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Abstract. We define and study the weak Haagerup property for C∗-algebras
in this article. A C∗-algebra with the Haagerup property always has the weak
Haagerup property. We prove that a discrete group has the weak Haagerup
property if and only if its reduced group C∗-algebra also has that property.
Moreover, we consider the permanence of the weak Haagerup property under
a few canonical constructions of C∗-algebras.

1. Introduction

In order to study the relation between weak amenability and the Haagerup
property, Knudby introduced the weak Haagerup property in [9].

Definition 1.1. Let G be a discrete group. Then G has the weak Haagerup prop-
erty if there are a constant C > 0 and a net {uα}α∈I in B2(G) ∩ C0(G) such
that

(1) ‖uα‖B2 ≤ C, for every α ∈ I;
(2) uα(g) → 1 as α → ∞, for every g ∈ G.

The weak Haagerup constant ΛWH(G) is defined as the infimum of those cases
of C for which such a net {uα}α∈I exists; if no such net exists, then we write
ΛWH(G) = ∞. In [10], Knudby introduced the weak Haagerup property for von
Neumann algebras and proved that a discrete group has the weak Haagerup
property if and only if its group von Neumann algebra has that property.
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Motivated by the above results, we define and study the weak Haagerup prop-
erty for C∗-algebras in this article. Our main results appear in Section 2. We show
that a C∗-algebra with the Haagerup property always has the weak Haagerup
property. We also prove that a discrete group has the weak Haagerup property
if and only if its reduced group C∗-algebra does. As a consequence of these two
results, we have some new examples of C∗-algebras concerning the weak Haagerup
property. Moreover, we prove the permanence of the weak Haagerup property
under a few canonical constructions of C∗-algebras, such as direct sums, crossed
products, and minimal tensor products.

Throughout this article, G is a discrete group, C0(G) is the space of functions
vanishing at infinity, and B2(G) is the algebra of Herz–Schur multipliers. In fact,
B2(G) is a unital Banach algebra when equipped with the Herz–Schur norm ‖·‖B2 .
It is known that ‖u‖∞ ≤ ‖u‖B2 for any u ∈ B2(G). (We advise the readers to
consult [2, Appendix D], [10, Section 3], [1], and [7] for more information on the
Herz–Schur multiplier.)

2. Main results

Throughout this section, let A be a unital C∗-algebra with a faithful tracial
state τ . Since τ is a faithful tracial state on A, by the Gel’fand–Naimark–Segal
(GNS) construction, τ defines an A-Hilbert bimodule, denoted by L2(A, τ). We
also denote by ‖ · ‖2,τ the associated Hilbert norm. Thus, for each a ∈ A, we have

‖a‖2,τ =
(
τ(a∗a)

) 1
2 ≤ ‖a‖.

Suppose that φ : A → A is a completely bounded map and that there exists
K > 0 such that ‖φ(a)‖2,τ ≤ K‖a‖2,τ for every a ∈ A. Then φ can be extended
to a bounded operator on L2(A, τ) with norm at most K. We say that φ is
L2-compact if φ can be extended to a compact operator on L2(A, τ).

Let F be a bounded finite-rank operator on L2(A, τ); then F takes the form

F (x) =
∑N

k=1〈x, yk〉xk for all x ∈ L2(A, τ), where xk, yk ∈ L2(A, τ). For any
ε > 0, by replacing xk with ak ∈ A that is close to xk, we can get a finite-rank
map Q : A → A such that Q is bounded with respect to the norm ‖ · ‖2,τ and
such that ‖F (a) − Q(a)‖2,τ ≤ ε‖a‖2,τ for all a ∈ A. Hence, we can see that φ is
L2-compact if and only if, for any ε > 0, there exists a finite-rank map Q : A → A
such that Q is bounded with respect to the norm ‖ · ‖2,τ and such that∥∥φ(a)−Q(a)

∥∥
2,τ

≤ ε‖a‖2,τ

for all a ∈ A.

