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Abstract. A bounded linear operator S on a Banach space X is called an
m-left generalized inverse of an operator T for a positive integer m if

T

m∑
j=0

(−1)j
(
m

j

)
Sm−jTm−j = 0,

and it is called an m-right generalized inverse of T if

S

m∑
j=0

(−1)j
(
m

j

)
Tm−jSm−j = 0.

If T is both an m-left and an m-right generalized inverse of T , then it is said
to be an m-generalized inverse of T .

This paper has two purposes. The first is to extend the notion of generalized
inverse to m-generalized inverse of an operator on Banach spaces and to give
some structure results. The second is to generalize some properties of m-partial
isometries on Hilbert spaces to the class of m-left generalized invertible opera-
tors on Banach spaces. In particular, we study some cases in which a power of
an m-left generalized invertible operator is again m-left generalized invertible.

1. Introduction and preliminaries

Throughout this paper, X shall denote a complex Banach space, and L(X)
shall denote the algebra of all bounded linear operators on X. We denote X by
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H if it is a Hilbert space. For an arbitrary operator T ∈ L(X), we use N(T ) to
denote its kernel, R(T ) its range, and T ∗ its adjoint.

An operator T ∈ L(X) is said to be left invertible if there is an operator
L ∈ L(X) such that LT = I, and it is said to be right invertible if there is an
operator R ∈ L(X) such that TR = I, where I denotes the identity operator.

The concept of generalized inverses of matrices was first proposed by E. H.
Moore in the 1920s, and a generalization of his original idea to the bounded
linear operators between Hilbert spaces with closed range was mainly due to his
student Y.-Y. Tseng in the 1930s and 1940s via a series of papers (see [5] for
more details). An operator S ∈ L(X) is said to be a left generalized inverse of
T ∈ L(X) if TST = T , and it is said to be a right generalized inverse of T if
STS = S. An operator S ∈ L(X) is said to be a generalized inverse of T ∈ L(X)
if it is both a left and right generalized inverse of T ; that is, TST = T and
STS = S. It is well known that an operator T ∈ L(X) has a generalized inverse
if and only if N(T ) and R(T ) are closed and complemented subspaces of X (see,
e.g., [6]). We notice that the equality TST = T is a necessary and sufficient
condition for T to have a generalized inverse. Indeed, it is clear that S

′
= STS is

a generalized inverse of T .
An operator T ∈ L(H) is said to be a partial isometry provided that ‖Tx‖ =

‖x‖ for every x ∈ N(T )⊥; that is, T ∗ is a generalized inverse of T (i.e., TT ∗T = T ).
It is known that T is a partial isometry if and only if T ∗ is a partial isometry.
Partial isometries have been investigated by several authors (see, e.g., [4], [9], [10]).
In particular, M. Mbekhta and L. Suciu [10] gave some results related to the
problems of C. Badea and M. Mbekhta [4] concerning the similarity to partial
isometries using the generalized inverses.

The article [8] extends the notions of left and right invertibility to m-left and
m-right invertibility, respectively, on Banach spaces.

Definition 1.1. For some integer m ≥ 1, an operator T ∈ L(X) is called

(1) m-left invertible if there exists S ∈ L(X) for which

SmTm −
(
m

1

)
Sm−1Tm−1 + · · ·+ (−1)m−1

(
m

m− 1

)
ST + (−1)mI = 0

(in this case, S is called an m-left inverse for T );

(2) m-right invertible if there exists R ∈ L(X) for which

TmRm −
(
m

1

)
Tm−1Rm−1 + · · ·+ (−1)m−1

(
m

m− 1

)
TR + (−1)mI = 0.

In the latter case, R is called an m-right inverse for T , where
(
m
j

)
is the binomial

coefficient.

If T ∈ L(X) is bothm-left andm-right invertible, we say that T ism-invertible.

Remark 1.2. An 1-left inverse (resp., 1-right inverse) for T is a left inverse (resp.,
right inverse) for T .
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The set of all m-left invertible operators in L(X) will be denoted by Lm(X).
For T ∈ Lm(X), we denote by Lm(T ) the set of all m-left inverses of T ; that is,

Lm(T ) =

{
S ∈ L(X) :

m∑
j=0

(−1)j
(
m

j

)
Sm−jTm−j = 0

}
.

