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Abstract. We take advantage of the recent developments in the isomorphic
classification of the infinite matrix spaces of mixed norms `q(`p) for the whole
range of values 0 < p, q ≤ ∞ to give a unified approach to the classification
of Besov spaces over Euclidean spaces. In particular, we show that different
Besov spaces with generalized smoothness B̊w

p,q(Rd) over the Euclidean space

Rd are isomorphic if and only if the indices p and q match.

1. Introduction and background

In harmonic analysis and partial differential equations, one often wants to place
a function f : Ω → C defined in some domain Ω ⊆ Rd in one or more function
spaces in order to quantify its size in some sense. Besov spaces provide a way
to measure the size of the differences f(x + h) − f(x) of a function f , for x,
h ∈ Ω. There are various needs and approaches to specify when a function, or
more generally a distribution, belongs to a Besov space. The Fourier analytic
approach to homogeneous Besov spaces, for instance, yields representations for
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the members of the space B̊σ
p,q(Rd) of the form

f =
∑
k∈Z

fk,

in which the summands fk depend on f linearly. Arranging for a suitable decom-
position of the objects in B̊σ

p,q(Rd) is important to compute their norm and to
simplify the analysis of the operators acting on it. It is also the key to be able to
identify the members of the space from an abstract point of view. The latter is
the angle of functional analysis, which aims at recognizing B̊σ

p,q(Rd) as an already
existing animal in disguise in the Banach space zoo.

The study of the classification of Besov spaces over Euclidean spaces is indeed
an important subject in Banach space theory (see [13, Section 6.7.7]). It addresses

a very simple question: are the Besov spaces B̊σ
p,q(Rd) essentially distinct, that is,

mutually nonisomorphic?
Historically, a breakthrough in the isomorphic characterization of Besov spaces

over the Euclidean d-dimensional space Rd occurs in [15], where H. Triebel con-
structed an unconditional basis for the nonhomogeneous Besov space Bσ

p,q(Rd). He
did not identify the associated sequence space, but he showed that, for 0 < σ <∞,
1 < p <∞, and 1 ≤ q <∞, Bσ

p,q(Rd) is isomorphic to the direct `q-sum of count-
ably many copies of `p, that is, to the sequence space (`p⊕ `p⊕ · · ·⊕ `p⊕ · · · )q =
`q(`p). Triebel’s techniques remain valid when −∞ < σ < ∞, 0 < q ≤ ∞,
and for homogeneous Besov spaces. However, the fact that his methods rely on
the boundedness of the Riesz transform rules out the possibility to make them
extensive to the extreme cases p = 1 or p = ∞.

Another significant advance was made by P. G. Lemarié and Y. Meyer in [11].
Here they used an appropriate wavelet basis to obtain a characterization of Besov
spaces which led to establishing isomorphisms between homogeneous Besov spaces
B̊σ

p,q(Rd) and the spaces `q(`p) for 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞, whence, as J. Pee-

tre already pointed out in [12], the classification of the Banach spaces B̊σ
p,q(Rd)

would be settled once it is proved that different `q(`p) spaces for 1 ≤ p, q ≤ ∞ are
not isomorphic. The answer to this question has its roots in [16, p. 242n], where
H. Triebel said that he had learned from A. Pe lczyński that the above-mentioned
conjecture of Peetre holds true for 1 < p < ∞ and 1 ≤ q ≤ ∞. In 2011, P. Cem-
branos and J. Mendoza included in [6] a detailed proof of Pe lczyński’s assertion
and extended it to the whole range of values 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. More
recently, and initially unaware of the connection of their work with this direction
of research, the authors have completed in [1] the picture of the isomorphic clas-
sification of `q(`p) spaces by letting the non-locally convex relatives to be part of
their natural family and have showed that no two members of the extended class
{`q(`p) : 0 < q, p ≤ ∞} are isomorphic.

