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Communicated by Z. Lykova

Abstract. It is well known, as a consequence of a theorem of Richard Arens,
that a commutative Fréchet locally m-convex algebra E with unit does not
have dense finitely generated ideals. We shall see that this result can no longer
be true if E is not complete and metrizable. We observe that the same is
true for the theorem of Arens; that is, this theorem can no longer be true if
E is not complete and metrizable. Moreover, several conditions for a unital
commutative (not necessarily complete) locally m-convex algebra are given,
for which all maximal ideals have codimension one.

1. Preliminaries

Let E be a unital topological algebra over C (the field of complex numbers)
with separately continuous multiplication (in short, a topological algebra).

Let B be a complex commutative unital algebra. We denote by M#(B) the
set of all nonzero multiplicative linear functionals on B provided with the weak-
star topology w∗. When B is a topological algebra, M(B) denotes the topologi-
cal subspace of M#(B) consisting of all nonzero multiplicative continuous linear
functionals on B provided with the weak-star topology w∗.

A locally pseudoconvex algebra is a topological algebra with a base of neigh-
borhoods of zero consisting of balanced and pseudoconvex sets, that is, of sets
U for which µU ⊂ U , whenever |µ| ≤ 1 and U + U ⊂ λU for some λ ≥ 2.
The topology of a locally pseudoconvex algebra can be defined by a family
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{pλ : λ ∈ Λ} of kλ-homogeneous seminorms with kλ ∈ (0, 1] (a seminorm p is
called k-homogeneous (k ∈ (0, 1]) if p(µa) = |µ|kp(a) for any a ∈ E and any
scalar µ). A locally pseudoconvex algebra E is called locally m-pseudoconvex
if every seminorm in the family {pλ : λ ∈ Λ} is submultiplicative, and it is
called locally convex if kλ = 1 for each λ ∈ Λ. A locally convex algebra is called
m-convex if every seminorm in the family {pλ : λ ∈ Λ} is submultiplicative; that
is, pλ(xy) ≤ pλ(x)pλ(y) for each λ ∈ Λ. A metrizable and complete algebra is
called a Fréchet algebra.

Let I be a (nonempty) upward-directed set with the partial order “≺.” So, for
any α, β ∈ I there is a γ ∈ I such that α ≺ γ and β ≺ γ. Let (Eα)α∈I be a family
of algebras, and for every α, β ∈ I with α ≺ β let

fαβ : Eβ → Eα

be a homomorphism such that

(1) fαα = idEα for every α ∈ I

and

(2) fαγ = fαβ ◦ fβγ for any α, β, γ ∈ I such that α ≺ β ≺ γ.

The family of algebras (Eα)α∈I with the maps fαβ defined above is called a
projective system of algebras, and it is denoted by (Eα, fαβ).

Now, consider the Cartesian product algebra F =
∏

α∈I Eα and the subset
of F :

E =
{
x = (xα) ∈ F : xα = fαβ(xβ) if α ≺ β in I

}
.

By definition of the algebra operations in F and the hypothesis for the maps fαβ,
E is a subalgebra of F . The algebra E is called the projective limit algebra of the
given projective system, and it is denoted by

E = lim
←−

Eα.

Given a projective system of algebras, we have a family of homomorphisms {πα :
α ∈ Λ}, such that

πα : E → Eα

for every α ∈ I, where πα is the restriction to E of the canonical projection map
of F to Eα.

A projective system of topological algebras is a projective system of algebras
(Eα, fαβ), where the Eα are topological algebras and the maps fαβ are continuous
homomorphisms.

We endow E = lim
←−

Eα with the initial topology τ , defined by the maps πα, and

we call (E, τ) the projective limit topological algebra (see [3, p. 84]).
The following very important theorem is known as the Arens–Michael theorem,

(see [3, pp. 88–90]).

Theorem 1.1. Every Fréchet locally m-convex algebra E is (within a topological

algebraic isomorphism) the projective limit of a sequence of Banach algebras Ên,

where Ên denotes the completion of E/ ker(‖ · ‖n).
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Now, if we consider a Fréchet locally m-convex algebra E and for each n ∈ N
the completion Ên of E/ ker(‖ · ‖α), then

E = lim
←−

Ên.

This expression is called the Arens–Michael decomposition of E.

2. About a theorem of Arens

Let E be a commutative topological algebra with unit e. In what follows, we will
give some definitions which are necessary to understand the well-known theorem
of Arens (see [5]):

(i) (x1, x2, . . . , xn) ∈ En is regular if the ideal

x1E + x2E + · · ·+ xnE

is equal to E.
(ii) (x1, x2, . . . , xn) ∈ En is topologically regular if the closure of the ideal

x1E + x2E + · · ·+ xnE

is equal to E.