The set of all m-right invertible operators in L(X) will be denoted by Rm(H).
For T ∈ Rm(X), we denote by Rm(T ) the set of all m-right inverses of T ; that is,

Rm(T ) =

{
R ∈ L(X) :

m∑
j=0

(−1)j
(
m

j

)
Tm−jRm−j = 0

}
.

An operator T ∈ L(H) is called an m-isometry if

m∑
j=0

(−1)j
(
m

j

)
T ∗m−jTm−j = 0;

that is, T ∈ Lm(H) and T ∗ ∈ Lm(T ). Evidently, an isometry (i.e., a 1-isometry)
is an m-isometry for all integers m ≥ 1. A detailed study of this class on Hilbert
spaces has been the object of some intensive study, especially by J. Agler and
M. Stankus in [1], [2], and [3], and by S. Shimorin in [13]. Also, we refer the
reader to [11] for more information about 2-isometries.

In [12], A. Saddi and O. A. Mahmoud Sid Ahmed gave a generalization of
partial isometries and m-isometries to m-partial isometries on Hilbert spaces. An
operator T ∈ L(H) is called an m-partial isometry for some integer m ≥ 1 if

T
m∑
k=0

(−1)k
(
m

k

)
T ∗m−kTm−k = 0 in L(H).

The case when m = 1 represents the partial isometries class. It is easily seen that
an injective m-partial isometry is an m-isometry. An elementary operator theory
of m-partial isometries is discussed in [12].

For an operator T ∈ L(X), the reduced minimum modulus is defined by

γ(T ) :=

{
inf{‖Tx‖ : dist(x,N(T )) = 1} if T 6= 0,

+∞ if T = 0.

It is well known that γ(T ) > 0 if and only if R(T ) is closed. Moreover, we have
γ(T ) = γ(T ∗).

The present paper is organized as follows. In Section 2, we generalize the notions
of all classes already mentioned to m-left generalized inverses and m-right gener-
alized inverses. We also extend some well-known results. In Section 3, we study
some cases in which a power of an m-left (resp., m-right) generalized invertible
operator is again an m-left (resp., m-right) generalized invertible operator.
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2. m-Generalized invertible operators

Inspired by the above definitions of left generalized inverse and right generalized
inverse and the work of m-partial isometries on Hilbert spaces (see [12]) and
the work on m-left inverses and m-right inverses on Banach spaces (see [8]),
we introduce the notions of m-left generalized inverse and m-right generalized
inverse.

Definition 2.1. Let m ≥ 1 be an integer, and let T ∈ L(X).

(1) (i) An operator B ∈ L(X) is called an m-left generalized inverse of T if

T
m∑
j=0

(−1)j
(
m

j

)
Bm−jTm−j = 0,

(ii) R ∈ L(X) is called an m-right generalized inverse of T if

R
m∑
j=0

(−1)j
(
m

j

)
Tm−jRm−j = 0.

(2) An operator S ∈ L(X) is called an m-generalized inverse of T if S is both
an m-left and m-right generalized inverse of T ; that is,

T
m∑
j=0

(−1)j
(
m

j

)
Sm−jTm−j = 0

and

S
m∑
j=0

(−1)j
(
m

j

)
Tm−jSm−j = 0.

The set of all m-left generalized invertible operators in L(X) will be denoted
by Lm

G (X). For T ∈ Lm
G (X), we denote by Lm

G (T ) the set of all m-left generalized
inverses of T ; that is,

Lm
G (T ) =

{
B ∈ L(X) : T

m∑
j=0

(−1)j
(
m

j

)
Bm−jTm−j = 0

}
.

The set of all m-right generalized invertible operators in L(X) will be denoted by
Rm

G (X). For T ∈ Rm
G (X), we denote by Rm

G (T ) the set of all m-right generalized
inverses of T ; that is,

Rm
G (T ) =

{
R ∈ L(X) : R

m∑
j=0

(−1)j
(
m

j

)
Tm−jRm−j = 0

}
.

Remark 2.2. Let T be in L(X). Then

(1) a 1-left (resp., a 1-right) generalized inverse of T is a left (resp., a right)
generalized inverse of T ;

(2) a 1-generalized inverse of T is a generalized inverse of T ;
(3) T ∈ Lm

G (X) and B ∈ Lm
G (T ) if and only if B ∈ Rm

G (X) and T ∈ Rm
G (B).

It is clear that we have the following.
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Proposition 2.3.