Besov spaces also have their non-locally convex counterpart. In defining these
spaces you just have to allow p or q or both to be less than 1 and you automatically
land in quasi-Banach space territory. All of which naturally leads us to wonder
if the above neat isomorphic classification of Besov spaces can be extended to
the whole range of values 0 < p ≤ ∞ and 0 < q ≤ ∞. And right away we are
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faced with an important, yet rather common in the non-locally convex theory,
stumbling block: a straightforward extension of the proof of Lemarié and Meyer’s
Theorem 4.1 in [11] is not possible. This obstruction is mainly due to the fact
that their arguments rely on duality techniques and estimates that do not work
for p < 1 or q < 1.

The treatment that M. Frazier and B. Jawerth gave to Besov spaces in [8] was
crucial to push forward the non-locally convex case. They obtained an atomic
decomposition of Besov spaces valid for 0 < p ≤ ∞ and 0 < q ≤ ∞, but, un-
fortunately, their decomposition does not yield directly an isomorphism between
B̊σ

p,q(Rd) and `q(`p). However, as it was pointed out by themselves later in [9],
the estimates that they had gotten for the so-called ϕ-transform also apply for
the wavelet transform, and as a consequence it is possible to reconstruct, from
Lemarié and Meyer’s aforementioned work [11], an isomorphism from B̊σ

p,q(Rd)
onto `q(`p) that is valid for all 0 < p, q ≤ ∞. And this completes the picture of
the puzzle of the isomorphic classification of classical Besov spaces in both locally
convex and non-locally convex cases.

Subsequently, several authors were interested in homogeneous Besov spaces of
generalized smoothness (see [4], [5], [7]), which we will denote by B̊w

p,q(Rd). Using

standard techniques, one can obtain a direct isomorphism from B̊w
p,q(Rd) onto

B̊0
p,q(Rd), so that these Besov spaces are also isomorphic to `q(`p). Thus, it is

natural to wonder if Lemarié and Meyer’s wavelet technique provides a direct
isomorphism from B̊w

p,q(Rd) onto the sequence space `q(`p).
In this article we explore the methods of Lemarié and Meyer’s and Frazier and

Jawerth’s in more generality to establish the validity of the above isomorphisms
to weighted Besov spaces B̊w

p,q(Rd) for the whole range of 0 < p, q ≤ ∞, at once.
Our results cast light also onto the classical case by providing a unified proof,
without having to patch together so many scattered pieces in the literature.

2. Prerequisites: The ingredients of the proof

Throughout this article we employ the notation and terminology commonly
used both in Banach space theory (see, e.g., [2]) and in harmonic analysis (see,
e.g., [16]). This section is entirely preparatory. With the intention to render our
paper as self-contained as possible, for the convenience of the reader we have
summarized the relevant concepts that we will need later on.

2.1. Tempered distributions modulo polynomials. We will denote by S the
Schwartz class of rapidly decreasing smooth functions in Rd, by S ′ its topological
dual (i.e., the space of tempered distributions), and by 〈·, ·〉 : S ′×S → C the dual
pair between tempered distributions and rapidly decreasing smooth functions.
The support of f ∈ S ′, denoted by supp f , is the complement of the largest open
set on which f is the null distribution. The Fourier transform can be defined for
tempered distributions, and, as is customary, f̂ will denote the Fourier transform
of f ∈ S ′. Given f ∈ S ′ and 0 < t < ∞, we define the dilation ft as ft(x) =

t−df(x/t). Notice that f̂t(ξ) = f̂(tξ).
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We will need to consider the closed subspace S0 of S consisting of functions
with zero moments. There is a natural identification between the topological dual
S ′
0 of S0 and the quotient space S ′/P , where P is the linear space of polynomial

functions. Of special interest for us is the subspace S00 of S0 consisting of functions
whose Fourier transform has compact support contained in Rd\{0}. For a detailed
background on rapidly decreasing functions and tempered distributions, we refer
to [14].

