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ABSTRACT. In this article, we give the criteria for approximative compact-
ness of every proximinal convex subset of Musielak—Orlicz—Bochner function
spaces equipped with the Orlicz norm. As a corollary, we give the criteria
for approximative compactness of Musielak—Orlicz—Bochner function spaces
equipped with the Orlicz norm.

1. INTRODUCTION AND PRELIMINARIES

Let X be a Banach space, and let X* be the dual space of X. Denote by
B(X) and S(X) the closed unit ball and the unit sphere of X. Let C' C X be a
nonempty subset of X. Then the set-valued mapping Pr: X — C

Po(z)={z€C |z —z| = dist(z,C) = He% |z —yll}
v

is called the metric projection operator from X onto C.

A subset C of X is said to be proziminal if Po(x) # () for all x € X(see [5]). It
is well known that X is reflexive if and only if each closed convex subset of X is
proximinal (see [5]).

Definition 1.1. A nonempty subset C of X is said to be approximatively compact
if for any {y,}n>, C C and any x € X satisfying ||z — y,,|| — inf,cc ||z —y|| as
n — oo, there exists a subsequence of {y,}>°, converging to an element in C.
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A Banach space X is called approximatively compact if every nonempty closed
convex subset of X is approximatively compact.

Let us present the history of approximative compactness and related notions.
The notion of approximative compactness was introduced by Efimov and Steckin
in [1] as a property of Banach spaces, which guarantees the existence of the
best approximation element in a nonempty closed convex set C for any z € X.
Osman [2] established that if X is approximative compact and rotund, then the
projector operator Pg is continuous. In 1998, Hudzik and Wang proved that an
Orlicz function space is approximatively compact if and only if it is reflexive
(see [3]). In 2014, Shang and Cui gave a criterion for approximative compactness
of every weakly* closed convex set in an Orlicz function space (see [4]). Chen
et al. [5] proved that a Banach space X is approximative compact if and only
if X is reflexive and it has the H-property. In this article, we give the criteria
for approximative compactness of every proximinal convex subset of Musielak—
Orlicz—Bochner function spaces equipped with the Orlicz norm. As a corollary,
we give the criteria for approximative compactness of Musielak—Orlicz function
spaces equipped with the Orlicz norm.

Definition 1.2. A Banach space X is said to have the Radon—Nikodym property
whenever the following holds. If (T, %, ) is a nonatomic measure space and v
is a vector measure on X with values in X which is absolutely continuous with
respect to p and has a bounded variation, then there exists f € Li(X) such that
for any A € ¥,

v(A) = /A F() dt.

Let (T,%, 1) be a nonatomic measurable space. Suppose that a function M :
T x R — [0, o00] satisfies the following conditions.
(1) For p-almost everywhere ¢t € T, M(t,0) = 0, lim,_,o, M(t,u) = oo and
M (t,u") < oo for some u' > 0.
(2) For p-almost everywhere t € T', M (t,u) is convex on [0,00) and even on
R with respect to u.
(3) For each u € [0,00), M(t,u) is a X-measurable function of ¢ on 7.

Let p(t,u) denote the right derivative of M (¢t,-) at u € R* (where if M (t, u)
00, then p(t,u) = o0), and let g(¢,-) be the generalized inverse function of p(¢,

defined on R by

)

q(t,v) == sup{u >0:p(t,u) < v}.
u>0
Then N(t,v) = [; q(t,s)ds for any v € R, and p-almost everywhere ¢t € T is
called the Musielak—Orlicz function complementary to M (t,u) in the sense of
Young. It is well known that there holds the Young inequality uv < M(t,u) +
N(t,v) for u-almost everywhere t € T and all u,v € R. Moreover, uv = M (t,u)+
N(t,u) < u=q(t,v) or v =q(t,u). Let

e(t) =sup{u>0: M(t,u) =0} and E(t) = sup{u > 0: M(t,u) < oo}.
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For fixed t € T and v > 0, if there exists € € (0,1) such that
1 1
M(t,v) = §M(t,v+5) + §M(t,v —¢€) < 00,

then we call v a nonstrictly conver point of M(t,-). The set of all nonstrictly
convex points of M(t,-) is denoted by K;. For a fixed t € T, if K; = (), then we
say that M(t,-) is strictly conve.

Definition 1.3 (see [6]). We say that M satisfies condition A(M € A) if
there exist K > 1 and a measureable nonnegative function 6(¢) on T such that
Jp M(t,6(t)dt < oo and M(t,2u) < KM(t,u) for almost all ¢t € T and all
u > o(t).

Moreover, for a given Banach space (X, || - ||), we denote by X the set of all
strongly Y-measurable functions from 7" to X, and for each u € Xp, we define

the modular of u by
= [ weuco])

Ly(X) = {u € Xz : pu(Mu) < oo for some A > 0},
Eyv(X)={ue Xr: pu(lu) < oo foral A > 0}.

Put

It is well known that Musielak—Orlicz-Bochner function spaces Ly (X) and
Ey(X) are Banach spaces if they are equipped with the Luxemburg norm

ul| = 1nf{>\>0 ,OM<>\> < 1}
or the Orlicz norm
o1
Jall” = inf -1+ pas ()]

In particular, Ly (R) and LY, (R) are said to be Musielak—Orlicz function spaces.
Moreover, by [9], we know that ||ul| < ||ul]® < 2||ul|. Set

K(w)={k>0: %(1 + puku)) = [l

In particular, the set K(u) can be empty or nonempty. To show that, we give
some propositions.

