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Abstract. We use the duality between functional and differential equations
to solve several classes of abstract Cauchy problems related to special functions.
As a general framework, we investigate operator functions which are multiplica-
tive with respect to convolution of a hypergroup. This setting contains all rep-
resentations of (hyper)groups, and properties of continuity are shown; examples
are provided by translation operator functions on homogeneous Banach spaces
and weakly stationary processes indexed by hypergroups. Then we show that
the concept of a multiplicative operator function can be used to solve a variety
of abstract Cauchy problems, containing discrete, compact, and noncompact
problems, including C0-groups and cosine operator functions, and more gener-
ally, Sturm–Liouville operator functions.

1. Introduction

It is well-known that C0-semigroups obey the exponential law and solve first-
order abstract Cauchy problems. Similarly, a theory of cosine operator functions
exists—that is, operator functions which obey the cosine functional equation are
used to solve second-order abstract Cauchy problems (see [1, Sections 3.14–3.16]
for an introduction). This duality between operator-valued functional equations
and abstract Cauchy problems is extended by the author in [11] to abstract
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Sturm–Liouville problems. Therefore, the underlying functional equation is pro-
vided by Sturm–Liouville hypergroups.

In the present paper we consider, more generally, operator functions which are
multiplicative with respect to the convolution of an arbitrary hypergroup. We
will see that our concept of a “multiplicative operator function” contains some
further abstract Cauchy problems; that is, we establish a unifying framework for
several classes of abstract Cauchy problems.

Let (K, ∗) be a hypergroup with left Haar measure m (a hypergroup is a gener-
alization of a locally compact group, where t ∗ s, t, s ∈ K stands for a probability
measure instead of just a single element; for the convenience of the reader, some
details are collected in Section 2). Throughout, let X be a complex Banach space,
and let L(X) denote the Banach algebra of bounded linear operators on X with
unit I.

Definition 1.1 (Strong version). A function S : K → L(X) is called a [strong ]
multiplicative operator function if S is strongly continuous (i.e., S(·)x : K → X
is continuous for each x ∈ X) and if

(i) S(e) = I,
(ii) S(t)S(s)x = S(t ∗ s)x for all t, s ∈ K and any x ∈ X,
(iii) limt→e S(t)x = x for each x ∈ X,

where the right-hand side of the functional equation (ii) is defined by

S(t ∗ s)x :=
(
S(·)x

)
(t ∗ s) :=

∫
K

S(·)x d(t ∗ s).

In Section 3 we give two further, weak versions of Definition 1.1 and show that
all three definitions are equivalent (Theorem 3.5). Thus, the notion of a multi-
plicative operator function contains all representations of (hyper)groups, and we
obtain characterizations of weak, strong, and uniform continuity. In Section 4,
natural examples of multiplicative operator functions are provided by transla-
tion operator functions on homogeneous Banach spaces; in particular, all weakly
stationary processes indexed by hypergroups are contained in this setting.

Section 5, which is the heart of the present paper (and also of [11]), shows that
abstract Cauchy problems (the solutions of the corresponding scalar problem are
multiplicative with respect to convolution of some hypergroup) can be solved by
corresponding multiplicative operator functions. Since K may be quite different,
we consider abstract Cauchy problems in integral form.

Let us give a brief outline of the principle idea here. Let J and {δJ , J ∈ J} be
families of bounded nonnegative nonzero (resp., bounded) measures with com-
pact support on a commutative hypergroup K. For reasons of intuition, let us
suppose that J is parameterized by t ∈ K and that “supp(Jt) → {e}” as t → e.
Suppose that for each multiplicative function χ there exists a constant cχ such
that ∫

K

χ dδJt = cχ

∫
K

χ dJt
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for all t ∈ K. Then a multiplicative operator function S on K solves the abstract
Cauchy problem ∫

K

S(·)x dδJt = A0

∫
K

S(·)x dJt,

given x ∈ X, for all t ∈ K, where

A0y := lim
t→e

∫
K
S(·)y dδJt

Jt(K)

whenever this limit exists.
In Section 6 we demonstrate that this approach comprises a variety of abstract

Cauchy problems, including C0-groups, cosine, and Sturm–Liouville operator func-
tions as well as problems of discrete type, arising from orthogonal polynomials,
and compact Jacobi and Sturm–Liouville type. (The present article took shape
originally in the author’s doctoral dissertation [12].)

2. Preliminaries

In this section we give a short introduction to hypergroups and extend some
basic theorems about convolution to vector-valued functions. The stated results
are of a general nature and slightly stronger than needed in the present paper.

2.1. Hypergroups. We present hypergroups via the axiomatic of Jewett (see
[17]) which is widely accepted (see [2] for further details and notation). The
following presentation of hypergroups is intended to emphasize the analogy to
locally compact groups.

Let K be a nonvoid, locally compact Hausdorff space. Let M1(K) denote the
space of probability, and let M b(K) be the space of all bounded complex Borel
measures on K. Both M1(K) and M b(K) are endowed with the weak topology
induced by Cb(K), the space of continuous and bounded functions. A measure is
usually regarded as a continuous linear functional on Cc(K), the space of contin-
uous functions with compact support endowed with the inductive limit topology.
The support of a measure µ is denoted by supp(µ).

Suppose that

∗ : K ×K → M1(K)

is a continuous mapping. Identifying t ∈ K with its point measure εt, its bilinear
positive-continuous extension

∗ : M b(K)×M b(K) → M b(K),

called convolution, is given by

(µ ∗ ν)(f) =
∫
K

∫
K

(εt ∗ εs)(f)µ(dt)ν(ds), f ∈ Cc(K)

for µ, ν ∈ M b(K).
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Definition 2.1. Let K be a nonvoid locally compact Hausdorff space with con-
volution as above. Then K, (K, ∗), or more precisely the triple (M b(K),+, ∗), is
called a hypergroup if the following conditions are satisfied.