2.2. Hilbertian wavelet bases. Next we detail the standard construction of a
wavelet basis from a pair (ψ0, ψ1) of real valued measurable functions such that∫

R
ψ0(x)ψ1(x) dx = 0, and

∫
R
ψ0(x)2 dx = 1 =

∫
R
ψ1(x)2 dx.

For each ε = (ε1, . . . , εd) ∈ E := {0, 1}d \ {(0, . . . , 0)}, each k ∈ Zd, and each
j ∈ Z, put

ψε(x1, . . . , xd) = ψε1(x1) · · ·ψεi(xi) · · ·ψεd(xd), (2.1)

ψε,k,j(x) = 2jd/2ψε(2
jx− k), (2.2)

Ψ(x1, . . . , xd) = ψ0(x1) · · ·ψ0(xi) · · ·ψ0(xd), and (2.3)

Ψk(x) = Ψ(x− k). (2.4)

Let Λ = E ×Zd ×Z and Λ+ = {(ε, k, j} ∈ Λ : k ≥ 0}. The family {ψλ : λ ∈ Λ} is
called a wavelet basis. In [11], P. G. Lemarié and Y. Meyer constructed a wavelet
basis fulfilling the following properties:

• ψλ ∈ S00;
• for every f ∈ S ′

0, we have

f =
∑
λ∈Λ

〈f, ψλ〉ψλ, (2.5)

where the (infinite) series is unconditionally convergent; and
• 〈ψλ, ψλ〉 = 1 and 〈ψλ, ψµ〉 = 0 if λ 6= µ.

Similarly, the family {Ψk, k ∈ Zd} ∪ {ψλ : λ ∈ Λ+} verifies that

• Ψk ∈ S and supp Ψ̂k has compact support;
• for every f ∈ S ′ we have

f =
∑
k∈Zd

〈f,Ψk〉Ψk +
∑

λ∈Λ+

〈f, ψλ〉ψλ, (2.6)

where the (infinite) series are unconditionally convergent; and
• 〈Ψk,Ψk〉 = 1, 〈Ψk,Ψl〉 = 0 if k 6= l and 〈Ψk, ψλ〉 = 0.

Following [11], such a wavelet basis will be called Hilbertian.
Suppose that we have a Hilbertian wavelet basis {(ψλ) : λ ∈ Λ}. Let X be a

quasi-Banach space continuously embedded in S ′
0. Define, ignoring the possible

dependence on the chosen basis,

W̊(X) =
¶Ä
〈f, ψλ〉

ä
λ∈Λ : f ∈ X

©
.
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Clearly, thanks to the orthogonality of the basis,

W̊(X) =
ß

(aλ)λ∈Λ : ∃f ∈ X such that f =
∑
λ∈Λ

aλψλ

™
,

and there is a natural linear bijection between X and W̊(X), so that we can

transfer the topological structure from X into W̊(X). Roughly speaking, W̊(X)
is a representation of X as a sequence space.

A very general problem is to describe properties or the sequence space W̊(X)
and, if possible, to be able to characterize it up to isomorphism. For instance,
{(ψλ) : λ ∈ Λ} is an unconditional basic sequence for X if and only if W̊(X) is a
lattice under the natural ordering for sequence spaces. This problem is successfully
discussed in [11] for many classical function spaces in harmonic analysis, such as
H1(Rd), BMO(Rd), Lp(Rd) (1 < p < ∞), Hölder spaces, Sobolev spaces and
locally convex Besov spaces.

2.3. Band-limited Lp-spaces. Let 0 < p ≤ ∞, and suppose that K ⊆ Rd is a
compact set. Consider

Lp[K] =
¶
f ∈ Lp(Rd) ∩ S ′ : supp f̂ ⊆ K

©
.