Definition 2.1. Let A be a unital C∗-algebra with a faithful tracial state τ . Then
(A, τ) has the weak Haagerup property if there are a constant C > 0 and a net
{Tα}α∈I of completely bounded maps on A such that

(1) ‖Tα‖cb ≤ C for every α ∈ I,
(2) ‖Tα(a)‖2,τ ≤ C‖a‖2,τ for every a ∈ A and every α ∈ I,
(3) each Tα is L2-compact,
(4) ‖Tα(a)− a‖2,τ → 0 for every a ∈ A.
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The weak Haagerup constant ΛWH(A, τ) is defined as the infimum of those
cases of C for which such a net {Tα}α∈I exists; if no such net exists, then we write
ΛWH(A, τ) = ∞. It is not hard to see that the infimum is actually a minimum
and that ΛWH(A, τ) ≥ 1.

We will now show that the weak Haagerup property is indeed weaker than
the Haagerup property. (The reader is advised to consult [4] and [12] for basic
information on the Haagerup property; we use the definition of the Haagerup
property in [12, Definition 2.1] here.)

Theorem 2.2. If (A, τ) has the Haagerup property, then (A, τ) has the weak
Haagerup property. In fact, ΛWH(A, τ) = 1.

Proof. Since (A, τ) has the Haagerup property, then there is a net {Φα}α∈I of
unital completely positive maps from A to itself satisfying the following condi-
tions:

(1) Each Φα decreases τ ; that is, for all a ∈ A+, we have τ(Φα(a)) ≤ τ(a).
(2) For any a ∈ A, ‖Φα(a)− a‖2,τ → 0 as α → ∞.
(3) Each Φα is L2-compact.

For any a ∈ A, we have∥∥Φα(a)
∥∥
2,τ

= τ
(
Φα(a)

∗Φα(a)
) 1

2 ≤ τ
(
Φα(a

∗a)
) 1

2 ≤ τ(a∗a)
1
2 = ‖a‖2,τ .

Since unital completely positive maps have completely bounded norm 1, this
shows that ΛWH(A, τ) ≤ 1. �

It is mentioned in [12] that the class of all C∗-algebras with the Haagerup
property turns out to be quite large. It contains all nuclear C∗-algebras with
a faithful tracial state, residually finite-dimensional C∗-algebras with a faithful
tracial state, and many exact C∗-algebras. Hence, the class of all C∗-algebras with
the weak Haagerup property is also quite large.

We now turn to discrete groups and their reduced group C∗-algebras. For the
moment, fix a discrete group G. Let λ denote the left regular representation of
G on `2(G). The reduced group C∗-algebra C∗

r (G) is the C∗-algebra generated
by λ(G) inside B(`2(G)). It is equipped with the faithful tracial state τ given
by τ(x) = 〈xδe, δe〉 for x ∈ C∗

r (G), where δe is the characteristic function of the
identity element.

Theorem 2.3. Let G be a discrete group. The following conditions are equivalent.

(1) The group G has the weak Haagerup property.
(2) The reduced group C∗-algebra C∗

r (G) has the weak Haagerup property with
respect to τ .

More precisely, ΛWH(G) = ΛWH(C
∗
r (G), τ).

Proof. (1) ⇒ (2) Suppose that there is a net {uα}α∈I of maps in B2(G) ∩ C0(G)
witnessing the weak Haagerup property of G with ‖uα‖B2 ≤ C for every α. Let
Muα be the corresponding multiplier on the group von Neumann algebra L(G);
that is,

Muα

(
λ(g)

)
= uα(g)λ(g), g ∈ G. (2.1)
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Let Tα be the restriction of Muα to C∗
r (G); then ‖Tα‖cb = ‖uα‖B2 (see [3], [2,

Proposition D.6]). It follows from (2.1) that Tα extends to a diagonal operator

T̃α on L2(C
∗
r (G), τ) when L2(C

∗
r (G), τ) has the standard basis {λ(g)}g∈G. Since

‖uα‖∞ ≤ C, ‖T̃α‖ ≤ C. The rest of the proof is similar to that of [10, Theorem B].
(2) ⇒ (1) Suppose that the net {Tα}α∈I of maps on C∗

r (G) witnesses the weak
Haagerup property of C∗

r (G) with ‖Tα‖cb ≤ C and ‖Tα(x)‖2,τ ≤ C‖x‖2,τ for every
α. Let

uα(g) = τ
(
λ(g)∗Tα

(
λ(g)

))
, g ∈ G.