(H1) The convolution ∗ is associative.
(H2) There exists a (unique) neutral element, that is, e ∈ K, such that εe ∗εt =

εt ∗ εe = εt for all t ∈ K.
(H3) There exists a (unique) involution, that is, a self-inverse homeomorphism

− on K, such that e ∈ supp(εt ∗ εs) if and only if t = s−, and (εt ∗ εs)− =
εs− ∗ εt− for all t, s ∈ K, where µ− denotes the image of µ under −.

(H4) For every t, s ∈ K, supp(εt ∗ εs) is compact, and the mapping (t, s) 7→
supp(εt ∗ εs) of K ×K into C (K) is continuous, where C (K) denotes the
collection of nonvoid compact subsets of K, endowed with the Michael
topology (see (2.1)).

A hypergroup is called commutative if the algebra (M b(K),+, ∗) is commutative.

The measure algebra of a hypergroup is in fact a Banach ∼-algebra, which is
often considered part of the definition.

Theorem 2.2. Let (K, ∗) be a hypergroup. Then (M b(K),+, ∗) is a Banach
∼-algebra with convolution ∗, involution µ∼ := µ−, and unit εe.

The collection of nonvoid compact subsets of K is denoted by C (K) and is
given the Michael topology, that is, the topology generated by the subbasis of all

CU(V ) :=
{
C ∈ C (K) : C ∩ U 6= ∅ and C ⊂ V

}
(2.1)

with U and V open subsets of K, which makes C (K) a locally compact Hausdorff
space. A neighborhood of a point t ∈ K is by definition any open set containing t.
The closure of a subset A of K is denoted by cl(A). We denote by 1A the function
which is equal to 1 on A and is 0, otherwise. Let (K, ∗) be a hypergroup. For a
(measurable) function f and t, s ∈ K, we set

f(t ∗ s) :=
∫
K

f d(εt ∗ εs)

whenever this expression makes sense. The left translate is defined by

(T tf)(s) := f(t ∗ s)

and the right translate by

(Ttf)(s) := f(s ∗ t).

In the following, we always suppose that if m is a left Haar measure on K, then
m− is a right Haar measure. It has long been known that a Haar measure exists
for compact and commutative hypergroups (see [3] for a treatment of a general
setting).
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2.2. Translations and convolutions of vector-valued functions. Let (K, ∗)
be a hypergroup with left Haar measurem, and let X be a complex Banach space.
In this section we extend some results for scalar-valued functions (see [17], also
[2]) to vector-valued functions. The notation from above will also be used in the
context of vector-valued functions whenever this makes sense.

We begin with continuous functions. We denote by C(K,X), Cb(K,X),
C0(K,X), and Cc(K,X) the space of continuous functions onK with values in X,
the subspaces of bounded functions, the functions vanishing at infinity, and the
functions with compact support, respectively. The following technical statements
can easily be transferred from the scalar case, either directly (see Lemma 2.3) or
by approximation, using partition of unity (see Lemma 2.4, Proposition 2.6; note
that Corollary 2.5 is an immediate consequence of Lemma 2.4).

Lemma 2.3 (Urysohn). Suppose that f ∈ C(K,X). Then, given a compact
set C and an open set U with C ⊂ U ⊂ K, there exists g ∈ Cc(K,X) with
‖g(r)‖X ≤ ‖f(r)‖X for all r ∈ K, g = f on C and g = 0 on K\U .

Lemma 2.4. Suppose that µι, µ ∈ M b(K), τv − limι µι = µ vaguely, that is,
limι

∫
K
ϕ dµι =

∫
K
ϕ dµ for each ϕ ∈ Cc(K), and lim supι ‖µι‖ < ∞. Then for

each f ∈ Cc(K,X),

lim
ι

∫
K

f dµι =

∫
K

f dµ.

Corollary 2.5. Suppose that f ∈ C(K,X). Then the mapping

K ×K → X

(t, s) 7→ f(t ∗ s)
is continuous.

Proposition 2.6. Suppose that f ∈ C0(K,X). Then for any t ∈ K, T tf ∈
C0(K,X), and the mapping

K → C0(K,X)

t 7→ T tf

is ‖ · ‖∞-continuous. If f ∈ Cc(K,X), then T tf ∈ Cc(K,X).

Next we consider integrable functions. All integrals in this article are to be
understood in the sense of Bochner (except when we explicitly refer to the Pettis
integral). An appropriate introduction to the Bochner integral which fits with
the theory of hypergroups can be found in [6, Chapter 1, Section 1]. We refer to
[14, Chapter III], for the development of integration theory on locally compact
spaces, which is also the measure theoretical background for hypergroups.

Definition 2.7. Let Lp(K,m,X), 1 ≤ p < ∞, denote the space of p-integrable
functions from K to X with respect to m and with norm ‖ · ‖p. Furthermore,
let L∞(K,m,X) denote the space of locally m-almost everywhere bounded mea-
surable functions from K to X with essential supremum norm ‖ · ‖∞. The space
of locally bounded measurable functions L∞

loc(K,m,X) is defined as the space of
(equivalence classes of) functions f : K → X such that every t ∈ K has a
neighborhood U with 1Uf ∈ L∞(K,m,X).
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Proposition 2.8. Suppose that 1 ≤ p ≤ ∞ and that f ∈ Lp(K,m,X). Then for
any t ∈ K, we have T tf ∈ Lp(K,m,X), and

‖T tf‖p ≤ ‖f‖p.