Lp[K] is a closed subspace of Lp(Rd) and hence is a quasi-Banach space. We will
write Lp[R] := Lp[DR], where DR = {x ∈ Rd : |x| ≤ R} (0 < R < ∞). Hereafter
we will put ∣∣∣(x1, . . . , xi, . . . , xd)∣∣∣ = max

1≤i≤n
|xi|.

In some sense, for a fixed compact set K, the behavior of the spaces Lp[K] is
similar to that of the sequence `p spaces. By way of example we can state the
following result (see [12, Chapter 11, Lemma 1]), whose immediate corollary will
be of special interest for our approach to the isomorphic classification of Besov
spaces.

Theorem 2.1. Let 0 < p1 < p2 ≤ ∞. There exists a constant A such that, for
every 0 < R <∞ and every f ∈ Lp1 [R], we have f ∈ Lp2 [R] and

‖f‖p2 ≤ AR1/p1−1/p2‖f‖p1 .

Corollary 2.2. Suppose 0 < p ≤ 1. There is a constant B such that if 0 <
R <∞, f ∈ Lp[R], g ∈ L∞[R], and x ∈ Rd, then g(· − x)f(·) ∈ L1(Rd) and∣∣∣∣∫

Rd
g(y − x)f(y) dy

∣∣∣∣ ≤ BR1/p−1
Å∫

Rd

∣∣∣g(y − x)f(y)
∣∣∣p dyã1/p.

Proof. Let h(y) = g(y − x)f(y). Note that

supp ĥ ⊆ supp ĝ + supp f̂ ⊆ D2R.

Applying Theorem 2.1 yields the desired result since∣∣∣∣∫
Rd
g(y − x)f(y) dy

∣∣∣∣ ≤ ‖h‖1 ≤ A21/p−1R1/p−1‖h‖p <∞. �
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2.4. Homogeneous Besov spaces. Under certain conditions, the differences
appearing in the classical definition of Besov spaces can be replaced by convolu-
tions θt ∗f , where θ ∈ S0 and t ∈ (0,∞) (i.e., it is possible to regard Besov spaces
as spaces of tempered distributions and obtain a Littlewood–Paley description
of them). For our purposes, among the many different ways to introduce Besov
spaces it will be convenient to deal with the more general definition of distribu-
tional Besov spaces introduced in [5], which we summarize next.

A doubling weight in Z is a double sequence w = (wj)
∞
j=−∞ in (0,∞) such that

0 < inf
j∈Z

wj+1

wj

≤ sup
j∈Z

wj+1

wj

<∞.

Suppose θ ∈ S00 verifies the condition

inf
ξ∈Rd\{0}

∑
j∈Z

∣∣∣θ̂(2−jξ)
∣∣∣2 > 0, (2.7)

and let < 0 < p, q ≤ ∞. For f ∈ S ′
0 we define

‖f‖w,p,q =
Å∑
j∈Z

w−q
j ‖θ2−j ∗ f‖qp

ã1/q
,

with the usual modification if q = ∞. The homogeneous Besov space B̊w
p,q(Rd) is

the quasi-Banach space

B̊w
p,q(Rd) =

¶
f ∈ S ′

0 : ‖f‖w,p,q <∞
©
.

Besov spaces do not depend on the particular function θ chosen. In fact, for any
η ∈ S00 there is a constant Cη such thatÅ∑

j∈Z
w−q

j ‖η2−j ∗ f‖qp
ã1/q

≤ Cη‖f‖w,p,q. (2.8)

If wj = 2jσ for all j ∈ Z and a fixed σ ∈ R we recover the classical homogeneous

Besov spaces B̊σ
p,q(Rd). We refer to [5] for more details, and to [12], [16], [10], and

[4] for connections between this definition and other ways of introducing classical
and weighted Besov spaces.

3. The isomorphic classification of weighted Besov spaces:
Homogeneous case

Equipped with the machinery introduced above, we are now in a position to
tackle our goal and identify isomorphically weighted Besov spaces, recently known
as Besov spaces with generalized smoothness. The novelty of our approach relies
on the effective usage of the properties of band-limited spaces Lp[K].