Proposition 1.4 (see [7, p. 3]). If lim, oo M(t,u)/u = 0o p-almost everywhere
t €T, then K(v) # 0 for any v € LY,(X).

Proposition 1.5 (see [7, p. 4]). If K(v) = 0, then |[v]|® = [, A(t) - |lv(t)]| dt,
where A(t) = limy_,oo M (¢, u)/u.
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2. MAIN RESULTS

Theorem 2.1. Suppose that X* has the Radon—Nikodym property. Then every
proziminal convex subset of LY,;(X) is approzimatively compact if and only if

a) for any v € LY, (X 0}, the set K(v) consists of one element from
(a) f Y M

(0, +00);
(b) M € A;
(¢) M(t,u) is strictly convex with respect to u for almost allt € T';
d) every proximinal convex subset of X is approximatively compact and X s
( Y p pp y comp

round.

In order to prove the theorem, we first give some lemmas.

Lemma 2.2 (see [6, p. 177]). The following are equivalent:

(a) M & A,

(b) for each e € (0,1), there exists u € Ly (X) such that py(u) = ¢, |lul| =1,
and ||u(t)]] < E(t) p-almost everywhere on T, where E(t) = sup{u >0:
M(t,u) < co}.

Lemma 2.3 (see [8, p. 481]). If M € A, then any v € LY,(X) has absolutely
continuous norm.

Lemma 2.4 (see [0, p. 183]). Suppose that M € A and e(t) = 0 p-almost
everywhere on T'. Then

pu(ty) — 0 |uyl — 0 and pm(uy) = 1< ||luy| — 1.

Lemma 2.5. The following are equivalent:
(a) every proximinal convexr subset of X is approximatively compact;
(b) if x* € S(X*) is norm attainable and x*(x,) — 1, where {x,}2°, C S(X),
then {x,}>2, is relatively compact.

Proof. For the necessary part, it is well known that if * € S(X*) is norm attain-
able, then H,~ = {x € X : 2*(x) = 1} is a proximinal convex subset of X. Then
there exists y, € H,~ such that dist(z,, H,«) = ||z, — y,||. Since

lim ||z, — y,|| = lim dist(z,, Hyx) = o (x) — a*(zn)| =0,
n—00 n—r00

we obtain that

dist(0, Hyv) = 1 = lim |znl| = lim llynll = lim 10 — y,]|-

This implies that the sequence {y, }5°, is relatively compact. Hence the sequence
{z,}52, is relatively compact.

For the sufficient part, suppose that A is a proximinal convex subset of X
and that ||z — y,| — dist(0, A) as n — oo. We will next prove that {y,}>°, is
relatively compact. We may assume without loss of generality that © = 0. Let
r = dist(0, A). Since intB(0,7) N A = (), by the separation theorem, there exists
[ € S(X*) such that

sup{f(z) : z € B(0,7)} =sup{f(z):z € int B(0,7)} < inf{f(z):z € A},
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where B(0,7) = {x € X : ||z|]| < r}. Pick yo € P4(0). Since B(0,7) N A = P4(0),
we have f(yo) = ||yo|| = r. Hence

1%oll = f(wo) < f(yn) <10 = yall = dist(0, A) = [[gol-
Then f(yn) — llyoll- Therefore, by [lynll — [lyoll and f(yo) = [lyoll, we have

n=o0 " \ [y 1%oll
Hence f is norm attainable. This implies that {y,/|ly.|}52; is relatively com-

pact. Hence {y,,}5°, is also relatively compact. This implies that the set A is
approximatively compact. OJ

Lemma 2.6. Suppose that every proximinal convex subset of X is approxima-
tively compact. Then, if x* € S(X*) is norm attainable and x*(x,) — 1, where
{zn}o2y C S(X), then there exists y € {x € S(X) : z*(x) = 1} such that
y € {wa}iy-

Proof. By Lemma 2.5, there exists a subsequence {xz,, }3; of {z,}2, such that
{zn, }32, is a Cauchy sequence. Let x,, — y as k — oo. Then y € {y,}°2,.

Moreover, by {z,}5°, C S(X) and z*(x,) — 1, we obtain that y € S(X) and
*(y) = 1. O

Lemma 2.7. Suppose that every proximinal convex subset of X is approximatively
compact. Then, ifx = | t,x,, then the sequence {x, }7>, is relatively compact,
where x € S(X), ©, € B(X), t, € (0,1) foralln € N and Y " t, =1.

Proof. Suppose that © =" | t,z,, where z € S(X), z,, € B(X), t,, € (0,1) for
any n € N, and Y > t, = 1. Then, by the Hahn-Banach theorem, there exists
f € S(X*) such that f(x) = 1. Hence

= f(i ) = itnf(xn) 1= fla,) =1

This implies that f(z,) = 1 for all n € N. Therefore, by Lemma 2.5, we obtain
that {x,}>2, is relatively compact. O

Lemma 2.8 (see [8, p. 3013]). Suppose that X* has the Radon—Nikodym property.
Then (Ey(X))* = L% (X*) and (EY,(X))* = Ly(X*).

Proof of Theorem 2.1. (2) = (3). We will first prove that condition (a) is true.
Suppose that M ¢ A. Then, by Lemma 2.2, there exists u € L3,(X) such that
pu(u) < 1/2, JJul| = 1 and ||u(t)|| < E(t) p-almost everywhere on T. Then for
any L > 1, we have py(Lu) = oo. Indeed, suppose that there exists L1 > 1
such that py(Lyu) < co. We know that the function F(k) = [, M(t, k|lu(t)|) dt
is continuous on [1, L1]. Then there exists Ly > 1 such that pM<L2U> = 1. This
implies that ||u|| < 1/Ls, which contradicts the condition |ju|| = 1.