The proof runs as in the scalar case (see [17, Lemma 3.3B]; strong measurability
can be deduced from the Pettis measurability theorem).

Corollary 2.9. Suppose that 1 ≤ p < ∞ and that f ∈ Lp(K,m,X). Then the
mapping

K → Lp(K,m,X)

t 7→ T tf

is continuous.

Since Cc(K,X) is dense in Lp(K,m,X), this follows from Proposition 2.8 and
Proposition 2.6.

Suppose that X, Y , and Z are Banach spaces, and that X operates on Y in
the sense that X × Y → Z is a bilinear continuous mapping such that ‖xy‖Z ≤
‖x‖X‖y‖Y . The following generalization of Hölder’s inequality is immediate see
[7, Section 2, paragraph 2.36(a)].

Proposition 2.10 (Hölder’s inequality). Suppose that p, q ∈ [1,∞] are conjugate
numbers; that is, 1/p + 1/q = 1, and f ∈ Lp(K,m,X), g ∈ Lq(K,m, Y ). Then
f · g ∈ L1(K,m,Z), where

(f · g)(t) := f(t)g(t) ∈ Z

and

‖f · g‖1 ≤ ‖f‖p‖g‖q.

Proposition 2.11 (Young-type inequality). Suppose that p, q ∈ [1,∞] are con-
jugate numbers, f ∈ Lp(K,m,X), g ∈ Lq(K,m, Y ). Then for any t ∈ K,

(f ∗ g−)(t) :=
∫
K

f(t ∗ r)g(r)m(dr) ∈ Z

is well defined and

sup
t∈K

∥∥(f ∗ g−)(t)
∥∥
Z
≤ ‖f‖p‖g‖q.

This is clear in view of Propositions 2.8 and 2.10.

Theorem 2.12. Suppose that p, q ∈ [1,∞] are conjugate numbers and that f ∈
Lp(K,m,X), g ∈ Lq(K,m, Y ). Then for any t ∈ K,∫

K

T tf(r)g(r)m(dr) =

∫
K

f(r)T t−g(r)m(dr). (2.2)

According to Proposition 2.11, the left- and the right-hand side of (2.2) can be
regarded as bilinear continuous mappings from Lp(K,m,X)×Lq(K,m, Y ) to Z.
Thus this identity is easily transferred from the scalar case (see Theorem 5.1D in
[17]) by approximation (e.g., with step functions; if q = ∞ consider functions f
with compact support first).
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Theorem 2.13. Suppose that p, q ∈ [1,∞] are conjugate numbers and that f ∈
Lp(K,m,X), g ∈ Lq(K,m, Y ). Then f ∗ g− ∈ Cb(K,Z). If 1 < p < ∞, then
f ∗ g− ∈ C0(K,Z).

This is an immediate consequence of the preceding results. The scalar version
of this theorem is stated in [17, Theorems 5.5D, 5.5P].

3. Multiplicative operator functions

Besides the strong definition from the Introduction, we give here two further,
weak definitions of a multiplicative operator function, and we show that all three
definitions are equivalent. We obtain that representations of hypergroups are
a subclass of multiplicative operator functions. In Section 3.2, we prove that
the weak formulation implies the strong one, and we derive criteria for uniform
continuity.

3.1. Weak definitions and the relation to representations. Before we
begin, let us review some partial results which are contained in the present setting.
Hewitt and Ross established in their monumental treatise (see [14, Theorem 22.8])
that a weakly measurable representation of a locally compact group (on some
reflexive Banach space) is strongly continuous. De Leeuw and Glicksberg gave a
proof that weakly continuous representations of locally compact groups (on arbi-
trary Banach spaces) are strongly continuous (see [4, Theorem 2.8]). Concerning
hypergroups, representation theory was initiated by Jewett in [17, Section 11.3]
(see also [2, Section 2.1]). Here, representations of the convolution structure (K, ∗)
and the hypergroup (M b(K), ∗,∼) critically differ (see the discussion below).
That is the reason we call a representation of (K, ∗) just a “multiplicative oper-
ator function.” Operator functions of this type have occurred in the literature
several times (see, e.g., [26, Section 2]).

The following Definition 3.2 of a multiplicative operator function rests upon the
weak (Pettis) integral and is weaker than Definition 3.1.5 in the author’s disserta-
tion [12], which is based on the Bochner integral. The proof of Theorem 3.4 given
here is simple and follows the ideas of Hewitt–Ross and de Leeuw–Glicksberg;
this approach has recently been elaborated by Lasser in [22].

Let (K, ∗) be a hypergroup with left Haar measure m.

Definition 3.1 (Weak version). A function S : K → L(X) is called a [weak ]
multiplicative operator function if the following conditions are satisfied.

(i) S(e) = I.
(ii) For any x ∈ X, x∗ ∈ X∗ (the dual space ofX), the mapping t 7→ x∗(S(t)x)

is continuous and

x∗(S(t)S(s)x) = ∫
K

x∗(S(r)x)(εt ∗ εs)(dr)
for all t, s ∈ K.

(iii) For any x ∈ X, x∗ ∈ X∗,

lim
t→e

x∗(S(t)x) = x∗(x).
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Definition 3.2 (Weak-measurable version). A function S : K → L(X) is called a
[weak-measurable] multiplicative operator function if the following conditions are
satisfied.

(i) S(e) = I.
(ii) For any x ∈ X, x∗ ∈ X∗, it is x∗(S(·)x) ∈ L∞

loc(K,m) and for all t ∈ K,

x∗(S(t)S(s)x) = ∫
K

x∗(S(r)x)(εt ∗ εs)(dr)
for locally m-almost every s ∈ K.