Theorem 3.1. Suppose 0 < p, q ≤ ∞, and let w be a doubling weight in Z. We
have

W̊
Ä
B̊w

p,q(Rd)
ä

=
¶
(aλ)λ∈Λ :

∥∥∥(aλ)λ∈Λ
∥∥∥
w,p,q

<∞
©
,
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where ∥∥∥(aλ)λ∈Λ
∥∥∥
w,p,q

=
Å∑
j∈Z

w−q
j 2jqd(1/2−1/p)

Å∑
ε∈E
k∈Zd

|aε,k,j|p
ãq/pã1/q

,

with the usual modifications if p = ∞ or q = ∞.

Proof. Define the norm in the Besov space from θ ∈ S00 verifying (2.7). Fix a
Hilbertian wavelet basis, for which we will use the notation introduced in (2.1)

and (2.2). Let R > 0 such that supp ψ̂ε ⊆ DR0 for every ε ∈ E and some R0 < R.
Choose η ∈ S00 such that supp η̂ ⊆ DR and η̂(ξ) = 1 for |ξ| ≤ R0. Notice that

〈f, ψε,k,j〉 =
∫
Rd

2jd/2η2−j ∗ f(x)ψε(2
jx− k) dx.

Consider

D = max
y∈Rd

Å∑
ε∈E
k∈Zd

∣∣∣ψε(y − k)
∣∣∣pã1/p,

where p = min{1, p}, and

E = max
ε∈E

‖ψε‖1.

Suppose first that 0 < p ≤ 1. By Corollary 2.2,Å∑
ε∈E
k∈Zd

∣∣∣〈f, ψε,k,j〉
∣∣∣pã1/p ≤ BDR1/p−12jd/22jd(1/p−1)‖η2−k ∗ f‖p.

The corresponding estimate for 1 ≤ p ≤ ∞ is obtained as in [11]. However, being
faithful to our motivation to supply a unified approach, we include a proof.

By Hölder’s inequality,Å∑
ε∈E
k∈Zd

∣∣∣〈f, ψε,k,j〉
∣∣∣pã1/p ≤ DE1−1/p2jd/22jd(1/p−1)‖η2−k ∗ f‖p.

In any case, with C0 = BDR1/p−1 for p ≤ 1, and C0 = DE1−1/p for p > 1 we haveÅ∑
ε∈E
k∈Zd

∣∣∣〈f, ψε,k,j〉
∣∣∣pã1/p ≤ C02

jd(1/p−1/2)‖η2−k ∗ f‖p.

Therefore, ∥∥∥Ä〈f, ψλ〉
ä
λ∈Λ

∥∥∥
w,p,q

≤ C0Cη‖f‖w,p,q.

Conversely, take (aλ)λ∈Λ such that ‖(aλ)λ∈Λ‖w,p,q <∞. It is straightforward to
check that

∑
λ∈Λ aλψλ converges in S ′

0 to a tempered distribution f . Put

ηε,i = θ2−i ∗ ψε.
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Notice that there is N ∈ N such that ηε,i = 0 for |i| > N . Let us denote

F = max
y∈Rd

∑
|i|≤N
ε∈E
k∈Zd

∣∣∣ηε,i(y − k)
∣∣∣,

G = max
|i|≤N
ε∈E

‖ηε,i‖p,

H = max
|i|≤N
ε∈E

‖ηε,i‖1,

and

L = sup
j∈Z
|i|≤N

wj

wj+i

.

Now, notice that

θ2−j ∗ f(x) = 2jd/2
∑

−N≤i≤N
ε∈E
k∈Zd

aε,k,i+jηε,i(2
jx− k).

If 0 < p ≤ 1, since Lp(Rd) is a p-Banach space,

‖θ2−j ∗ f‖p ≤ G2jd/22−jd/p
Å ∑
−N≤i≤N

ε∈E
k∈Zd

|aε,k,i+j|p
ã1/p

.