Decompose T into F; and G; such that uF; = pG;. Then, for any L > 1,
we obtain that [, M(t, L|lu(t)||)dt = cc or [, M(t, Llju(t)||) dt = co. We may
assume without loss of generality that | 5, M(L, L|u(t)]]) dt = co. Decompose Ey
into Fy and G5 such that uFs = puGs. Then, for any L > 1, we obtain that
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S, M(t, L|lu(t)]]) dt = oo or [, M(t, L|lu(t)]|) dt = co. We may assume without
loss of generality that |, 5, M (L, L|u(t)||) dt = co. Generally, decompose E, into

E,.1 and G,.1 such that uE,,y = puG,y1. Then, for any L > 1, we obtain
that [, Mt Llu(t)]])dt =occor [, Mt Llu(t)|)dt = co. We may assume

without loss of generality that || B M (t, L||u(t)||) dt = co. Hence

1
EiDFE,DE;3D -, wE; = —pkE; and

2

Pick ug € S(EY,(X)) such that {t € T : ug(t) # 0} C T\ Ey. Then, for any & > 0,
pick k € RT such that ||ue||® + & > (1/k)[1 + par(kug)]. Define

un(t) = uo(t) + u(t)xs, ()

for all n € N. Moreover, we have (1/k) [, M(t, k||u(t)||xg,(t)) dt <&, when n is
large enough. Hence

=1, i=12,....

o1 < [ ®

< 1+/TM(t,Hk:un(t)H)dt]
< 1+/M(t,||ku0<t)||)dt+/M(t,k”u(t)”m(t)) ]
:%1+ Ol at] + 3 | 2 k) e, 0)

This implies that ||u,||° — [Ju]|® = 1. Then, by the Hahn-Banach theorem, there
exists vg € S(Ln(X*)) such that (ug,v9) = 1. Noting that {t € T : ug(t) #
0} C T\E,, we have {t € T : vy(t) # 0} C T\ Es. Hence, if (ug,v9) = 1, then
{t € T :uj(t) # 0} C T\Fy, where uy € S(EY,(X)). Since

0<’/ t)xe, (t O(t))dt‘g[/EnM(t, u

we obtain that

/T(un(t),vo(t)) dt:/T(uo(t),vg(t)) dt~|—/T(u(t)XEn(t),vo(t))dt%1.

Noting that |uxg,| = 1 and {t € T : uy(t) # 0} C T\E,, we obtain that
1w, — upl|® > |luxg,| = 1, which contradlcts Lemma 2.6. Hence M € A.

We next prove that (a) and (c) are true. (al) We will prove that for any
ul|® > |le||, we have K (u) # 0, where e denotes the function e(t) = sup{u > 0 :
M(t,u) = 0}. Suppose that there exists u € L3,;(X) such that [|u]|® > |le]|® and
K(u) = 0. Then, by Proposition 1.5, we have A(t) < +o0o p-almost everywhere
on T. Moreover, there exists n; > 1, > 0 such that u7° > 0, where

={teT: [lu®] > [le@®)l.n < [u®] < m}-

t)H)dt+/E N(t,vo(t))dt] — 0,
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Therefore, by Lemma 2.3 and M € A, there exist n > 0, ' > 0, and n” > 0 such
that pTy > 0 and [Juxz,||° < 1, where
={teT’: M, ||u)|) >nn <Al) <n"}.

Since K(u) = 0, by Proposition 1.5, we obtain that [ul|® = [, A(t)|u(t ||dt
Decompose Ty into T}, Ty such that Ty N Ty =0, T} UTy = Ty and [, A(t) x
lu(t)|| dt = [, A(t)||u(t) |dt Decompose T} into TZ, T# such that T2 N T2 =0,
TPUT; =T}, and ng t|lu(t)] dt = fT2 Hu )|| dt. Decompose Ty into T7%,
T? such that T¢NTZ = 0, T UT} =T, and sz t)|Ju(t)|| dt = ng t)||u(t)]| dt.
Generally, decompose T}"~" into T4_,, Ts such that

Ty  NTy =10, Ty UTy=T""1  and

/Tn_ A(t)HU(t)Hdt:/TnA(t)Hu(t)Hdt,

24

where n = 1,2,...,i=1,2,...,2" ! Define

(u(t), t e T\Ty, u(t), t e T\Ty,
u(t) — tu(t), tely, u(t) + sult), teTy,
() = u(t) + su(t), tE Ty, i (1) = u(t) — su(t), teTy,
u(t) —su(t), teTp_y, u(t) + ju(t), teTp_y,
Lu(t) + sult), teTy, Lu(t) — jult), teTs,
and
(), = (ua(t), uy (), ua(t), ub(t), ... un(t),up (), .. .)
Then

< [ A@)- Junte)]
:/TOA(t)Hu(t)Hdt+/TnA(t)Hu(t)—%u(t)Hdt
n /T A(t)Hu(t) n %“(t)” dt

+...+/T A(t)-”u(t)—%u(t)Hdt—l—/n A(t)-Hu(t)Jr%u(t)Hdt

n
2n 1

_ /TO A()|Ju(®)] dt + /TnA(t)(Hu@)H - H%“WH) dt
+/TnA(t)(||u(t)||+H%U(t)H> dt
bet [ a0 uto] + ot
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v [ a0 (o] + |30 )
= [ A luto) de = .