(iii) For any x ∈ X, x∗ ∈ X∗, there exists a local m-null set N∗ such that

lim
t→e
t/∈N∗

x∗(S(t)x) = x∗(x).

Moreover, we suppose that for each x ∈ X the function S(·)x is Pettis-
integrable with respect to m in a neighborhood of e.

Remark 3.3. The additional assumption in Definition 3.2(iii) concerning the Pet-
tis integral is superfluous if X is reflexive or separable. More generally this is the
case if X has the Pettis integral property with respect to m in a neighborhood of
e (see [25, Section 8] and the references therein).

At least formally, Definition 3.1 is stronger than Definition 3.2; the only non-
trivial thing is to see that, for a [weak] multiplicative operator function S, S(·)x is
Pettis-integrable with respect to m in a neighborhood of e. This follows from the
Krein–Šmulian theorem stating that the closed convex hull of a weakly compact
subset of a Banach space is weakly compact; this idea is also used in the proof of
Theorem 2.8 in [4] (see [27, Appendix C, Corollary C.13] for full generality and
details).

Theorem 3.4. Let S be a multiplicative operator function in the sense of Defini-
tion 3.1 or Definition 3.2. Then S is strongly continuous; that is, for each x ∈ X,
the mapping S(·)x : K → X is continuous.

We postpone the proof of Theorem 3.4 to Section 3.2.

Theorem 3.5. Definition 1.1, Definition 3.1, and Definition 3.2 of a multiplica-
tive operator function are equivalent.

Proof of Theorem 3.5. This is a consequence of Theorem 3.4. Concerning the
functional equation, note that the complement of any local m-null set is dense
in K. �

For the rest of this section (and after the proof of Theorem 3.4), we use The-
orem 3.5, and in particular the simple form of Definition 1.1, without further
notice.

Remarks 3.6. The notion of a multiplicative operator function does not depend
on whether we consider the left Haar measure m or the right Haar measure m−

since involution is a homeomorphism and null sets are preserved (more precisely,
m = ∆m−, ∆ : K → R×

+ the right modular function). As one would expect, if
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X = C, then a multiplicative operator function can be identified with a multi-
plicative function and vice versa (we always suppose that multiplicative functions
are continuous). If K is commutative, then S(t)S(s) = S(s)S(t) for all t, s ∈ K.

Further, two multiplicative operator functions S1 : K → L(X) and S2 : K →
L(Y ), X,Y some Banach spaces, can be combined to a multiplicative operator
function S from K to L(Z), Z = X × Y , defined by

S(t) :=
[
S1(t) 0
0 S2(t)

]
.

The definition of equivalent representations can be transferred to multiplicative
operator functions: given a multiplicative operator function S : K → L(X) and
any isomorphism T ∈ L(X), the mapping t 7→ T−1S(t)T , K → L(X) is also a
multiplicative operator function.

In the remaining part of this section, we clarify the relationship between mul-
tiplicative operator functions and representation theory.

Definition 3.7. A representation of convolution of a hypergroup K on X is a
mapping D : M b(K) → L(X) such that

(i) D(εe) = I,
(ii) D is a representation of the Banach algebra (M b(K), ∗),
(iii) for each x ∈ X, x∗ ∈ X∗, µ 7→ x∗(D(µ)x) is continuous on M b

+(K) with
respect to the weak topology (recall that this is the relative topology on
M b

+(K) induced by the weak topology σ(M b(K), Cb(K))).

For abbreviation, we write D(t) for D(εt).

Proposition 3.8. Let D be a representation of convolution of a hypergroup K.
Then D is

(i) uniformly bounded (i.e., there exists M ≥ 1 such that ‖D(µ)‖ ≤ M‖µ‖
for all µ ∈ M b(K)),

(ii) strongly continuous in the sense that, for each x ∈ X, the mapping µ 7→
D(µ)x, M b

+(K) → X is continuous where M b
+(K) bears the weak topology,

(iii) representable as

D(µ)x =

∫
K

D(t)xµ(dt) (3.1)

for all x ∈ X and µ ∈ M b(K).

Proof. Assume that (i) is not true. Since D is linear, we find a sequence (µn)n∈N
in M b

+(K) such that ‖µn‖ → 0 and ‖D(µn)‖ → ∞ as n → ∞, which, however,
contradicts Definition 3.7(iii) and the uniform boundedness principle.

Concerning (iii), for each x ∈ X, x∗ ∈ X∗,

x∗(D(µ)x
)
=

∫
K

x∗(D(t)x
)
µ(dt) (3.2)

holds for all µ ∈ M b(K) by linearity since the finitely supported measures are
dense in M b

+(K) (see [17, Lemma 2.2A]). Now it is clear by definition of D that its
restriction to {εt, t ∈ K}, identified with K, is a multiplicative operator function
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in the sense of Definition 3.1, and hence for each x ∈ X, D(·)x : K → X is
continuous by Theorem 3.4. Thus the Bochner integral in (3.1) exists and (iii)
follows from (3.2).

It remains to justify (ii). Suppose that µι → µ in M b
+(K). Then (µι) is a tight

net (see [15, paragraph 1.2.20(2)]), thus (ii) follows from (iii) (where D(·)x ∈
Cb(K,X) by (i)), Lemma 2.3, and Lemma 2.4. �

Let H be a complex Hilbert space with inner product 〈·, ·〉, and let L(H) be
the Banach ∼-algebra of bounded linear operators on H. Recall that M b(K) is a
Banach ∼-algebra with ∼ as in Theorem 2.2.

Definition 3.9. A representation of a hypergroup K on H is a mapping D :
M b(K) → L(H) such that

(i) D(εe) = I,
(ii) D is a ∼-representation of the Banach ∼-algebra (M b(K), ∗,∼),
(iii) for each x, y ∈ H, µ 7→ 〈D(µ)x, y〉 is continuous on M b

+(K) with respect
to the weak topology.

