [10, Lemma 2.11],

so f is the required map. �
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[11] E. Giroux, “Géométrie de contact: de la dimension trois vers les dimensions

supérieures” in Proceedings of the International Congress of Mathematicians,

Vol. 2 (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 405–414. MR 1957051.

[12] K. Honda, W. H. Kazez, and G. Matić, On the contact class in Heegaard Floer
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3-manifolds III, J. Symplectic Geom. 5 (2007), 357–384. MR 2413308.

[16] H. Ohta and K. Ono, Simple singularities and topology of symplectically filling

4-manifold, Comment. Math. Helv. 74 (1999), 575–590. MR 1730658.

DOI 10.1007/s000140050106.
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