Similarly, we obtain that ||u}[|° < ||u]|°. Hence ||y,||° < |Ju||°. This implies that
Yn € ||u||°B(Ly(X)). On the other hand, we have

S (5 )+ 5 gral)) = 3 s () - (6) = D7 5 2 ult) = ut)

Sed - S -

n=1 n=1

and

We next prove that (y,(t))>2, is not relatively compact. For clarity, we will divide
the proof into two cases.
Case 1. Let k(u, — u,,) = 0. Then, by Proposition 1.5, we obtain that

||un—um||0—/TA(t)Hun(t)—um(t)Hdt—/T A |Ju(t)]| dt

:%/ A)|[u(t)]) de,
0
where T}, ., = {t € Tp : un(t) # um(t)}.

Case 1. Let k(u, — u,,) # (. By the definition of T, there exists 6 > 0
such that pT,,,, > 4. Pick k,m € k(u, — uy). Then, by |Juxg||® < 1, we have
|, — um||® < 1. Hence, k., > 1, and so

[[wn _um”o = [1—|-pM(k‘n7m(Un _um))}

kn,m

1
-l /T M b)) ]

> M(t, k’n,mHU(t)H) dt > / kn,mM(t> ||u(t)H) dt
Tn,m kn,m Thn,m kmm

> / ndt > nd.
Tn,m

Therefore, by Cases I and II, we obtain that (y,(¢))22, is not relatively compact,
which is a contradiction. Hence, for any ||ul|® > ||¢||°, we have K (u) # 0.

We next prove that (c) is true. (c1) Note that |le]|® < 3/2 for any u €
25(LY%,(X)). Hence K (u) # 0. First, we will prove that for any u € 25(L%,(X)),
we have p{t € T : k|lu(t)| € K;} =0, where k € K (u). Suppose that there exists
ng € N such that uG > 0, where

G={ter: Mt k|u)])
= ot (L ol + 5 (1 (1= - Jelluo)]) < oo}




APPROXIMATIVE COMPACTNESS IN MUSIELAK-ORLICZ FUNCTION 151

It is easy to see that there exist A > 0 and 1 > 0 such that uH > 0, where
1 1
H:{MH%A<H—M®H<mA@-—WMM>A}
T N

Decompose H into E}, EJ such that
ElNE; =0, ElUE,=H and

[ (kS ol)ar= [ p(rl fuo])ae

Decompose E} into E?,E? such that
EXNE; =0, E}UFE;=E  and

/Ezp<t7knioHu(t)H> dt = /EQp(t,knioHu(t)\D dt.

Decompose E3 into E? E?% such that
EiNE; =0, E3UE;=FE;, and

[ okt tuol)ae= [ ookt uo])ar

Generally, decompose E}' ! into E}. |, E%, such that B, |\ NEY =0, B} | UEY, =

E'M! and
1 1
L, r(t)a= [ (k]

2¢—1

where n =1,2,...,i=1,2,...,2" . Define

(u(t), teT\H, u(t), teT\H,
(1—-)u(t), te kY, (1+-)u(t), teEY,
() = (14 Su(t), teEy, (1) = (1—Su(t), teEs,
(1—o)u(t), te kg, (1+-)u(t), teEg.y,
(14 D)u(t), teEsg, (1= L)ult), teEs,
and
(yn(t)):):l = (ul(t), uy (), ug(t), us(t), ... un(t),ul (t),.. )
Then
ymMOg%p+pr%ym

= [1+pM(ku'XH)+pM<k<1_ni())U'XE?> +PM<k<1+niO>U'XEg>

...+pM(k:<1 - ni[))U ' XE;,Ll) +PM<]€<1 + ni[))u ' XE;")]

[1 + par(bu - xm) + par(kuxen)

e + | =
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— /Enp<t,k;niouu(t)u> dt + pr(ku - xgp)

1
+ /Egp<t, kn—0||u(t)||> dt + -+ py(ku - XE;Ln,l)

_/En p(t,kniouu(ﬂu) it

2n—1

1
+pM(/fU~XE;n)+/En p<t,kn—0||u(t)||> dt}

on 1
1
=% [1+ par(ku - xa) + par(ku - xgp) + pu(k - uxeg)
+ o+ pu(k - uxep, ) +pM(k:-uxE;n)]

1
= L1+ )] = [ = 1.

Similarly, ||u/||® < 1. Hence [|y,]|° < 1 for any n € N. On the other hand, we
have

/1 1 11, .\ = 1 -
> (5 gm0+ 5 zm®) =2 g+ o) =3 geertlt) = ()
and

/1 1 1 1 <. /1
> mtre) -2 -t

By absolute continuity of the integral, we can find 6 > 0 such that uF < ¢ implies

that
AP(@%OHU(t)H)dtSi/j{p(zﬁ,nioHu(t)\Ddt and
/EA(t)Hu(t)Hdt <X

Set Thm = {t € H : u,(t) # um(t)}. Then it is easy to see that Ly, m > 0, where
m # n. We may assume without loss of generality that [, A(t)|lu(t)|| dt < oo or
A(t) = oo,t € H. We will derive a contradiction for each of the following three
cases.