(1) We have Lm(X) ⊂ Lm
G (X) and Rm(X) ⊂ Rm

G (X). More precisely, if
T ∈ Lm(X) (resp., T ∈ Rm(X)), then Lm(T ) ⊂ Lm

G (T ) (resp., R
m(T ) ⊂

Rm
G (T )).

In particular,

(2) T ∈ L(H) is an m-partial isometry if and only if T ∈ Lm
G (H) and

T ∗ ∈ Lm
G (T ).

Example 2.4. Consider the operator T =
[
1 0
1 0

]
and an arbitrary operator S =[

a b
c d

]
acting on H = C2. An easy computation shows that S2T 2 − 2ST + I 6= 0

for all complex numbers a, b, c, and d. Thus T /∈ L2(H). Now, for S =
[
1 1
0 1

]
, it is

easy to see that T (S2T 2 − 2ST + I) = 0. Thus T ∈ L2
G(H) and S ∈ L2

G(T ). This
justifies the definitions of Lm

G (X) and Rm
G (X).

It is clear that if S ∈ L(X) is a generalized inverse of T ∈ L(X), then P = TS
and Q = ST are idempotents (i.e., P 2 = P and Q2 = Q), R(T ) = R(P ), and
N(T ) = N(Q) = R(I −Q).

In the remainder of this paper, if S is an m-left generalized inverse of T , then
we set

Qm =
m−1∑
j=0

(−1)j
(
m

j

)
Sm−jTm−j.

Moreover, if S is an m-right generalized inverse of T , then we set

Pm =
m−1∑
j=0

(−1)j
(
m

j

)
Tm−jSm−j.

Clearly, we have TQm = (−1)m+1T . In particular, S is an m-left inverse of T if
and only if Qm = (−1)m+1I.

Proposition 2.5. If T ∈ Lm
G (X) and S ∈ Lm

G (T ), then we have the following.

(1) N(Qm) = N(T ) = R((−1)m+1I −Qm). In particular, Q2
m = (−1)m+1Qm,

and if m is an odd integer, then Qm is idempotent.
(2) R(Qm) = N((−1)m+1I − Qm). In particular, x ∈ R(Qm) if and only if

Qmx = (−1)m+1x.
(3) N(Qm) and R(Qm) are algebraically complemented subspaces of X; that

is, X = N(Qm)⊕R(Qm).

Proof.

(1) It is clear that N(T ) ⊂ N(Qm), and since TQm = (−1)m+1T , we also have
R((−1)m+1I −Qm) ⊆ N(T ). Now, let x ∈ N(Qm), and since (−1)m+1x =
((−1)m+1I −Qm)x ∈ R((−1)m+1I −Qm), we get x ∈ R((−1)m+1I −Qm).

(2) The inclusion N((−1)m+1I−Qm) ⊆ R(Qm) is obvious. Now, suppose that
x ∈ R(Qm). Then x = Qmu for some u ∈ X. We have ((−1)m+1I−Qm)x =
((−1)m+1Qm −Q2

m)u = 0, and hence x ∈ N((−1)m+1I −Qm).
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(3) It is easily seen that X = R((−1)m+1I − Qm) + R(Qm). But we have
R((−1)m+1I − Qm) = N(Qm), and thus X = N(Qm) + R(Qm). Since
N(Qm) ∩ R(Qm) = N(Qm) ∩ N((−1)m+1I − Qm) = {0}, we have the
result. �

In the following proposition, we generalize Proposition 2.2 in [9].

Proposition 2.6. Let T ∈ L(X), and let S be an m-generalized inverse of T .
Then

1

m‖S‖(1 + ‖S‖‖T‖)m−1
≤ γ(T ) ≤ ‖TS‖‖Qm‖

‖QmS‖
.

Proof. Consider an arbitrary vector x ∈ X. We have

‖Qmx‖ =

∥∥∥∥m−1∑
j=0

(−1)j
(
m

j

)
Sm−jTm−jx

∥∥∥∥
≤ ‖S‖

∥∥∥∥m−1∑
j=0

(
m

j

)
‖S‖m−1−j‖T‖m−1−j

∥∥∥∥‖Tx‖
≤ m‖S‖

(
1 + ‖S‖‖T‖

)m−1‖Tx‖,

where the last inequality follows since
(
m
j

)
≤ m

(
m−1
j

)
for 0 ≤ j ≤ m − 1. On

the other hand, (−1)mx+Qmx ∈ N(T ), and thus

dist
(
x,N(T )

)
= dist

(
Qmx,N(T )

)
≤ ‖Qmx‖ ≤ m‖S‖

(
1 + ‖S‖‖T‖

)m−1‖Tx‖.