It is easy to see that if (x1, x2, . . . , xn) ∈ En is regular, then (x1, x2, . . . , xn) is
topologically regular. The opposite implication is not true, in general.

In this section, Eα denotes the completion of E/ ker(‖ · ‖α), and eα denotes the
unital element in Eα.

Theorem 2.1 (Arens). Let E be a commutative, Fréchet m-convex algebra with
unit e, and let x1, x2, . . . , xN ∈ E such that (πn(x1), . . . , πn(xN)) is regular in En

for each n ∈ N. Then, (x1, x2, . . . , xN) is regular in E.

Corollary 2.2. Let E be a commutative, Fréchet m-convex algebra with unit e.
Then, there are no dense finitely generated ideals in E.

Proof. We suppose that there exists a dense finitely generated ideal I; then I = E,
and hence there exists (yi) ⊂ I such that yi → e. If u1, u2, . . . , un are the gener-
ators of I, then yi = xi

1u1 + · · · + xi
nun for each i, so xi

1u1 + · · · + xi
nun → e and

by continuity of πk we have that πk(x
i
1)πk(u1) + · · · + πk(x

i
n)πk(un) → ek. Now,

as Ek is a Banach algebra, the set of invertible elements Inv(Ek) of Ek is open.
Therefore, there is a neighborhood O(ek) of ek such that O(ek) ⊂ Inv(Ek) and
by continuity of πk there exists m ∈ E such that πk(yi) ∈ O(ek) ⊂ Inv(Ek) for
every i > m. Hence, there exists v ∈ Ek such that

v
(
πk(x

i
1)πk(u1) + · · ·+ πk(x

i
n)πk(un)

)
= ek.

Hence, we conclude that (πk(u1), . . . , πk(un)) is regular for each k, and then by
Theorem 2.1 (u1, . . . , un) is regular in E. Therefore, e ∈ I and I = E, which is a
contradiction. �
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For an algebra E, let radE denote the topological radical, and let commE
denote the commutator ideal of E, that is, the closure of the two-sided ideal of
E generated by the set {ab − ba : a, b ∈ E}. When E/ radE is commutative,
E is called topologically almost commutative. In [1, Theorem 2], M. Abel and
K. Jarosz generalized the previous result. They showed that if E is a complex
unital locally m-pseudoconvex Fréchet algebra such that commE 6= E or E is
almost topologically commutative, then every proper finitely generated two-sided
ideal in E is contained in a closed maximal two-sided ideal of E and hence there
are no dense finitely generated two-sided ideals in E. We shall see that we cannot
remove completeness or metrizability from the hypothesis of the theorem of Arens
(or from [1, Theorem 2]).

Example 2.3. Let E be the entire function algebra on the complex plane endowed
with the topology induced by the norm ‖f‖N = max|z|≤N |f(z)|, where f ∈ E and
N is a positive integer.

Let f ∈ E be nonconstant; then there exists z1 ∈ C, |z1| > N such that
|f(z1)| > ‖f‖N . We consider c ∈ C such that ‖f‖N < c < |f(z1)| and F : E → C
defined by F (f) = f(z1); F is a linear multiplicative functional on E ; and

Z(F ) =
{
f ∈ E : f(z1) = 0

}
is a maximal ideal of E . We have that F is not continuous since if we define
fn = (f

c
)n, n = 1, 2, . . . , we obtain that ‖fn‖N → 0 and F (fn) → ∞. Hence,

Z(F ) is not closed, and it is a dense maximal ideal. Moreover,

Z(f) =
{
f ∈ E : f(z) = (z − z1)h(z) with h ∈ E

}
;

hence, we have that Z(f) = (z − z1)E and (z − z1)E = E and so E with this
topology has dense finitely generated ideals. From Corollary 2.2 it follows that
(E , ‖ · ‖N) is not complete; therefore, we observe that we cannot remove the
condition of completeness in the theorem of Arens.

Proposition 2.4. Let E be a commutative m-convex algebra with unit e and
M(E) compact. Then, the following sentences are equivalent:

(1) E does not have proper dense finitely generated ideals.
(2) If x1, . . . , xn ∈ E and

∑n
i=1 |f(xi)| > 0 for each f ∈ M(E), then there

exist elements y1, . . . , yn ∈ E such that
∑n

i=1 xiyi = e.
(3) Every maximal ideal of E is closed.

W. Żelazko [4, p. 297, Proposition 2] has the same result assuming complete-
ness of E; we shall give the proof that (1) implies (2). The proofs of the other
implications are the same as in the paper mentioned.