Case I. Let K (up—un,) # 0 and [, A(t)|lu(t)| dt < co. Pick kym € K (ty—up,).
Then, by lim, oo M(t,u)/u = (t) we have

Mt
i ] = 4] Gl

nmoenfltu ()

p-almost everywhere on H. Therefore, by Egorov’s theorem, there exists g > 0
such that

M (t,nllZut)])
AlZu® qu(t)H - A(t)‘ noulo)]| <

H\F
MTA&, te H\

No
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whenever n > 3, where F' C H and pF < §/4. Hence, if k,,,, > > 0, then

Mt Kol u(O) ng(t)H —A®)- ’_u H‘ < —/\5 t e H\F.

k| u(t) no
This implies that
1
Hun_umHO = L [1+,0M(kn,m<un_um))}
>/ ML, k| 25 u(t)]))
o Th,m knm
13 kmn
T o L
To\F Kmnllou(t)] o'
> / [A(t) llu(t)H—Lm] dt
I T \F o ApT
2 1
> At ‘—ut”dt—/ Mot
/Tm,n\F ) N (t) TP AT

v
| oo

1 1
A) — Z)\é = 5)\5.

Moreover, if k., < B > 0, then |Ju, — un||® = [1 + par(knm (Un — wm )]/ knm >

1/8.
Case 11. Let K (u, — ) # 0 and A(t) = oo, t € H. Then, by

H:G{teH:%21>M((Z(n_)lm}u{tel{:@zl},

there exists a > 0 such that uL < §/4, where

L:H\{teH:%zQ.

Hence, if £, ,, > a, then

1
||un - umHO = k [1 + pM<kn,m<un - um))} 2

/ Mt kol 2 w®l)
n,m knm

Z/ M(t, k;mn2||l ()H)-qu(t)HdtZ/ 1-)\dt2§6)\,
T\ L mnH u(t)|| o Tm,n\L 4

and if &, ,, < a, then [ju, — um||O 1+ par(knm (Un, — wm))]/knm > 1/
Case 111. Let K (u,, — u,,) = (. Then

Hun—umHO:/TA(t)-Hun(t)—um(t)Hdt:/TnmA(t)-‘n%u(t)Hdtz A6,

Therefore, (y,,)5%; is not relatively compact, which is a contradiction. This implies
that for any u € 2S(LY,(X)), we obtain that u{t € T : k||lu(t)|| € K;} = 0, where
ke K(u).
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(c2) Pick a dense set {r;}2, in (0,00). Then, for each n,i € N, we define
measurable sets

1 1
Gy = {t €T 2M(t,r;) = M(t, (1 + —)ri> n M(t, (1 _ —>m> < oo}.
n n
Then by the convexity of M (t,u) with respect to u, we have
UUGin={teT: K #0}.
i=1n=1

Hence, if (c) does not hold, then pG,;,, > 0 for some i,n € N. Since

OM(t,7;) = M(t, (1 + %)r) + M(t, (1 . %)r) < o0,

then p(t,7;) < oo p-almost everywhere on G, ,,. Noting that r;p(t,r;) = M(t,r;)+
N(t,p(t,r;)), we obtain that N(¢,p(t,r;)) < oo p-almost everywhere on G;,,.
Therefore we can choose B C G, such that uB > 0 and [, N(t,p(t,r;))dt < 1.
Pick v(t) € L};(X). Then there exists d > 0 such that dv(t)-xr5(t) € S(L},(X)).
It is easy to see that there exists kg > 0 such that

/T\BN(t,p(t,kOHdv(t)H)dt:/TN(t,p(t,kOHdv(t)-XT\B(t)H))dtz 1.

Since M € A, then E(t) = oo p-almost everywhere on 7. This implies that
p(t, kol|dv(t)]]) < oo and M(t, kol||dv(t)||) < oo p-almost everywhere on T'. Hence

N (t,p(t: kol|dv()]])) = Kolldv ()] - p(t, Kol[do(®)][) = M (t, kol|du()]]) < o0

p-almost everywhere on T'. Therefore, we can choose D C T'\ B such that

/BN(t,p(t,ri)) dt—i—/DN(t,p(t,koHdv(t)-XE(t)H)dt—

—_

Define u(t) = r;-x-xp(t)+d-ko-v(t) - xp(t), where z € S(X). Then py(p(u)) =
Let w(t) be a nonnegative real measurable function, and let py(w) < 1. Then,
for any k > 0, we have

[ Nutol] - wteyde = [ k)] wieyar
SE /TM t,kHu(t)H)dt—i—/TN(t,w(t)) dt}
< %[/TM(t,kHu(t)H)dt—k 1].

This means that [ ||u(t)|| - w(t) dt <infrso £[pa(ku) + 1]. Hence

1
sup /Hu f)dt s py(w) < Lw(t) > 0} < inf —[par(ku) +1].
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Moreover, we have

ool de = [ a1 fuoyae+ [ viee

:LM@M@WWH.

u(t)|])) dt

This implies that infzso £ [par(ku) + 1] = par(u) + 1, that is, |lul|® = par(u) + 1.

Hence
0
1 { (1 0 u
= oo o (Gl s ) 1
sllul® 2 sl

Therefore, by (c1), we obtain that

u

sllull®

,u{t eT: %HUHO )l € Kt} =pu{teT: |ult)| € K} =0,

sl

which is a contradiction. Hence (c) is true.
(a2) Since M (t,u) is strictly convex with respect to u for almost all ¢ € T', then
e(t) = 0 for almost all t € T'. Therefore, for any u € L3,;(X)\{0}, we obtain that

K(u) # 0.
(a3) Suppose that there exist ki, ks € K(u) satisfying k; # ko, where u €

L8, \{0}. Define k = kiko/(k1 + ko). Then
2[jull® = flul® + [full®
k?l + ]{?2 [ kQ 1
- 1+ k ]
K1k k1 + k2p k1 + ko pau(hz)

kit ko ks
_kw21+1+@AM@Ww®mﬁ

kx
T h /TM(t, HkQu(t)H)dt]

/ﬁ—i—kg k2 kl
> B2 [ [ ar (2 )]+ o))

-l M el #]

= 2%[ + par(2ku)]

> 2|ull®
=2.