Therefore,
1

m‖S‖(1 + ‖S‖‖T‖)m−1
≤ γ(T ).

For the second inequality, let v ∈ X, and let x = QmSv. Since SPmv =
(−1)m+1Sv, we have TQmSPmv = (−1)m+1TQmSv = (−1)m+1Tx. But SPm =
(−1)m+1S and TQm = (−1)m+1T , and thus TSv = (−1)m+1Tx. On the other
hand, for ε > 0, there exists u ∈ N(T ) such that dist(x,N(T )) ≥ ‖x + u‖ − ε.
Therefore, it follows that

‖x+ u‖ ≤ dist
(
x,N(T )

)
+ ε ≤ 1

γ(T )
‖Tx‖+ ε =

1

γ(T )
‖TSv‖+ ε.

Now, since x ∈ R(Qm) and N(Qm) = N(T ), from Proposition 2.5 we have
Qm(x+ u) = Qmx = (−1)m+1x. Therefore,

‖QmSv‖ = ‖x‖ =
∥∥Qm(x+ u)

∥∥ ≤ ‖Qm‖‖x+ u‖ ≤ ‖Qm‖
{ 1

γ(T )
‖TS‖‖v‖+ ε

}
.

Because ε > 0 is arbitrary, for every v ∈ X, we obtain

‖QmSv‖ ≤ 1

γ(T )
‖TS‖‖Qm‖‖v‖.

The result is proved. �
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For m = 1, S is a generalized inverse of T , Qm = Q = ST , Pm = P = TS,
QmS = S, andm‖S‖(1+‖S‖‖T‖)m−1 = ‖S‖. Therefore, we retrieve the following
result given in [9].

Corollary 2.7 ([9, Proposition 2.2]). Let T ∈ L(X), and let S be a generalized
inverse of T . Then

1

‖S‖
≤ γ(T ) ≤ ‖P‖‖Q‖

‖S‖
.

Corollary 2.8. If T is m-invertible and S is an m-left inverse of T , then

1

m‖S‖(1 + ‖S‖‖T‖)m−1
≤ γ(T ) ≤ ‖TS‖

‖S‖
.

Proof. Since Qm = (−1)m+1I, we have ‖TS‖‖Qm‖
‖QmS‖ = ‖TS‖

‖S‖ . �

Corollary 2.9. If T ∈ Lm
G (X), then γ(T ) > 0. In particular, if T ∈ Lm

G (X), then
R(T ) is closed.

Recall that T ∈ L(H) is an m-isometry if and only if it is an injective m-partial
isometry. In the following we extend this property.

Proposition 2.10. If T ∈ L(X), then the following assertions are equivalent:

(1) T ∈ Lm
G (X) and T is injective,

(2) T ∈ Lm(X).

Proof. (1) =⇒ (2): Suppose that T ∈ Lm
G (X) is injective, and let S be an m-left

generalized inverse of T . By Proposition 2.5, we have R((−1)m+1I − Qm) =
N(T ) = {0}. This implies that Qm = (−1)m+1I, and thus T ∈ Lm(X).

(2) =⇒ (1): Let T be in Lm(X). Since Lm(X) ⊂ Lm
G (X), it suffices to show

that T is injective. Since Qm = (−1)m+1I, according to Proposition 2.5, we have
N(T ) = N(Qm) = N(I) = {0}. The proof is completed. �

The following result extends Theorem 3.1 given in [12].

Theorem 2.11. If T, S ∈ L(H) such that N(T )⊥ is an invariant subspace for
both T and S, then the following properties are equivalent:

(1) T ∈ Lm
G (H) and S ∈ Lm

G (T ),
(2) T|N(T )⊥ ∈ Lm(H) and S|N(T )⊥ ∈ Lm(T ).

Proof. (1) =⇒ (2): Suppose that T ∈ Lm
G (H), let S ∈ Lm

G (T ), and let x be in
N(T )⊥. Since by assumption N(T )⊥ is an invariant subspace for both T and S,
we have

m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx ∈ N(T )⊥.