Remark 3.10. HereD is a∼-representation and thus contractive, that is, ‖D(µ)‖ ≤
‖µ‖ for all µ ∈ M b(K) (see [14, Theorem 21.22]); indeed, contractivity also fol-
lows from the C∗-identity ‖D(µ)‖2 = ‖D(µ∼ ∗ µ)‖ and Proposition 3.8(i). This
refinement of Proposition 3.8(i), however, is not possible for a representation of
convolution in general: for K a hypergroup but not a group, consider for exam-
ple (see Section 4) the translation operator function S : K → L(H), where
H = B = L2(K, g2m−) with g = 1 + ϕ, ϕ ∈ Cc(K), ϕ ≥ 0, a function depending
only on (K, ∗). (For D a representation of a hypergroup, Proposition 3.8(ii) is
shown in [17, Lemma 11.3B].)

Now the proof of the following two theorems is straightforward.

Theorem 3.11. Suppose that D : M b(K) → L(X) is a representation of convo-
lution. Then the restriction D|K = D|{εt,t∈K} is a multiplicative operator function
S : K → L(X) such that

(i) S is uniformly bounded.

Conversely, a multiplicative operator function S : K → L(X) satisfying (i) can
be extended uniquely to a representation of convolution D : M b(K) → L(X) via
the formula

D(µ)x =

∫
K

S(t)xµ(dt), x ∈ X

for all µ ∈ M b(K).

Theorem 3.12. Suppose that D : M b(K) → L(H) is a representation of hyper-
group. Then the restriction D|K = D|{εt,t∈K} is a multiplicative operator function
S : K → L(H) such that

(i) S is uniformly bounded, and
(ii) S(t−) = (S(t))∼ for all t ∈ K.

Conversely, a multiplicative operator function S : K → L(H) satisfying (i) and
(ii) can be extended uniquely to a representation of hypergroup D : M b(K) →
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L(H) via the formula

D(µ)x =

∫
K

S(t)xµ(dt), x ∈ H

for all µ ∈ M b(K).

The following theorem shows that it is no loss of generality to suppose condi-
tions (i) and (iii) in Definition 3.1 of a multiplicative operator function (see also
Definition 2.1 in [26]). The proof runs as in [14, Theorem 21.2].

Theorem 3.13. Let S : K → L(X) be an operator function satisfying condition
(ii) of Definition 3.1. Then X is the direct sum of closed invariant subspaces X0

and X1 such that

(i) S(t)X0 = {0} for all t ∈ K,
(ii) S1 : K → L(X1), t 7→ S(t)|X1 is a multiplicative operator function.

Similar statements are true for Definition 3.7 and Definition 3.9; that is, the
assumption D(εe) = I is made without loss of generality, for the proofs use the
fact that (3.2) in the proof of Proposition 3.8 does not depend on D(εe) = I.

3.2. Strong and uniform continuity. First of all, we deliver a proof of Theo-
rem 3.4. Then we derive criteria for uniform continuity.

Lemma 3.14. Suppose that S is a multiplicative operator function in the sense
of Definition 3.2. Then ‖S(·)‖ is locally bounded.

Proof. Let C be a compact subset of K, and let V0 be a relatively compact
neighborhood of e. Suppose that x∗ ∈ X∗ and that x ∈ X.

(1) For all t ∈ C and an arbitrary nonvoid open subset V of V0, we have∫
K

∫
K

∣∣x∗(S(r)x)∣∣(εt ∗ εs)(dr) 1

m(V )
1V (s)m(ds)

=

∫
K

∣∣x∗(S(s)x)∣∣ 1

m(V )
1V (t

− ∗ s)m(ds)

≤
∥∥x∗(S(·)x)1C∗V0

∥∥
L∞(K,m)

·
∫
K

1

m(V )
1V (t

− ∗ s)m(ds)

=
∥∥x∗(S(·)x)1C∗V0

∥∥
L∞(K,m)

=: M∗

using basic facts about hypergroups from [17]: the first integral exists by Lemma 3.3B,
the first equality is the content of Theorem 5.1D, the support of the integrand is
controlled by Lemma 4.1B, and m is an invariant measure on K.

Thus we find that, for each t ∈ C and any nonvoid open subset V of V0,

m
({

s ∈ V :

∫
K

∣∣x∗(S(r)x)∣∣(εt ∗ εs)(dr) ≤ M∗

})
> 0. (3.3)

(2) Given t ∈ C, we choose V according to Definition 3.2(iii) such that∣∣x∗(S(t)S(s)x)− x∗(S(t)x)∣∣ ≤ 1
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for m-almost everywhere s ∈ V . Using (3.3) we find s ∈ V such that∣∣x∗(S(t)x)∣∣ ≤ 1 +
∣∣x∗(S(t)S(s)x)∣∣

≤ 1 +

∫
K

∣∣x∗(S(r)x)∣∣(εt ∗ εs)(dr)
≤ 1 +M∗.

(3) So we have shown that, for each x∗ ∈ X∗, x ∈ X, there exists a constant
M∗ ≥ 0 such that ∣∣x∗(S(t)x)∣∣ ≤ 1 +M∗

for all t ∈ C. Using the uniform boundedness principle twice, we obtain a constant
M ≥ 0 such that

sup
t∈C

∥∥S(t)∥∥ ≤ M. �

Proof of Theorem 3.4. Without loss of generality, we suppose that S is a [weak–
measurable] multiplicative operator function in the sense of Definition 3.2 (see
the lines preceding Theorem 3.4). Suppose that x ∈ X, without loss of generality
‖x‖ ≤ 1, and t0 ∈ K. Let W ⊂ K be a relatively compact neighborhood of t0;
set M := supt∈W ‖S(t)‖ < ∞ (see Lemma 3.14). Suppose that ε > 0.