If 1 ≤ p ≤ ∞, an appeal to Hölder’s inequality yields∣∣∣θ2−j ∗ f(x)
∣∣∣ ≤ F 1−1/p2jd/2

Å ∑
−N≤i≤N

ε∈E
k∈Zd

|aε,k,i+j|p
∣∣∣ηε,i(2jx− k)

∣∣∣ã1/p;
hence

‖θ2−j ∗ f‖p ≤ F 1−1/pH1/p2jd/22−jd/p
Å ∑
−N≤i≤N

ε∈E
k∈Zd

|aε,k,i+j|p
ã1/p

.

Let C1 = G for p ≤ 1 and C1 = F 1−1/pH1/p for p > 1, so that we have a similar
inequality for any value of p. Summing in j and putting C2 = C1L2Nd(1/2−1/p)

gives

‖f‖w,p,q ≤ C2

Å∑
j∈Z

Å ∑
−N≤i≤N

ε∈E
k∈Zd

Ä
wj+i2

(j+i)(1/2−1/p)|aε,k,i+j|
äpãq/pã1/q

.

Let M = (2N + 1)max{0,1/p−1/q}, so thatÅ∑
|i|≤N

|yi|
ãq/p

≤M q
∑
|i|≤N

|yi|q/p.



116 F. ALBIAC and J. ANSORENA

Finally, putting C3 = C2M yields

‖f‖w,p,q ≤ C3

Å ∑
−N≤i≤N

j∈Z

Å∑
ε∈E
k∈Zd

Ä
wj+i2

(j+i)(1/2−1/p)|aε,k,i+j|
äpãq/pã1/q

= C3(2N + 1)1/q
∥∥∥(aλ)λ∈Λ

∥∥∥
w,p,q

. �

The previous theorems yields a direct proof of the isomorphic characterization
of homogeneous Besov spaces, as wished.

Corollary 3.2. Let d ∈ N, 0 < p, q ≤ ∞, and let w be a doubling weight in Z.
Then B̊w

p,q(Rd) is isomorphic to `q(`p).

Proof. From Theorem 3.1 it follows readily that W̊(B̊w
p,q(Rd)) is isomorphic to

`q(`p). �

Corollary 3.3. Let di ∈ N, 0 < pi, qi ≤ ∞, and let wi be doubling weights in
Z (i = 1, 2). Then B̊w1

p1,q1
(Rd1) is isomorphic to B̊w2

p2,q2
(Rd2) if and only if p1 = p2

and q1 = q2.

Proof. It is straightforward from Corollary 3.2 and [1, Theorem 2.4]. �

Remark 3.4. We want to emphasize the difference between the approach to Besov
spaces presented in this article and that of M. Frazier and B. Jawerth for classical
Besov spaces in [8]. Consider a function φ ∈ S00 such that

∑
j∈Z |φ̂(2jξ)| = 1 for

every ξ ∈ Rd \ {0}. Construct, for k ∈ Zd and j ∈ Z, the functions

ϕk,j : Rd → C, ϕk,j(x) = 2jd/2ϕ(2jx− k).

Define the so-called ϕ-transform of f :

Sϕ(f) =
Ä
〈f, ϕk,j〉

ä
j∈Z,k∈Zd , f ∈ S ′

0.

Conversely, given a sequence α = (ak,j)j∈Z,k∈Zd consider, when possible,

Tϕ(α) =
∑

j∈Z,k∈Zd

ak,jϕk,j.

It follows from [8, Lemma 2.1] that

Tϕ
Ä
Sϕ(f)

ä
= f, f ∈ S ′

0.

However, there is not a unique sequence α such that Tϕ(α) = f .
Let −∞ < σ <∞ and 0 < p, q ≤ ∞. Consider the sequence space

b̊σ
p,q =

ß
(ak,j)j∈Z,k∈Zd :

Å∑
j∈Z

2jq(d/2−d/p+σ)
Å∑
k∈Zd

|ak,j|p
ãq/pã1/q

<∞
™
.