On the other hand,

m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx ∈ N(T );
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thus,

m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx = 0

for all x ∈ N(T )⊥, and so T|N(T )⊥ ∈ Lm(H) and S|N(T )⊥ ∈ Lm(T ).

(2) =⇒ (1): Let x ∈ H such that x = x1+x2 with x1 ∈ N(T ) and x2 ∈ N(T )⊥.
We have

T
m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx = T

m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx2.

But by assumption we have

m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx2 = 0,

and thus

T
m∑
j=0

(
m

j

)
(−1)jSm−jTm−jx = 0.

Since x ∈ H is arbitrary, T ∈ Lm
G (H) and S ∈ Lm

G (T ). The result is obtained. �

Corollary 2.12. If T,R ∈ L(H) such that N(R)⊥ is an invariant subspace for
both T and R, then the following properties are equivalent:

(1) T ∈ Rm
G (H) and R ∈ Rm

G (T ),
(2) T|N(R)⊥ ∈ Rm(H) and R|N(R)⊥ ∈ Rm(T ).

From the Theorem 2.11, we conclude Theorem 3.1 from [12] alternatively.

Corollary 2.13 ([12, Theorem 3.1]). If T ∈ L(H) and N(T ) is a reducing sub-
space for T , then the following properties are equivalent:

(1) T is an m-partial isometry,
(2) T|N(T )⊥ is an m-isometry.

Proof. (1) =⇒ (2): Since N(T ) is reducing for T , we see that (T|N(T )⊥)
∗ =

T ∗
|N(T )⊥ = S|N(T )⊥ where S = T ∗. Moreover, N(T )⊥ is an invariant subspace

for both T and S. Since T is an m-partial isometry, by Proposition 2.3, we have
T ∈ Lm

G (H) and S ∈ Lm
G (T ). Now, by Theorem 2.11, we get T|N(T )⊥ ∈ Lm(H)

and (T|N(T )⊥)
∗ = S|N(T )⊥ ∈ Lm(T ). Hence T|N(T )⊥ is an m-isometry.

(2) =⇒ (1): Suppose that T|N(T )⊥ is an m-isometry. Then T|N(T )⊥ ∈ Lm(H)
and (T|N(T )⊥)

∗ ∈ Lm(T ). But (T|N(T )⊥)
∗ = T ∗

|N(T )⊥ , and thus T ∗
|N(T )⊥ ∈ Lm(T ).

From Theorem 2.11, T ∈ Lm
G (H) and T ∗ ∈ Lm

G (T ), and by Proposition 2.3 we
infer that T is an m-partial isometry. �
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3. Power of m-left and m-right generalized invertible operators

In [11, Theorem 2.1], S. M. Patel showed that a power of 2-isometry is again
a 2-isometry. This result was extended in [8] for 2-left and 2-right invertible
operators. Another result for m-partial operators is given in [7, Theorem 2.16].
In the following, we extend this result more generally for 2-left generalized and
2-right generalized invertible operators.

Theorem 3.1. Let T ∈ L2
G(H), and let B ∈ L2

G(T ). If N(T )⊥ is an invariant
subspace for both T and S, then T n ∈ L2

G(H) and Bn ∈ L2
G(T

n) for all n ∈ N.

Proof. Let n ≥ 0 be an integer. From Theorem 2.11, T|N(T )⊥ ∈ L2(H) and
B|N(T )⊥ ∈ L2(T ). According to [8, Proposition 3.1], we have T n

|N(T )⊥ ∈ L2(H)

and Bn
|N(T )⊥ ∈ L2(T n). Now, by Theorem 2.11, we derive that T n ∈ L2

G(H) and

Bn ∈ L2
G(T

n). �

Lemma 3.2.

(1) Let T ∈ L2
G(X), and let B ∈ L2

G(T ) such that BT = TB. Then

TBkT k = kTBT − (k − 1)T, k = 0, 1, . . . .

(2) If T ∈ R2
G(X) and R ∈ R2

G(T ) such that RT = TR, then

RT kRk = kRTR− (k − 1)R, k = 0, 1, . . . .

Proof.

(1) We will proceed by induction on k. For k = 0, 1 there is nothing to prove.
Since B ∈ L2

G(T ), we have

T (B2T 2 − 2BT + I) = 0,

and thus

TB2T 2 = 2TBT − T.