(1) implies (2). If we consider x1, . . . , xn such that
∑n

i=1 |f(xi)| > 0 for each
f ∈ M(E), then x1, . . . , xn are not contained in any closed maximal ideal. We
affirm that the ideal, I, generated by x1, . . . , xn is dense since if we assume that I
is not dense, then Ī 6= E and then E/Ī is a commutative m-convex algebra such
that M(E/Ī) 6= ∅ (see [5, p. 95]). We can consider the quotient map π : E → E/Ī
which is continuous and F ∈ M(E/Ī). We define f = F ◦ π; f is by definition
an element of M(E) such that |f(xi)| = 0 for every i ∈ {1, . . . , n}, which is a
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contradiction. So, since I is a dense finitely generated ideal, we have that I = E,
and we conclude that there exist elements y1, . . . , yn ∈ E such that

∑n
i=1 xiyi = e.

Corollary 2.5. Let E be a commutative, locally m-convex algebra with unit e;
M(E) is compact and without proper dense finitely generated ideals. If x1, . . . ,
xN ∈ E is such that (πα(x1), . . . , πα(xN)) is regular in Eα for each α ∈ Λ, then
(x1, . . . , xN) is regular in E.

Proof. Let y1, . . . , yN ∈ Eα be such that πα(x1)y1+ · · ·+πα(xN)yN = eα. Then by
Proposition 2.4, it is enough to prove that f(xi) 6= 0 for some i ∈ {1, . . . , N}, for
each f ∈ M(E). If we assume that there exists F ∈ M(E) such that F (xi) = 0
for each i ∈ {1, . . . , N}, then we define F1 : E/ ker(‖ · ‖α) → C, F1(πα(x)) =
F (x). Clearly, F1 is a continuous, linear multiplicative function, and hence it can

be extended continuously to Eα; that is, there exists a function F̂1 ∈ M(Eα)

such that F̂1(πα(x1)y1 + · · · + πα(xN)yN) = 0 (by definition of F̂1), but since
πα(x1)y1 + · · ·+ πα(xN)yN = eα, we have that

F̂1

(
πα(x1)y1 + · · ·+ πα(xN)yN

)
= 1,

which is a contradiction. So we conclude that f(xi) 6= 0 for some i ∈ {1, . . . , N}
and for every f ∈ M(E). �

Corollary 2.6. Let E be a commutative m-convex algebra with unit and M(E)
compact. Suppose that one of the following holds:

(1) E has maximal ideals which are not closed.
(2) M(E) 6= M#(E).

Then, the theorem of Arens for E does not follow.

Proof. We suppose that E satisfies (1). Then, by Proposition 2.4, we have that E
has proper dense finitely generated ideals. Now, if (2) is true, then there are in E
maximal ideals which are not closed. From there, the assumption of Corollary 2.2
does not follow, and hence the theorem of Arens does not follow. �

Corollary 2.7. Let E be a commutative, Fréchet, m-convex algebra with unit e.
If M(E) is compact, then M(E) = M#(E).

Proof. Since the theorem of Arens is satisfied, by Corollary 2.6 we have that every
maximal ideal of E is closed and that M(E) = M#(E). �

A unital topological algebra (E, τ) is called a Q-algebra if the set of invertible
elements is open. If (E, τ) is a Q-algebra, then E does not have proper dense
finitely generated ideals.

We remember that if E is a unital topological algebra, then the spectrum of
x ∈ E is defined by

σ(x) = {λ ∈ C : x− λe is not invertible}.

Proposition 2.8. Let (E, τ) be a commutative, m-convex algebra with unit e and
M#(E) compact. Then the following sentences are equivalent:

(1) There exists any topology τ ? stronger than τ such that (E, τ ?) is a
Q-algebra.
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(2) If x1, . . . , xn ∈ E and
∑n

i=1 |f(xi)| > 0 for each f ∈ M#(E), then there
exist elements y1, . . . , yn ∈ E such that

∑n
i=1 xiyi = e.

(3) Every maximal ideal of E is of codimension one.

Proof. (1) implies (2). Let x1, . . . , xn ∈ E be such that
∑n

i=1 |f(xi)| > 0 for every
f ∈ M#(E). Then, x1, . . . , xn is not contained in a maximal ideal. Thus, the ideal
I generated by x1, . . . , xn is not proper; that is, I = E.

(2) implies (3). Since we have that if x ∈ E such that |f(x)| > 0 for every
f ∈ M#(E), then there exists y ∈ E such that xy = e. We consider λ ∈ σ(x).
Then x−λe is not invertible, and there exists f ∈ M#(E) such that f(x−λe) = 0;
it is f(x) = λ. So, σ(x) = x̂(M#(E)), where x̂(M#(E) = {f(x) : f ∈ M#(E)},
and, as M#(E) is compact, we have by [2, p. 54, Theorem 2] that every maximal
ideal is of codimension one.

(3) implies (1). If λ ∈ σ(x), then x − λe is not invertible and x − λe ∈ M ,
where M is a maximal ideal of codimension one.