For every g ∈ G, we have∣∣uα(g)− 1
∣∣ = ∣∣τ(λ(g)∗Tα

(
λ(g)

))
− τ

(
λ(g)∗λ(g)

)∣∣
=

∣∣τ(λ(g)∗(Tα

(
λ(g)

)
− λ(g)

))∣∣
≤

∥∥Tα

(
λ(g)

)
− λ(g)

∥∥
2,τ

→ 0.

The rest of the proof is similar to that of [10, Theorem B]. �

The preceding theorem is important in the theory of the weak Haagerup prop-
erty, since it can give many standard examples.

Example 2.4.

(1) Let Γ be a lattice in Sp(1, n), where n ≥ 2 and H = Z/2 o F2. It follows
from [6, Theorem C] and [10] that ΛWH(Γ×H) = 2n− 1, but Γ×H does
not have the Haagerup property. Hence, ΛWH(C

∗
r (Γ×H), τ) = 2n−1, but

(C∗
r (Γ×H), τ) does not have the Haagerup property.

(2) It follows from [10, Section 9] that Z2 o SL2(Z) does not have the weak
Haagerup property. Hence, ΛWH(C

∗
r (Z2 o SL2(Z)), τ) = ∞.

From now on, we show several hereditary results for the weak Haagerup prop-
erty of C∗-algebras.

Theorem 2.5. Suppose that (A, τ) has the weak Haagerup property and that
B ⊆ A is a unital C∗-subalgebra. If there is a τ -preserving conditional expectation
E from A onto B, then (B, τ |B) has the weak Haagerup property and

ΛWH(B, τ |B) ≤ ΛWH(A, τ).

Proof. Suppose that there is a net {Tα}α∈I of maps on A witnessing the weak
Haagerup property of A with ‖Tα‖cb ≤ C and ‖Tα(a)‖2,τ ≤ C‖a‖2,τ for every α.
For each α, let

φα(b) = E ◦ Tα(b)

for all b ∈ B. Then φα is a completely bounded map from B to itself such that

‖φα‖cb = ‖E ◦ Tα|B‖cb ≤ ‖Tα‖cb ≤ C,

and, for all b ∈ B,∥∥φα(b)
∥∥
2,τ |B

=
∥∥E ◦ Tα(b)

∥∥
2,τ |B

≤
∥∥Tα(b)

∥∥
2,τ

≤ C‖b‖2,τ |B .



506 Q. MENG

As α tends to infinity, we have∥∥φα(b)− b
∥∥2

2,τ |B
= τ

((
φα(b)− b

)∗(
φα(b)− b

))
= τ

((
E ◦ Tα(b)− E(b)

)∗(E ◦ Tα(b)− E(b)
))

= τ
((
E
(
Tα(b)− b

))∗E(Tα(b)− b
))

≤ τ ◦ E
((
Tα(b)− b

)∗(
Tα(b)− b

))
=

∥∥Tα(b)− b
∥∥2

2,τ
→ 0

for all b ∈ B. Since Tα is L2-compact, then for any ε > 0 there exists a finite-rank
map Q : A → A such that Q is bounded with respect to the norm ‖ · ‖2,τ and∥∥Tα(a)−Q(a)

∥∥
2,τ

≤ ε‖a‖2,τ
for all a ∈ A. Hence, we have∥∥φα(b)− E ◦Q(b)

∥∥
2,τ |B

=
∥∥E ◦ Tα(b)− E ◦Q(b)

∥∥
2,τ |B

≤
∥∥Tα(b)−Q(b)

∥∥
2,τ

≤ ε‖b‖2,τ |B
for all b ∈ B. So φα is L2-compact. Hence, (B, τ |B) has the weak Haagerup
property and ΛWH(B, τ |B) ≤ ΛWH(A, τ). �

Let Γ be a discrete group that acts on a unital C∗-algebra A through an action
β. We use A oβ,r Γ to denote the reduced crossed product of (A,Γ, β) (see [2,
Definition 4.1.4]).