It follows from [8, Theorem 2.6] that Sϕ is bounded from B̊σ
p,q(Rd) into b̊σ

p,q, while

[8, Theorem 3.1] leads to the boundedness of Tϕ from b̊σ
p,q onto B̊σ

p,q(Rd). From

a functional analytic point of view, these results imply that B̊σ
p,q(Rd) embeds

complementably in b̊σ
p,q, which is isomorphic to `q(`p). But, unless p = q, this

does not necessarily mean that B̊σ
p,q(Rd) is isomorphic to `q(`p).
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4. What about nonhomogeneous Besov spaces?

The wavelet decomposition (with respect to a compactly supported wavelet ba-
sis of Daubechies type) of nonhomogeneous Besov spaces of generalized smooth-
ness was achieved by A. Almeida (see [3]) The intention in the definition of
nonhomogeneous Besov spaces is the same as in the homogeneous case but deals
only with differences f(x + h) − f(x) for small values of h (i.e., |h| ≤ 1). If we
introduce Besov spaces in terms of convolutions θt ∗ f we must consider only val-
ues of the dilation parameter t in the interval (0, 1]. Finally, if we use a discrete
definition in terms of convolutions θ2−k ∗ f we must consider nonnegative values
of the parameter k ∈ Z. To give a precise definition, consider a doubling weight
in Z+, that is, a weight w = (wj)

∞
j=0 in (0,∞) such that

0 < inf
j∈Z+

wj+1

wj

≤ sup
j∈Z+

wj+1

wj

<∞,

and a pair of functions (Θ, θ) such that θ ∈ S00, Θ ∈ S, Θ̂ has compact support
and the condition

inf
ξ∈Rd\{0}

∣∣∣Θ̂(ξ)
∣∣∣2 +

∞∑
j=0

∣∣∣θ̂(2−jξ)
∣∣∣2 > 0

holds. Define, for < 0 < p, q ≤ ∞,

Bw
p,q(Rd) =

¶
f ∈ S ′ : ‖f‖w,p,q <∞

©
,

where, for f ∈ S ′,

‖f‖w,p,q = ‖Θ ∗ f‖p +
Å ∞∑
j=0

w−q
j ‖θ2−j ∗ f‖qp

ã1/q
,

with the usual modification if q = ∞.
As for homogeneous Besov spaces, Bw

p,q(Rd) is a quasi-Banach space that does
not depend on the particular pair of functions (Θ, θ) chosen.

The study of the wavelet decomposition of nonhomogeneous Besov spaces, us-
ing Lamarié and Meyer’s wavelet system instead of a compactly supported one,
follows the same steps as the homogeneous case, with the exception that we must
use (2.6) instead of (2.5). Therefore, in what follows, we will only present the
definitions and state the results, leaving out the proofs.

Consider a Hilbertian wavelet basis constructed from a pair (ψ0, ψ1). Let {Ψk, :
k ∈ Zd} and {ψλ : λ ∈ Λ+} as in (2.2) and (2.4). Given a quasi-Banach space X
continuously embedded in S ′, define

W(X) =
¶ÄÄ

〈f,Ψk〉
ä
k∈Zd ,

Ä
〈f, ψλ〉

ä
λ∈Λ+

ä
: f ∈ X

©
.

W(X) is a quasi-Banach space with the topology that inherits from X.
The following result is analogous to Theorem 3.1 for the nonhomogeneous case.

Theorem 4.1. Let < 0 < p, q ≤ ∞, and let w be a doubling weight in Z+. We
have

W
Ä
Bw

p,q(Rd)
ä

= `p(Zd) ⊕
¶
(aλ)λ∈Λ+ :

∥∥∥(aλ)λ∈Λ
∥∥∥
w,p,q

<∞
©
,
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where ∥∥∥(aλ)λ∈Λ
∥∥∥
w,p,q

=
Å ∞∑
j=0

w−q
j 2jqd(1/2−1/p)

Å∑
ε∈E
k∈Zd

|aε,k,j|p
ãq/pã1/q

,

with the usual modifications if p = ∞ or q = ∞.