Then the equation is verified for k = 2. Now, suppose that TBkT k =
kTBT − (k − 1)T for some k. We have

TBk+1T k+1 = TBBkT kT

= BTBkT kT (since BT = TB)

= B
(
kTBT − (k − 1)T

)
T (by assumption)

= kTB2T 2 − (k − 1)BT 2 (since BT = TB)

= k(2TBT − T )− (k − 1)BT 2 (TB2T 2 = 2TBT − T )

= 2kTBT − kT − (k − 1)TBT (since BT = TB)

= (2k − k + 1)TBT − kT

= (k + 1)TBT − kT.

(2) Since R is a 2-right generalized inverse of T , then T is a 2-left generalized
inverse of R, and the result follows from the first part. �
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Theorem 3.3. Let T be in L2
G(X), and let m be an integer such that m ≥ 1. If

there exists an operator B ∈ L2
G(T ) such that BT = TB, then T n ∈ Lm

G (X) and
Bn ∈ Lm

G (T
n) for all integers n.

Proof. Suppose that B ∈ L2
G(T ) is such that BT = TB and m ≥ 1 is an integer.

Since
(
m
k

)
k = m

(
m−1
k−1

)
for k = 1, 2, . . . ,m, we have

m∑
k=0

(−1)m−k

(
m

k

)
k =

m∑
k=1

(−1)m−k

(
m

k

)
k

=
m−1∑
k=0

(−1)m−1−k

(
m− 1

k

)
m

= (−1 + 1)m−1m

= 0.

On the other hand, from Lemma 3.2 we have TBnkT nk = nkTBT − (nk − 1)T
for k = 0, 1, 2, . . . . Thus, for all n ≥ 1, we have

T n

m∑
k=0

(−1)m−k

(
m

k

)
BnkT nk = T n−1

m∑
k=0

(−1)m−k

(
m

k

)
TBnkT nk

= T n−1

m∑
k=0

(−1)m−k

(
m

k

)(
nkTBT − (nk − 1)T

)
= n

m∑
k=0

(−1)m−k

(
m

k

)
k︸ ︷︷ ︸

=0

T n(BT − I)

+
m∑
k=0

(−1)m−k

(
m

k

)
︸ ︷︷ ︸

=0

T n

= 0. �

Corollary 3.4. Let T be a 2-right generalized invertible operator, and let m be
an integer such that m ≥ 1. If there exists an operator R ∈ R2

G(T ) such that
RT = TR, then T n ∈ Rm

G (X) and Rn ∈ Rm
G (T

n) for all integers n.

It is well known from [7, Proposition 2.2] that if T is anm-partial isometry such
that T k is a partial isometry for k = 1, . . . ,m− 1, for some integer m ≥ 2, then
the power Tm is a partial isometry. In the following, we generalize this result.

Proposition 3.5. Let T ∈ L(X) be in Lm
G (X), and let B ∈ Lm

G (T ) for some
integer m ≥ 2. If T k ∈ L1

G(X) and Bk ∈ L1
G(T

k) for k = 0, 1, . . . ,m − 1, then
Tm ∈ L1

G(X) and Bm ∈ L1
G(T

m).

Proof. Since T is an m-left generalized invertible operator and B ∈ Lm
G (T ), we

have

T
m∑
k=0

(−1)k
(
m

k

)
Bm−kTm−k = 0.
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Multiplying the above equation from the left by Tm−1, we get

TmBmTm +
m∑
k=1

(−1)k
(
m

k

)
TmBm−kTm−k = 0.

But by assumption we have T kBkT k = T k for k = 1, . . . ,m− 1, and thus

TmBm−kTm−k = T kTm−kBm−kTm−k

= T kTm−k

= Tm.

Therefore,

TmBmTm +
m∑
k=1

(−1)k
(
m

k

)
Tm = 0.

Since
∑m

k=1(−1)k
(
m
k

)
= −1, we get

TmBmTm = Tm.

Therefore, Tm ∈ L1
G(X) and Bm ∈ L1

G(T
m). �

Theorem 3.6. Let T ∈ L(X) be in Lm
G (X), and let B ∈ Lm

G (T ) for some integer
m ≥ 1. If S ∈ L1(X) and A ∈ L1(S) are such that S and A commute with both
T and B, then TS ∈ Lm

G (X) and AB ∈ Lm
G (ST ).