Corollary 2.6. Let Γ be a discrete group that acts on a unital C∗-algebra A
through an action β, let τ be a faithful β-invariant tracial state of A, and let
τ ′ be the induced faithful tracial state of A oβ,r Γ. If (A oβ,r Γ, τ

′) has the weak
Haagerup property, then (A, τ) has the weak Haagerup property. In fact,

ΛWH(A, τ) ≤ ΛWH(Aoβ,r Γ, τ
′).

Proof. Let E : Aoβ,rΓ → A be the canonical faithful conditional expectation such
that τ ′ = τ ◦ E . Then E is a τ ′-preserving conditional expectation from Aoβ,r Γ
onto A. �

If p ∈ A is a nonzero projection, then let τp denote the faithful tracial state on
pAp given as τp(x) = τ(p)−1τ(x).

Theorem 2.7. Suppose that (A, τ) has the weak Haagerup property; then (pAp, τp)
has the weak Haagerup property, and

ΛWH(pAp, τp) ≤ ΛWH(A, τ).

Proof. Let P : A → pAp be the map P (a) = pap, a ∈ A. Then P is unital and
completely positive. Given a net {Tα}α∈I witnessing the weak Haagerup property
of A with ‖Tα‖cb ≤ C and ‖Tα(a)‖2,τ ≤ C‖a‖2,τ for every α, let Sα = P ◦ Tα|pAp.
Clearly,

‖Sα‖cb ≤ ‖Tα|pAp‖cb ≤ ‖Tα‖cb ≤ C.
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For any x ∈ pAp, we have

τp
(
Sα(x)

∗Sα(x)
)
= τ(p)−1τ

((
P ◦ Tα(x)

)∗
P ◦ Tα(x)

)
≤ τ(p)−1τ

(
P
((
Tα(x)

)∗
Tα(x)

))
≤ τ(p)−1τ

((
Tα(x)

)∗
Tα(x)

)
≤ τ(p)−1C2τ(x∗x)

= C2τp(x
∗x).

This shows that ∥∥Sα(x)
∥∥
2,τp

≤ C‖x‖2,τp , x ∈ pAp.

Let V : L2(pAp, τp) → L2(A, τ) be the map V (x) = τ(p)−
1
2x. Then V is an

isometry and V ∗(a) = τ(p)
1
2pap for every a ∈ A. It follows that on pAp we have

Sα = V ∗TαV . Hence, Sα extends to the compact operator

S̃α = V ∗T̃αV

on L2(pAp, τp), where T̃α is the extension of Tα on L2(A, τ).
For every x ∈ pAp, we have∥∥Sα(x)− x

∥∥2

2,τp
= τp

((
Sα(x)− x

)∗(
Sα(x)− x

))
= τp

((
P
(
Tα(x)− x

))∗(
P
(
Tα(x)− x

)))
≤ τp

(
P
((
Tα(x)− x

)∗(
Tα(x)− x

)))
≤ τ(p)−1τ

((
Tα(x)− x

)∗(
Tα(x)− x

))
= τ(p)−1

∥∥Tα(x)− x
∥∥2

2,τ
→ 0.

This shows that (pAp, τp) has the weak Haagerup property. Also, it is easy to see
that ΛWH(pAp, τp) ≤ ΛWH(A, τ). �

Theorem 2.8. Let (A1, τ1) and (A2, τ2) be unital C∗-algebras with faithful tracial
states.