Corollary 4.2. Let d ∈ N, < 0 < p, q ≤ ∞, and let w be a doubling weight
in Z+. Then Bw

p,q(Rd) is isomorphic to `q(`p).

Corollary 4.3. For i = 1, 2, let di ∈ N, 0 < pi, qi ≤ ∞, and wi be doubling
weights in Z. Then Bw1

p1,q1
(Rd1) is isomorphic to Bw2

p2,q2
(Rd2) if and only if p1 = p2

and q1 = q2.

Acknowledgments. F. Albiac acknowledges the support of the Spanish Min-
istry for Economy and Competitivity grants MTM2012-31286, for Operators, Lat-
tices, and Structure of Banach Spaces, and MTM2014-53009-P, for Análisis Vec-
torial, Multilineal, y Aplicaciones. J. L. Ansorena acknowledges the support of
the Spanish Ministry for Economy and Competitivity grant MTM2014-53009-P
for Análisis Vectorial, Multilineal, y Aplicaciones.

References

1. F. Albaic and J. L. Ansorena, On the mutually non isomorphic `p(`q) spaces, II, Math.
Nachr. 288 (2015), no. 1, 5–9. MR3310494. DOI 10.1002/mana.201300161. 109, 116

2. F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 233,
Springer, New York, 2006. MR2192298. 110

3. A. Almeida, Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl. 304 (2005),
no. 1, 198–211. MR2124658. DOI 10.1016/j.jmaa.2004.09.017. 117

4. J. L. Ansorena and O. Blasco, Characterization of weighted Besov spaces, Math. Nachr.
171 (1995), 5–17. Zbl 0813.46023. MR1316348. DOI 10.1002/mana.19951710102. 110, 113

5. J. L. Ansorena and O. Blasco, Convolution multipliers on weighted Besov spaces, Bol. Soc.
Mat. Mexicana (3) 4 (1998), no. 1, 47–68. Zbl 0946.42007. MR1625577. 110, 113

6. P. Cembranos and J. Mendoza, On the mutually non isomorphic `p(`q) spaces, Math. Nachr.
284 (2011), no. 16, 2013–2023. MR2844675. DOI 10.1002/mana.201010056. 109

7. W. Farkas and H. Leopold, Characterisations of function spaces of generalised smooth-
ness, Ann. Mat. Pura Appl. (4) 185 (2006), no. 1, 1–62. Zbl 1116.46024. MR2179581.
DOI 10.1007/s10231-004-0110-z. 110

8. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34
(1985), no. 4, 777–799. Zbl 0551.46018. MR0808825. DOI 10.1512/iumj.1985.34.34041.
110, 116

9. M. Frazier and B. Jawerth, “Applications of the φ and wavelet transforms to the theory
of function spaces” in Wavelets and Their Applications, Jones and Bartlett, Boston, 1992,
377–417. MR1187350. 110

10. M. Frazier, B. Jawerth, and G. Weiss, Littlewood-Paley Theory and the Study of Function
Spaces, CBMS Regional Conference Series in Mathematics 79, Amer. Math. Soc., Provi-
dence, 1991. MR1107300. 113

11. P. G. Lemarié and Y. Meyer, Ondelettes et bases hilbertiennes, Rev. Mat. Iberoamericana 2
(1986), no. 1–2, 1–18. Zbl 0657.42028. MR0864650. DOI 10.4171/RMI/22. 109, 110, 111,
112, 114

12. J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Department of Math-
ematics, Duke University, Durham, NC, 1976. MR0461123. 109, 112, 113

13. A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser, Boston, 2007.
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