Proof. We have

TS
m∑
k=0

(−1)k
(
m

k

)
(AB)m−k(TS)m−k

= TS
m∑
k=0

(−1)k
(
m

k

)
Bm−kTm−k(Am−kSm−k)

= T
m∑
k=0

(−1)k
(
m

k

)
Bm−kTm−k

︸ ︷︷ ︸
=0

S

= 0,

and the result is obtained. �

Corollary 3.7 ([12, Proposition 3.2]). Let T, S ∈ L(H) be such that T is an
m-partial isometry and S is an isometry with TS = ST and TS∗ = S∗T . Then
TS is an m-partial isometry.

Proof. Since T is an m-partial isometry, T ∈ Lm
G (X) and T ∗ ∈ Lm

G (T ). Let A =
S∗, and let B = T ∗. It is clear that all the conditions of Theorem 3.6 are satisfied,
and thus we have the result. �

Proposition 3.8 ([8, Proposition 3.3]). We have the following inclusions.

(1) If T ∈ Lm(X), then Lm(T ) ⊂ Lm+k(T ), k ∈ N.
(2) If T ∈ Rm(X), then Rm(T ) ⊂ Rm+k(T ), k ∈ N.
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The following result is given in [12].

Proposition 3.9 ([12, Proposition 3.5]). Let T ∈ L(H) be an m-partial isometry
such that N(T ) is a reducing subspace for T . Then T is an (m+n)-partial isometry
for n = 0, 1, 2, . . . .

In the following, we generalize the previous result for m-left generalized invert-
ible operators.

Theorem 3.10. Let T ∈ L(H) be in Lm
G (H), and let S ∈ Lm

G (T ). If N(T )⊥ is
an invariant subspace for both T and S, then T ∈ Lm+n

G (H) and S ∈ Lm+n
G (T )

for n = 0, 1, 2, . . . .

Proof. Since T ∈ Lm
G (H) and S ∈ Lm

G (T ), from Theorem 2.11 we have T|N(T )⊥ ∈
Lm(H) and S|N(T )⊥ ∈ Lm(T ). Now, by Proposition 3.8, we get T|N(T )⊥ ∈ Lm+n(H)
and S|N(T )⊥ ∈ Lm+n(T ) for n = 0, 1, 2, . . . . From Theorem 2.11 again we get the
desired result. �

Corollary 3.11. Let T ∈ L(H) be an m-right generalized invertible operator,
and let R ∈ Rm

G (T ). If N(R)⊥ is an invariant subspace for both T and R, then
T ∈ Rm+n

G (H) and R ∈ Rm+n
G (T ) for n = 0, 1, 2, . . . .

Proof. Since T ∈ Rm
G (H) and R ∈ Rm

G (T ), we have R ∈ Lm
G (H) and T ∈ Lm

G (R)
and the result follows from Theorem 3.10. �

S. Hamidou Jah proved in [7, Theorem 2.12] that if T is an m-partial isometry
such that T is an m-isometry on R(T ), then T is an (m+ 1)-partial isometry. In
the following, we generalize this result.

Theorem 3.12. Let T ∈ L(X) be an m-left generalized invertible operator, and
let B ∈ Lm

G (T ). If T is m-left invertible on R(T ) and B is an m-left inverse of T
on R(T ), then T ∈ Lm+1

G (X) and B ∈ Lm+1
G (T ).

Proof. The proof outlines the one of Theorem 2.12 given in [7]:

T
m+1∑
k=0

(−1)k
(
m+ 1

k

)
Bm+1−kTm+1−k

= T

(
Bm+1Tm+1 +

m∑
k=1

(−1)k
{(

m

k

)
+

(
m

k − 1

)}
Bm+1−kTm+1−k − (−1)mI

)

= T

(
Bm+1Tm+1 +

m∑
k=1

(−1)k
(
m

k

)
Bm+1−kTm+1−k

)

+ T

( m∑
k=1

(−1)k
(

m

k − 1

)
Bm+1−kTm+1−k − (−1)mI

)

= TB

(
BmTm +

m∑
k=1

(−1)k
(
m

k

)
Bm−kTm−k

)
T − T

m∑
k=0

(−1)k
(
m

k

)
Bm−kTm−k

︸ ︷︷ ︸
=0
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= TB
m∑
k=0

(−1)k
(
m

k

)
Bm−kTm−kT︸ ︷︷ ︸

=0

(
B is an m-left inverse of T on R(T )

)
= 0. �
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