(1) Both (A1, τ1) and (A2, τ2) have the weak Haagerup property if and only if
(A1⊕A2, τ) has the weak Haagerup property for any tracial state τ of the
form τ = θτ1 + (1− θ)τ2, where 0 < θ < 1. In fact,

ΛWH(A1 ⊕ A2, τ) = max
{
ΛWH(A1, τ1),ΛWH(A2, τ2)

}
.

(2) Both (A1, τ1) and (A2, τ2) have the weak Haagerup property if and only if
(A1 ⊗min A2, τ1 ⊗ τ2) has the weak Haagerup property. Moreover, we have

ΛWH(A1 ⊗min A2, τ1 ⊗ τ2) ≤ ΛWH(A1, τ1)ΛWH(A2, τ2). (2.2)

Proof. (1) (⇒) The proof is similar to that of [10, Theorem C′(4)], and so we
omit it.

(⇐) It follows from Theorem 2.7.
(2) (⇒) It is known that a tracial state is faithful if and only if its GNS

representation is faithful. Let πτ1 , πτ2 , and πτ1⊗τ2 be the GNS representations
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associated to τ1, τ2, and τ1 ⊗ τ2, respectively. Then πτ1 ⊗ πτ2 and πτ1⊗τ2 are
unitarily equivalent. Hence, τ1 ⊗ τ2 is a faithful tracial state.

Suppose that we are given a net {Sα}α∈I witnessing the weak Haagerup prop-
erty of (A1, τ1) with ‖Sα‖cb ≤ C1 and ‖Sα(a1)‖2,τ1 ≤ C1‖a1‖2,τ1 for every α,
as well as a net {Tj}j∈J witnessing the weak Haagerup property of (A2, τ2) with

‖Tj‖cb ≤ C2 and ‖Tj(a2)‖2,τ2 ≤ C2‖a2‖2,τ2 for every j. Let S̃α denote the extension

of Sα on L2(A1, τ1), and let T̃j denote the extension of Tj on L2(A2, τ2). For each
γ = (α, j) ∈ I×J , it follows from [5, Proposition 8.1.5] and [5, Proposition 8.1.6]
that there is a completely bounded map Rγ = Sα⊗Tj : A1⊗minA2 → A1⊗minA2

such that

Rγ(a1 ⊗ a2) = Sα ⊗ Tj(a1 ⊗ a2) = Sα(a1)⊗ Tj(a2)

for all a1 ∈ A1, a2 ∈ A2, and

‖Rγ‖cb ≤ ‖Sα‖cb‖Tj‖cb ≤ C1C2.

We give I × J the product order. If V : L2(A1, τ1) ⊗ L2(A2, τ2) → L2(A1 ⊗min

A2, τ1 ⊗ τ2) is the unitary operator which is the identity on A1 ⊗alg A2, then we
have

Rγ = V (Sα ⊗ Tj)V
∗.

Since the tensor product of two compact operators is compact, Rγ extends to a
compact operator

R̃γ = V (S̃α ⊗ T̃j)V
∗

on L2(A1 ⊗min A2, τ1 ⊗ τ2), and∥∥Rγ(x)
∥∥
2,τ1⊗τ2

≤ C1C2‖x‖2,τ1⊗τ2

for all x ∈ A1 ⊗min A2. By considering elementary tensors, we have∥∥Rγ(x)− x
∥∥
2,τ1⊗τ2

→ 0 as γ → ∞

for every x ∈ A1 ⊗min A2. Hence (A1 ⊗min A2, τ1 ⊗ τ2) has the weak Haagerup
property, and ΛWH(A1 ⊗min A2, τ1 ⊗ τ2) ≤ ΛWH(A1, τ1)ΛWH(A2, τ2).

(⇐) Let E be the conditional expectation from A1 ⊗min A2 onto A2 such that

E(a1 ⊗ a2) = τ1(a1)a2.

It is easy to see that (τ1 ⊗ τ2) ◦ E = τ1 ⊗ τ2. It follows from Theorem 2.5 that
(A2, τ2) has the weak Haagerup property. Similarly, we can show that (A1, τ1)
also has the weak Haagerup property. �

It is not hard to see that if ΛWH(A1, τ1) = 1 or ΛWH(A2, τ2) = 1, then (2.2) is
an equality.