Then there exists f ∈ M#(E) such that f(x) = λ. So, σ(x) = x̂(M#(E)) for
each element x ∈ E, and hence by [2, p. 54, Theorem 2], there exists τ ∗ stronger
than τ under which E is a Q-algebra. �

We note by [2, p. 54, Theorem 2] that the condition M#(E) compact in the
hypothesis in the previous proposition can be changed by the condition x̂(M#(E))
bounded for every x ∈ E or by x̂(M#(E)) compact for every x ∈ E.

Proposition 2.8 allows us to give the following reformulation of Theorem 2
of [2].

Corollary 2.9. The properties (i)–(vi) are equivalent for any commutative unital
m-convex algebra (E, τ).

(i) E is an m-convex Q-algebra under some topology τ ∗.
(ii) E is an advertibly complete m-convex algebra under some topology τ ∗, and

the space M#(E) is compact in the weak-star topology.
(iii) The space M#(E) is compact in the weak-star topology, and for each ele-

ment x ∈ E the spectrum σ(x) = x̂(M#(E)).
(iii)′ M#(E) is compact in the weak-star topology and for each (x1, . . . , xn) ≡ x̄,

σ(x̄) = ̂̄x(M#(E)), where

σ(x̄) =
{
(λ1, . . . , λn : (x1 − λ1e, . . . , xn − λne) is not regular

}
and ̂̄x(M#(E)

)
=

{(
f(x1), . . . , f(xn)

)
: f ∈ M#(E)

}
.

(iv) E is spectrally bounded and σ(x) = x̂(M#(E)).
(v) For each x ∈ E the spectrum σ(x) is compact and σ(x) = x̂(M#(E)).
(vi) E is an m-convex Q-algebra under some topology τ ? stronger than τ .

Furthermore, each one of these properties implies the following:

(vii) Every maximal ideal of E is of codimension one.

Proof. It is enough to prove that (iii) and (iii)′ are equivalent. Clearly, (iii)′ im-
plies (iii). We consider (λ1, . . . , λn) ∈ σ(x̄); then the ideal generated by (x1 −
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λ1e, . . . , xn − λne) is contained in a maximal ideal M which is closed since, by
(i), E is a Q-algebra and it is of codimension one by (vii). Then the projection

F : E → E/M ∼= C

is a linear multiplicative functional of E. Therefore, F (xi − λi) = 0 for each
i ∈ {1, . . . , n} and F (xi) = λi for each i ∈ {1, . . . , n}.

Now, we consider (λ1, . . . , λn) ∈ ̂̄x(M#(E)); then λi = F (xi) for some F ∈
M#(E) and i ∈ {1, . . . , n}. We affirm that (x1 − F (x1)e, . . . , xn − F (xn)e) is
not regular, since if (x1 − F (x1)e, . . . , xn − F (xn)e) is regular, then there exist
y1, . . . , yn ∈ E such that

n∑
i=1

(
xi − F (xi)e

)
yi = e.

Hence, 0 = F (
∑n

i=1(xi − F (xi)e)yi) = 1, which is a contradiction. So,

(λ1, . . . , λn) ∈ σ(x̄). �

Next, we show an example of a commutative, complete m-convex algebra with
dense finitely generated ideals, which was studied by W. Żelazko [4]. This is an
example that shows that metrizability is needed in the hypothesis of the theorem
of Arens.

Example 2.10. We consider

D =
{
(z1, z2) ∈ C2 :

1

2
≤ |z1|2 + |z2|2 ≤ 1

}
and

D0 =
{
(z1, z2) ∈ C2 :

1

2
≤ |z1|2 + |z2|2 < 1

}
.

Let E be the algebra of continuous functions on D and holomorphic on D0. We
define a seminorm ‖ · ‖α for each convergent sequence

α =
{
(z

(n)
1 , z

(n)
2 )

}
⊂ D such that lim

n
(z

(n)
1 , z

(n)
2 ) = (z1, z2), z1 6= zi, i = 1, 2

and

‖f‖α =


sup
n
|f(z(n)1 , z

(n)
2 )|, (z1, z2) ∈ D \D0,

max(sup
n
|f(z(n)1 , z

(n)
2 )|, sup

n
|f f(z1,zn2 )−f(z1,z2)

zn2−z2
|, sup

n
|f(z

n
1 ,z2)−f(z1,z2)

zn1−z1
|)

in another case.

Then E is a complete m-convex algebra with the topology endowed by the semi-
norms {‖f‖α}α. Since every holomorphic function in D0 can be extended only to
one holomorphic function on

D1 =
{
(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1

}
,

we have that M#(E) = D1 and M(E) = D. Moreover, Corollary 2.6 follows since
M(E) is compact. Thus, E has dense finitely generated ideals.
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