This implies that
1
Jull = 5 [1+ par (2ku)]
(i.e., 2k € K(u)) and

k
Mt dlu®)]]) +

2 M (e kalJu())]) = M (1 28]
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p-almost everywhere on {t € T : ||u(t)|| # 0}. Since ky||u(t)|| # ka|lu(t)|| on
{t € T : |u(t)| # 0}, then 2k||u(t)|| € K; on {t € T : ||u(t)|| # 0}, which is a
contradiction. Hence condition (a) is true.

(d1) Suppose that X is not rotund. Then there exist z,y,z € S(X) with
2r = y+ z and y # z. By the Hahn-Banach theorem, there exists z* € S(X*)
such that z*(x) = 1. Hence x*(y) = x*(2) = z*(x) = 1. Pick h(t) € S(LY,(X)).
Then there exists d > 0 such that D > 0, where D = {t € T : ||h(t)|| >
d}. Moreover, there exists r > 0 such that uH > 0, where H = {t € D :
M(t,|ly — z||) > r}. Put hi(t) =d -z - xg(t). Then it is easy to see that hy(t) €
L8, (X)\{0}. Hence there exists [ > 0 such that [ - hy(t) € S(L};(X)). By the
Hahn-Banach theorem and (EY,(R))* = Ly(R), there exists hy(t) € S(Ln(R))
such that [, Id - xp(t) - ho(t) dt = 1.

Decompose H into H{, Hy such that H{ N Hy =0, Hl UH; = H, and uH| =
wH}. Decompose Hi into HZ, H? such that H? N H? = (), H? U H? = H{, and
wH? = pHz. Decompose Hy into H2, H? such that HXNH? =0, H2 UH; = H;,
and pH? = uH?. Generally, decompose H;' ' into Hy, ,, HJ; such that

HY: N Hy =0, HY: | UHY =H"" and
:qui—l = :LLH;?

where n =1,2,...,i=1,2,...,2" 1. Set

(0, tcT\H, (0, teT\H,
y, teHy, y, teHy,
z, teH}, , te HY

U (t) = 2 u(ty =4 2
y, t < Héln_l, y, t - H;Ln_l,
(2, € Hp, \y, € Hp,

and v(t) = ho(t) - z*. Then it is easy to see that ||u,|| = 1/(ld), ||u|| = 1/(ld), and
|v]| = 1. Therefore, by z*(y) = 2*(2) = *(x) = 1, we obtain that

/T(un(t)-v(t)) dt:/TXH(t)-hg(t)dt:% [ 1 xi ) - ) dt:lld

and

/T(u(t).u(t)) dt:/TXH(t)%g(t)dt:% Tld~XH(t)-h2(t)dt:%.

This implies that (u,,v) = 1/(Id) and that v is norm attainable. Since every
proximinal convex subset of LY,(X) is approximatively compact, by Lemma 2.5,
we obtain that {u,}5°, is relatively compact. However, picking k, ,, € K(u, —
Up), if kpm < 1, then we get

n,m
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If kpm > 1, then

[ M Ealy— )

Hypyom knvm

M —
2/ Ko (;,Hy zH)dt:/ M (t, ||y — =|l) dt

1
Zr'ﬂHn,mzir'uHa

n,m

dt

where H,, ,,, = {t € T : u,(t) # un(t)}. This means that the sequence {u,}>°, is
not relatively compact, which is a contradiction.
(d) Pick h € S(L};(X)). Then there exists d > 0 such that uE > 0, where
={t € T : |h@®)| > d}. Put hi(t) = d - zo - xg(t), where o € S(X).
It is easy to see that hy(t) € L8,(X)\{0}. Hence there exists [ > 0 such that
[-h(t) € S(LY,;(X)). We next prove that X is isometrically embedded into
L8, (X). We define the operator I: X — L§,(X) by

I(z)=1ld-x-xp(t), xe€lX.
It is easy to see that I(zg) € S(LY,(X)). Hence, for any x € X\{0}, we have

7@ = int 1 [1+ par (k- 1(2))]
% / (t k- zd||x\|)dt}
gﬁ [1+ [ Mk elidlal) ] = jnf [0+ par - el 1 Gao))]
= |llz] - I@)| = 12l - |20} |° = 1l

This implies that every proximinal convex subset of X is approximatively com-
pact.

For the sufficient part, let u,,u € S(LY,;(X)), v € S(Ly(X*)), (u,v) =1, and
(tn,v) — 1 as n — oo. Then it is easy to see (u, + u,v) — 2 as n — oo. The
proof requires the consideration of few cases separately.

Case 1. Let sup{k,} < oo, where k, = K(u,). Then we may assume without
loss of generality that k, — I. We will prove that ||u,(t)|| £ ||u(t)| in measure.
Otherwise, we may assume without loss of generality that for each n € N, there
exists £, C T, g9 > 0, and oy > 0 such that uFE, > ¢y, where

By = {te T [[lun)] - (o] 2 on}.
We define the sets

An:{tET:M(t,

8
®)])) > 5} and

B={ter: M(t|ku)]) >§}
€0
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where k € K(u). Then

()
1:/TM(t t)||)dt2/A M(t,

This implies that pA, < e€9/8. Similarly, we have uB < g¢/8. For p-almost
everywhere t € T', we define a bounded closed set

8
t)|) dt > %MA,L.