Lemma 2.9. Let A be a unital C∗-algebra with a faithful tracial state τ . Assume
that there exists a net of unital C∗-algebras {Ai}i∈I , each of which has the weak
Haagerup property with respect to faithful tracial states τi, and assume that for
every i there exist unital completely positive maps Si : A → Ai and Ti : Ai → A
such that τi ◦ Si ≤ τ , τ ◦ Ti ≤ τi and such that ‖Ti ◦ Si(a)− a‖2,τ → 0 for every
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a ∈ A. If there exists C ∈ [1,+∞) such that ΛWH(Ai, τi) ≤ C for every i, then
(A, τ) has the weak Haagerup property with constant at most C.

Proof. The proof follows more or less from the argument of [8, Theorem 2.3(ii)].
More precisely, let F ⊆ A be a finite set, and let ε > 0 be given. There exists
i ∈ I such that ∥∥Ti ◦ Si(x)− x

∥∥
2,τ

≤ ε

2
, ∀x ∈ F.

By assumption, there is a completely bounded map Φ : Ai → Ai such that
‖Φ‖cb ≤ C, ‖Φ(ai)‖2,τi ≤ C‖ai‖2,τi for every ai ∈ Ai, Φ is L2-compact, and∥∥Φ(Si(x)

)
− Si(x)

∥∥
2,τi

≤ ε

2
, ∀x ∈ F.

Let Φα = Ti ◦Φ ◦Si, where α = (F, ε). Then Φα is a completely bounded map on
A with ‖Φα‖cb ≤ C and Φα is L2-compact. For all a ∈ A, we have∥∥Φα(a)

∥∥
2,τ

=
∥∥Ti ◦ Φ ◦ Si(a)

∥∥
2,τ

≤
∥∥Φ ◦ Si(a)

∥∥
2,τi

≤ C
∥∥Si(a)

∥∥
2,τi

≤ C‖a‖2,τ .

For all x ∈ F , we get∥∥Φα(x)− x
∥∥
2,τ

≤
∥∥Ti ◦ Φ ◦ Si(x)− Ti ◦ Si(x)

∥∥
2,τ

+
∥∥Ti ◦ Si(x)− x

∥∥
2,τ

≤
∥∥Φ(Si(x)

)
− Si(x)

∥∥
2,τi

+
ε

2
≤ ε.

The net {Φα}α∈J indexed by J = {(F, ε) | F ⊆ A finite, ε > 0} shows that (A, τ)
has the weak Haagerup property with constant at most C. �

Theorem 2.10. Let Γ be a discrete amenable group that acts on a unital C∗-alge-
bra A through an action β, let τ be a faithful β-invariant tracial state of A, and let
τ ′ be the induced faithful tracial state of Aoβ,rΓ. If (A, τ) has the weak Haagerup
property, then (Aoβ,r Γ, τ

′) has the weak Haagerup property and

ΛWH(Aoβ,r Γ, τ
′) = ΛWH(A, τ).

Proof. Since Γ is amenable, there exists a Følner net {Fi}i∈I . We define Si :
Aoβ,r Γ → A⊗min MFi

(C) such that

Si

(
aλ(s)

)
=

∑
t∈Fi∩sFi

β−1
t (a)⊗ et,s−1t

and Ti : A⊗min MFi
(C) → Aoβ,r Γ such that

Ti(a⊗ es,t) =
1

|Fi|
βs(a)λ(st

−1).