(1) Let U be a neighborhood of t0 and V a neighborhood of e such that U ∗V ⊂
W (see [17, Lemma 3.2D]). Referring to Definition 3.2(iii), we may assume without
loss of generality that S(·)x is Pettis-integrable with respect to m on V . Thus
for each ϕ ∈ Cc(V ) = {φ ∈ Cc(K) : supp(φ) ⊂ V } define an element Tϕx ∈ X
through

x∗(Tϕx) =

∫
K

x∗(S(r)x)ϕ(r)m(dr)

for all x∗ ∈ X∗ (the existence of the Pettis integral is easily checked; it can
also be regarded as an immediate consequence of Vitali’s convergence theorem
for the Pettis integral; see [25, Theorem 5.2]). We infer from Definition 3.2(iii)
that x belongs to the weak closure of {Tϕx, ϕ ∈ Cc(V )}. Since {Tϕx, ϕ ∈ Cc(V )}
is convex its weak and norm closure coincide by Mazur’s theorem (see e.g. [28,
Theorem 3.12]). Thus we may choose ϕ ∈ Cc(V ) such that ‖Tϕx− x‖ < ε.

(2) Suppose that t ∈ K and x∗ ∈ X∗. Then

x∗(S(t)(Tϕx)
)
=

∫
K

x∗(S(t)(S(r)x))ϕ(r)m(dr)

=

∫
K

x∗(S(t ∗ r)x)ϕ(r)m(dr)

=

∫
K

x∗(S(r)x)ϕ(t− ∗ r)m(dr),

where the last equality, once again, uses [17, Theorem 5.1D].
Then, after a possible reduction of U , we obtain for all t ∈ U∣∣x∗(S(t)(Tϕx)

)
− x∗(S(t0)(Tϕx)

)∣∣
≤

∫
K

∣∣x∗(S(r)x)∣∣∣∣ϕ(t− ∗ r)− ϕ(t−0 ∗ r)
∣∣m(dr)
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≤
∥∥x∗(S(·)x)1W∥∥

L∞(K,m)
·
∥∥ϕ(t− ∗ ·)− ϕ(t−0 ∗ ·)

∥∥
L1(K,m)

≤ M · ε

according to Corollary 2.9.
(3) Combining Step (1) and Step (2), we obtain∥∥S(t)x− S(t0)x

∥∥ ≤
∥∥S(t)(x− Tϕx)

∥∥+
∥∥S(t)Tϕx− S(t0)Tϕx

∥∥
+
∥∥S(t0)(Tϕx− x)

∥∥
≤ 3M · ε

for all t ∈ U . �

The following theorem gives equivalent criteria for uniform continuity. The
special case K = R+ is considered in Theorem 5.5 of [11], which in turn is
motivated by corresponding investigations of cosine operator functions, dating
back to Kurepa in 1962 [19, Theorem 1] and Sova in 1966 [29, Fundamental
Theorem 3.4].

Theorem 3.15. Let S be a multiplicative operator function. Then the following
conditions are equivalent.

(i) S is uniformly continuous.
(ii) There exists a local m-null set N such that limt→e

t/∈N
S(t) = I in uniform

operator topology.
(iii) For each L ∈ (L(X))∗ there exists a local m-null set N∗ such that

lim t→e
t/∈N∗

L(S(t)) = L(I), and S : K → L(X) is Pettis-integrable with

respect to m in a neighborhood of e.
(iv) S : K → L(X) is locally m-measurable and somewhere invertible-

integrable.

We say a multiplicative operator function S is somewhere invertible-integrable
if there exists a compact set C ⊂ K with m(C) > 0 such that (S(t))−1 exists for
all t ∈ C and 1C(S(·))−1 ∈ L1(K,m,L(X)). This is a generalization of the notion
“not locally null” in [2, Proposition 1.4.33].

Proof. Conditions (ii) and (iii) can be regarded as modifications of Defini-
tion 3.2(iii). Thus, the proof of Theorem 3.4 shows that (ii) and (iii) imply (i);
in both cases it is easy to see that in Step (1) one can find ϕ ∈ Cc(K) such that
‖Tϕ − I‖L(X) < ε.

Condition (iv) and the following proof are derived from [2, Proposition 1.4.33].
Suppose that S satisfies (iv); let C ⊂ K be a compact set with m(C) > 0
such that S(t)−1 exists for t ∈ C and 1CS(·)−1 ∈ L1(K,m,L(X)). Suppose that
t0 ∈ K and U is a relatively compact neighborhood of t0. Then f := 1cl(U)∗CS ∈
L∞(K,m,L(X)) and g := m(C)−11CS

−1 ∈ L1(K,m,L(X)). For every t ∈ U

(f ∗ g−)(t) =
∫
K

f(t ∗ r)g(r)m(dr)

=

∫
K

S(t ∗ r)m(C)−11C(r)S(r)
−1m(dr)
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=

∫
K

S(t)S(r)m(C)−11C(r)S(r)
−1m(dr)

= S(t).