1
G =) € R M(tu) < & M(tw) < O Ju— o] > Loy
€0 €0 4

in 2-dimensional space. Since C; is compact, we obtain that for y-almost every-
where t € T, there exists (uy, v;) € Cy such that

M(t, (k+l“t+ iad) > M(t, <k+lu+k+l v))

1> > (2.1)
IfHM(t ug) + kLHM(t,vt) kiHM(t,u) + kLHM(t,v)
for any (u,v) € C;. We define a function
M(t, (L, + v
1— 5(2,/_) _ ( <k+l t k+l )) (22)

kzlj—lM(t Ut) + k—‘rlM(t 'Ut)

Then §(t) is p-measurable. In fact, pick a dense set {r;}2, in [0, 00). We define
a function

M (t,(grit ggms)) N <x
1-— 57,1_77"]_ (t) = e M (i) + 5o M(try) M(t,r;) < S and M(t,r;) < =

8
0, M(t,r;) > % or M(t,r;) > 5.

By the definition of M (¢, u), it is easy to see that 1—4,,,,(t) is y-measurable and

1
1= 0(t) 2 sup{1 = 0,0, (1) : i = 13| = 700 .

On the other hand, since {r;}32, is dense in [0, c0), then {(r;, ;) }i2, ;—, is dense in

[0, 00) x [0, 00). By definition of the function 1 —4(t), we obtain that for p-almost
everywhere t € T" and € > 0, there exists (r;,7;) € C; such that

L= 6(1) — e < 1= b0, () < sup{1 =60 (1) [ — 1] > %ao}
p-almost everywhere on 7. Since € is arbitrary, we have
1—0(t) < sup{l — Oy, () 2 |1 — 15| > }100}
p-almost everywhere on T'. Then 1 — 6(t) = sup{l — d,,,,(t) : [ri —7;] > 00/4}
p-almost everywhere on T'. This implies that §(¢) is u-measurable. By formulas

(2.1) and (2.2), we have

M(t, (k+lu+ wv)

u,v € C;




APPROXIMATIVE COMPACTNESS IN MUSIELAK-ORLICZ FUNCTION 159

for p-almost everywhere ¢ € T'. We know that

> 1 1
TDU{tGT: (t)g—}.
et n+1 n

Since M (t, u) is strictly convex with respect to u for almost all ¢ € T, there exists
290 € (0,1) such that uG < g¢/16, where

G={teT:o(t) <25}
We have W, (t) — Q,(t) — 0 p-almost everywhere on 7', where

M( s [ ()] + 2=k (t)]]) o @
E,\(An,UB )
re M [ Run(0)]]) + kf_’,;n (¢, [|ku(®)]])
M(t, k()] + 5 [Eu(t)])
Qn(t> _ k+1 k:—l-l XEn nuB)(t)-
e M kaun (0N) + 55 M (¢, [[Ru(®)]])
By Egorov’s theorem, there exists N such that |W,(t) — Q.(t)| < do/4,t € E,

whenever n > N, where £ C T and u(T'\ E) < €9/16. Let E,; = E,\(GU(T\E)).
Hence, if E,;\(A, U B), then

Wn(t> =

3 1
550 - 2(50 - 5(50
M (¢, g lknun ()] + g Fu(®)]]) 1

<1-— _Z
T M R O + M k@) 2
1 M(t7k+—kH/€nun()H+k @)
T ER M R )]) + k.’i?:;nM(t [Eu(@)]])
when n is large enough. This implies that
k kn k
M( k+k, H || + anku H) (1 —do) [k‘—i-k’ ( H)
Ky,
+ k+an(t, ku t)H)}

on En \ (A4, U B,,). We know that M (t
where k = sup{k,}. Since

= 1 1 1
T5 {teT:, <M(t7_—0)§—,},
z’:LJ1 1+ 1 k+k 0 )
there exists a > 0 such that uC' < £0/8, where

Cz{tET:M(t,Ei O'0><a}.

; Eﬁffo) > 0 p-almost everywhere on T,
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Let H, = E,\(A,UBUGU (T\E)). Then pH, > ¢¢/4. Hence

e ll® 4 ull® = Tl +

> [+ pulhn)] + [+ (] - ,j;f (1+ o (2 )
> Bl [ [ 0l + 2 o

it “k( (t)+u<t))H)}dt

> [ e D@l + 5 e o))

e ﬁ”knun@y“ ||zm ||>]dt

k‘ —f-k Tk
o [ ol + S o))
ky, —f-k‘ r n
= . 8o _M(t, kn—kanun(t)H o +kau(t)m dt
kyn + k r kk,
> 5 [ (n )] - o)) d
kn+k r 1
Z knk‘ /n(so_M(t,E_’—kO'o)} dt
> 250t
= El{} Y 4507
when n large enough. By (u, + u,v) — 2, we obtain that ||u, + u||® — 2. Hence
]| + JJul|® = [Ju, + u]|° = 0 as n — oo, which is a contradiction. Hence

|un(t)]| =* ||u(t)|| in measure. By the Riesz theorem, there exists a subsequence
{n} of {n} such that |lu,(t)|| = ||u(t)| p-almost everywhere on 7. Noting that

[ (un(®), 0®)| < [fun(®)]] - [[o0) /T (n(8), 0(2)) di — 1

and
J @ o) e <l o] < 1.