It follows from the argument of [4, Theorem 2.5] that Si and Ti are unital com-
pletely positive maps such that τi ◦ Si ≤ τ ′, τ ′ ◦ Ti ≤ τi, where τi is the induced
tracial state on A⊗min MFi

(C), and such that ‖Ti ◦ Si(x)− x‖2,τ ′ → 0 for every
x ∈ Aoβ,r Γ. Since MFi

(C) is nuclear, [12, Theorem 3.6] shows that MFi
(C) has

the Haagerup property. By Theorems 2.2 and 2.8(2), we have

ΛWH

(
A⊗min MFi

(C), τi
)
≤ ΛWH(A, τ)
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for every i. It follows from Lemma 2.9 that A oβ,r Γ has the weak Haagerup
property and that ΛWH(A oβ,r Γ, τ

′) ≤ ΛWH(A, τ). In fact, Corollary 2.6 shows
that ΛWH(Aoβ,r Γ, τ

′) = ΛWH(A, τ). �

Theorem 2.11. Let Γ be a discrete group that acts on a unital C∗-algebra A
through an action β, let τ be a faithful β-invariant tracial state of A, and let
τ ′ be the induced faithful tracial state of A oβ,r Γ. If (A oβ,r Γ, τ

′) has the weak
Haagerup property, then Γ has the weak Haagerup property. In fact,

ΛWH(Γ) ≤ ΛWH(Aoβ,r Γ, τ
′).

Proof. Suppose that we are given a net {Φα}α∈I witnessing the weak Haagerup
property of (Aoβ,r Γ, τ

′). For each α, let

ϕα(g) = τ ′
(
λ(g)∗Φα

(
λ(g)

))
for all g ∈ Γ. We identify Aoβ,rΓ ⊆ B(L2(Aoβ,rΓ, τ

′)). Then there exists a unique
unit vector ξ ∈ L2(A oβ,r Γ, τ

′) such that τ ′(x) = 〈xξ, ξ〉 for all x ∈ A oβ,r Γ.
It follows from the fundamental factorization theorem of completely bounded
maps (see [11, Theorem 1.6]) that there are a Hilbert space K, a representation
π : B(L2(A oβ,r Γ, τ ′)) → B(K), and operators V1 : L2(A oβ,r Γ, τ ′) → K,
V2 : K → L2(A oβ,r Γ, τ

′) such that ‖V1‖‖V2‖ = ‖Φα‖cb and Φα(x) = V2π(x)V1.
Hence, we have

ϕα(h
−1g) = τ ′

(
λ(h−1g)∗Φα

(
λ(h−1g)

))
=

〈
π
(
λ(g)

)
V1λ(g)

∗ξ, π
(
λ(h)

)
V ∗
2 λ(h)

∗ξ
〉

for all g, h ∈ Γ. It follows from [10, Proposition 3.1] that ϕα ∈ B2(Γ) and that

‖ϕα‖B2 ≤ ΛWH(Aoβ,r Γ, τ
′).

Moreover, as α → ∞,∣∣ϕα(g)− 1
∣∣ = ∣∣τ ′(λ(g)∗(Φα

(
λ(g)

)
− λ(g)

))∣∣ ≤ ∥∥Φα

(
λ(g)

)
− λ(g)

∥∥
2,τ ′

→ 0

for any g ∈ Γ. It follows from the compactness of Φα that

lim sup
g→∞

∣∣ϕα(g)
∣∣ = lim sup

g→∞

∣∣τ ′(λ(g)∗Φα

(
λ(g)

))∣∣ ≤ lim sup
g→∞

∥∥Φα

(
λ(g)

)∥∥
2,τ ′

→ 0.

This proves the weak Haagerup property of Γ. �

Next we state an open question that arises naturally from our investigation.

Problem 2.12. Does the weak Haagerup property for C∗-algebras depend on the
choice of a faithful tracial state?

It follows from [12, Theorem 4.18] that the Haagerup property for C∗-algebras
does depend on the choice of a faithful tracial state. But the property of the
Haagerup property does not occur in the context of von Neumann algebras (see [8,
Proposition 2.4]). In [10], Knudby also proved that the weak Haagerup property
for von Neumann algebras does not depend on the choice of a faithful normal
tracial state, but the proof used several techniques which can be used only in the
case of von Neumann algebras. Hence, we will ask if the weak Haagerup property
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for C∗-algebras depends on the choice of a faithful tracial state. We expect that
it does but have not found an example so far.
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