According to Theorem 2.13, f ∗ g− is a continuous function from K to L(X).
It only remains to check that if S : K → L(X) is uniformly continuous then

S is somewhere invertible-integrable. In fact, there exists a neighborhood U of e
such that ‖I−S(t)‖ < 1

2
for all t ∈ U , thus S(t)−1 exists, t 7→ S(t)−1, U → L(X)

is continuous, and ‖S(t)−1‖ ≤ 2 for all t ∈ U . Since open sets are inner regular,
we also find a compact set C ⊂ U with m(C) > 0. �

Note that condition (iii) is always satisfied for all L ∈ {x∗( ·x) : x∗ ∈ X∗, x ∈
X} ⊂ (L(X))∗, which is a norming set for L(X). However, in contrast to the
situation for cosine operator functions, measurability of S : K → L(X) itself is
in general not sufficient for uniform continuity (see Example 10.9 in [11]).

The situation is different if K = G is a locally compact group; here the addi-
tional condition that S is somewhere invertible-integrable is superfluous since
S(t)−1 = S(t−1).

If X is finite-dimensional, then condition (ii) is always satisfied and we obtain
the following corollary.

Corollary 3.16. If X is finite-dimensional, then every (matrix-valued) multi-
plicative operator function S : K → L(X) is uniformly continuous.

4. Translation operator functions on homogeneous Banach spaces

We show that translation operator functions on homogeneous Banach spaces
are examples of multiplicative operator functions. This setting contains weakly
stationary processes indexed by hypergroups, see below, and elementary but
important examples of C0-groups, cosine operator functions, and more generally
Sturm–Liouville operator functions (see [11, Section 9]).

First of all, we define the notion of a homogeneous Banach space with respect
to an arbitrary hypergroup in the spirit of Katznelson [18]. Our notion is more
general than the notion introduced by Fischer and Lasser in [9] for the dual
Jacobi polynomial hypergroup. To obtain multiplicative operator functions, it is
necessary to consider right translations. We use throughout that several results
about left translations can be transferred to right translations by involution (and
vice versa). So instead of the left Haar measure m we have to use the right Haar
measure m−.

Definition 4.1. A linear subspace B ⊂ L1
loc(K,m−) with norm ‖ · ‖B is called

homogeneous Banach space if the following conditions are satisfied.

(i) B is complete with respect to ‖·‖B and for each compact set C ⊂ K there
exists L ≥ 0 such that

‖f |C‖1 ≤ L‖f‖B

for all f ∈ B.
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(ii) For each f ∈ B, t ∈ K it is Ttf ∈ B and for each compact set C ⊂ K
there exists M ≥ 0 such that

‖Ttf‖B ≤ M‖f‖B
for all f ∈ B and t ∈ C.

(iii) For each f ∈ B the mapping t 7→ Ttf , K → B is continuous.

Remark 4.2. A simple generalization of this definition is to allow vector-valued
functions, that is, to considerB ⊂ L1

loc(K,m−, Y ) with Y some Banach space (this
is used in Example 4.9). All subsequent results and proofs concerning homoge-
neous Banach spaces can immediately be transferred to this more general setting,
using the results of Section 2.2.

The following theorem introduces the aforementioned class of multiplicative
operator functions. Its proof relies on Lemma 4.6 and will be conducted after-
wards.

Theorem 4.3. Let X = B be a homogeneous Banach space. Then S : t 7→ Tt,
K → L(B) is a multiplicative operator function.

Definition 4.4. We call such a multiplicative operator function a translation oper-
ator function.

Proposition 4.5. Given t, s ∈ K and f ∈ Cb(K), we have, for all u ∈ K,

(TtTsf)(u) =

∫
K

Trf(u)(εt ∗ εs)(dr).

This proposition is a simple consequence of associativity of convolution and is
taken from [22, Proposition 1.1.8].

Lemma 4.6. Suppose that f ∈ L1
loc(K,m−) and that t, s ∈ K. Then

TtTsf =

∫
K

Trf(εt ∗ εs)(dr)

in L1
loc(K,m−), where the right-hand side is to be read in the sense of distributions;

that is, 〈∫
K

Trf(εt ∗ εs)(dr), ϕ
〉
=

∫
K

〈Trf, ϕ〉(εt ∗ εs)(dr)

for all ϕ ∈ Cc(K), where 〈·, ϕ〉 =
∫
K
·ϕdm−.

Proof. Suppose that f ∈ L1
loc(K,m−), t, s ∈ K, and choose an arbitrary ϕ ∈

Cc(K). The space L1
loc(K,m−) is invariant under right translations; right transla-

tion is a continuous operation on L1(K,m−) and thus the mapping r 7→ 〈Trf, ϕ〉,
K → C is continuous (see Proposition 2.8 and [17, Lemma 3.2B]). Note that
functions in L1

loc(K,m−) are determined uniquely through 〈·, ϕ〉, ϕ ∈ Cc(K). So
it remains to show that∫

K

(TtTsf)(u)ϕ(u)m
−(du) =

∫
K

∫
K

(Trf)(u)ϕ(u)m
−(du)(εt ∗ εs)(dr). (4.1)
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Therefore we may assume without loss of generality that f ∈ L1(K,m−). If
f ∈ Cb(K), then (4.1) holds true by Proposition 4.5 and Fubini’s theorem. Finally,
use the fact that Cc(K) is dense in L1(K,m−). �

Proof of Theorem 4.3. The only thing to prove is the functional equation. Sup-
pose that f ∈ B and that t, s ∈ K. Then TtTsf ∈ B, the B-valued Bochner
integral

∫
K
Trf(εt ∗ εs)(dr) ∈ B exists, and we have to show that they are equal

in L1
loc(K,m−). Therefore, note that 〈·, ϕ〉 =

∫
K
·ϕdm− ∈ B∗ for all ϕ ∈ Cc(K)

by Definition 4.1(i), and then apply Lemma 4.6. �

Remark 4.7. Left translations do in general not form a multiplicative opera-
tor function. Consider the group G of automorphisms on a finite-dimensional
Banach space X endowed with the uniform operator topology. Provided X is at
least 2-dimensional, there exist t, s ∈ G such that ts 6= st. Set B = C0(G) and
choose f ∈ C0(G) with f(ts) 6= f(st); it is (T tT sf)(e) = f(st) and (

∫
K
T rf(εt ∗

εs)(dr))(e) = f(ts).