we obtain that [ un(@)| - [v(@)[[dt — 1 and [ [un(B)[] - o] = (un(t),
v(t))] dt — 0, that is, [, |l[un(t)] - [[v(t)]| = (un(t),v(t))| dt — 0. This implies that
lun ()] - )] — (un(t),v(t)) —* 0 in measure. Therefore, by the Riesz theorem,
there exists a subsequence {n} of {n} such that ||u,(t)]|- ||v(t) | — (un(t),v(t)) — 0
p-almost everywhere on T'. By ||u,(t)|| — ||u(t)|| p-almost everywhere on T it
follows that (u,(t),v(t)) — ||u(t)] - ||v(t)|| p-almost everywhere on 7. We may
assume without loss of generality that

u(t)  w(t) " m
<||u(t)||’||v(t)||>_>1 on {t €T : [Ju(®)| - [[u(t)]| # 0}.
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Then pTy =0, where Ty = {t € T": ||v(t)|| =0} N {t € T : |Ju(t)]| # 0}. In fact, if
wTy > 0, then

1 1
Jall® = 2 [+ parlkn)] > - [1+ par )] > o |,

where k € K(u). Hence,

1= [ woydt= [ e, ) de < e - ol <
T T
which is a contradiction. We may assume without loss of generality that

( un(t) _v(t)
lu@)I" o)l

)1 on{teT: [lu)]| #0}.

Noting that [|u,(¢)|| — ||u(t)|] g-almost everywhere on T', we may assume without
loss of generality that (u(t)/|u(t)||,v(t)/||v(t)]]) = 1. Since

u(t)  o(t) y _ 0 NP *
(faor oon) =" Taon 7t fur <55

by Lemma 2.5, we obtain that {u,(t)/||u(t)||}5, is relatively compact. Since X
is rotund, we obtain that the sequence {u,(t)/||u(t)]|}5; is convergent. In fact,
suppose that there exists tg € {t € T : ||u(t)]| # 0} such that {w,(to)/||u(to)] }o,
is not convergent. Then there exist subsequences {n;} and {n;} of {n} such that

n (T U (T
i, (o) — X1, —J(O) — Zg,
[u(to) | [u(to) |

t t
(xla U( 0) > = (an U( O> )
[o(to)l [o(to)l
This implies that x; = xo, which is a contradiction. Hence there exists z(t) €

S(X) such that u,(t)/||u(t)|| = x(t),t € {t € T : ||u(t)|| # 0}. Let

_ ) Mlu®llz(), te{t €T fu@)] # 0,
uo(t) 0

and T # To.

Hence

tel{teT: |lul) =0}

Then it is easy to see that |Jug||® = 1 and u,(t) — ug(t) p-almost everywhere
on T. We next prove that | = h, where h € K(ug) and [ = lim,,_,, k. In fact, by
Fatou’s lemma, it follows that

l[1+ (hug)] = [luol|® = lim [u,||° = lim i[1—1— (knun)] > 1[14— (luo)]
h Pm (N 0 el oo oy Py \Rpln )| 2 ] PmtUo)|,
so [ = h. By the convexity of M, we have

M{E, ([ Fnun(0)]]) + M(E, [[huo(t)]])
2

_ M(t’ ||/fnun(t)2— huO(t)H) >0
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for p-almost everywhere ¢t € T. Moreover, we have py(knu,) = ky|lu,||® — 1 —
h||uol|® — 1 = par(hug). Therefore, by Fatou’s lemma, we obtain the following:

Wwwzéquw%Mmmwwmmmm

n—00 2
_ M(@ “k"“”(t); hUO(t)II)} "
gmm/VWWWNW;WWMNW
_ M(@ “k"“”(t); hUO(t)II)} "
= pu(hug) — hgl_fogp Pm [%(knun - huo)} )

This implies that py(3(kyu, — hug)) — 0 as n — oo. By Lemma 2.4, we obtain
that ||knu, — hugl| — 0. Then ||kyu, — hugl|® < 2||kpuy, — hugl] — 0 as n — oo.
Using the equalities lim,, o k, = [ = h, we obtain ||u, — ug||° — 0 as n — oo.
So {u, }52, is relatively compact.

Case 11. Let sup{k,} = oo, where k,, = K(u,). Then we consider the sequence
2u!, = (u, +u) in place of {u,}°°,, because ||u, — u||® = 0 as n — oo if and only
if ||u/, — u||® — 0 as n — oo. Moreover, we have

1 0 1
|50 +w)| < 5wl + Jul?)

for every n € N. Hence limsup,,_,.. ||(u, +u)||° < 2. Since

/T<%(un+u),v)dt:%/T(un,v)dtJr%/T(u,v)dt—u,

we obtain that liminf, . ||(u, +)||® > 2. This implies that lim, .. ||(u, +
u)||® = 2 as n — oo. Define w,, = (2k,k)/(k, + k), where k € K(u). Then the
sequence {w, }°°, is bounded. Moreover,

[t < [ oo 225
- k;k:kk L pM(kafk:(“" +u)]
= k;k:kk 1+ knli o ((knten)) + knk: poae ()
< %[k—ln(l + par(kpun)) + %(1 + pM(ku))}
= <l + ] = 1,

whence it follows that

k’;k—:kk [1 + pM(kikj_kk ) %(Un + U))} —1 asn — oo.
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By (u,v) =1 and (u,,v) — 1, we have (u/,v) — 1. Therefore, we can prove in
the same way as in Case I that ||u), — u||® — 0. So {u, }>2, is relatively compact.
This completes the proof. O

Corollary 2.9. We have that LS,(X) is approzimatively compact if and only if

(a) for any v € LY,(X) \ {0}, the set K(v) consists of one element from
(0,400);

(b) M € A and N € A;

(¢) M(t,u) is strictly convex with respect to u for almost allt € T';

(d) X is approximatively compact and round.
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