We give some examples of homogeneous Banach spaces. Let Cub(K) ⊂ Cb(K)
denote the set of uniformly continuous and bounded functions on K. By uni-
formly continuous we mean β-uniformly continuous in the sense of [2, Defini-
tion 1.2.26(ii)]; that is, for each t0 ∈ K and ε > 0 there exists a neighborhood Ut0

of t0 such that ‖Ttf −Tt0f‖∞ < ε for all t ∈ Ut0 . Note that Cub(K) endowed with
‖ · ‖∞ is a Banach space. Indeed, Cub(K) is a closed linear subspace of Cb(K)
since ‖Ttf‖∞ ≤ ‖f‖∞ for all f ∈ Cb(K).

Proposition 4.8. The spaces C0(K), Cub(K) with ‖ · ‖∞, and Lp(K,m−), 1 ≤
p < ∞ with ‖ · ‖p are homogeneous Banach spaces. In these cases translations are
contractions.

Proof. This is easily verified using the results of Section 2.2. We only stress that
given f ∈ Cub(K) and t ∈ K it is Ttf ∈ Cub(K). If K is a commutative hyper-
group, translations commute and this is clear by definition. For the general case
we note that for s ∈ K

TsTtf =

∫
K

Tuf(εs ∗ εt)(du)

read in the Banach space Cb(K). Indeed, the Cb(K)-valued Bochner integral on
the right-hand side exists since the integrand is continuous by choice of f , and
the equality holds pointwise by Proposition 4.5. In other words

TsTtf = g(s ∗ t),

where g := T•f ∈ C(K,Y ) with Y = Cb(K). Thus Corollary 2.5 yields s 7→
Ts(Ttf), K → Y continuous, that is Ttf ∈ Cub(K) by definition. �

Examples of translation operator functions are provided by K-weakly station-
ary processes, as introduced by Lasser and Leitner in [23] and [24] (see [16] for
an exposition on random fields which can be treated by means of hypergroups).
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Example 4.9. Let K be a hypergroup and let (Ω,F , P ) be a probability space.
A family (Xt)t∈K ⊂ L2(Ω,F , P ) is called a K-weakly stationary process if the
following conditions are satisfied.

(i) The means are constant, i.e. there exists a constant c ∈ C such that
E[Xt] = c for all t ∈ K.

(ii) The covariance function

d : K ×K → C

(t, s) 7→ E
[
(Xt − c)(Xs − c)

]
is continuous and bounded and satisfies

d(t, s) =

∫
K

d(r, e)(εt ∗ εs−)(dr)

for all t, s ∈ K.

In the following we always assume that K is a commutative hypergroup and any
K-weakly stationary process is centered (i.e. c = 0).

Let (Xt)t∈K ⊂ L2(Ω,F , P ) be a K-weakly stationary process. In [24, Section 2],
Leitner introduces the notion of a translation operator Tws

t for t ∈ K on (Xs)s∈K .
For a shortcut, his definition is equivalent to

Tws
t Xs :=

∫
K

Xr(εt ∗ εs)(dr) = (TtX )(s), (4.2)

where

X : K → L2(Ω,F , P )

t 7→ Xt

(4.3)

is a continuous transformation (see [24, Theorem 2(8)], applying 6 to Xt = Tws
t Xe).

Further, following [24, Theorem 2], ‖Tws
t ‖ ≤ 1 for all t ∈ K, and thus the trans-

lation operators Tws
t are extended to

H := cl‖·‖L2(Ω,F,P )
lin{Xs, s ∈ K},

the closure of the linear span of {Xs, s ∈ K} in L2(Ω,F , P ); then the mapping

t 7→ Tws
t , K → L(H) (4.4)

is strongly continuous,

Tws
e = I,

Tws
t Tws

s X =

∫
K

Tws
r X (εt ∗ εs)(dr)

for all t, s ∈ K and X ∈ H, and

(Tws
t )∼ = Tws

t− (4.5)

for all t ∈ K.
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In terms of our terminology,

S : K → L(H)

t 7→ Tws
t

is a uniformly bounded multiplicative operator function which can be extended
to a ∼ representation by (4.5), see Theorem 3.12. Conversely, suppose that H ⊂
L2(Ω,F , P ) is a Hilbert space such that E[X ] = 0 for all X ∈ H, and let S :
K → L(H) be a uniformly bounded multiplicative operator function which is the
restriction of a ∼ representation (in the sense of Theorem 3.12). Then for each
X ∈ H,

Xt := S(t)X (4.6)

defines a K-weakly stationary process (Xt)t∈K (cf. [24, p. 325]).
Finally, given a K-weakly stationary process (Xt)t∈K , associate X as defined

in (4.3), then X ∈ Cub(K,L2(Ω,F , P )), which can easily be seen from (4.6). In
particular, with Remark 4.2 in mind, each K-weakly stationary process (Xt)t∈K
can be identified with the orbit S(·)X of the translation operator function S on
the (generalized) homogeneous Banach space B = Cub(K,L2(Ω,F , P )).

5. Abstract Cauchy problems

We show that under suitable conditions multiplicative operator functions solve
abstract Cauchy problems. Concrete examples are discussed in the next section.

Assumptions. Let K be a commutative hypergroup with dual space K̂. Let J ⊂
M b

+(K) be a family of bounded nonnegative nonzero measures with compact
support, and suppose that for any neighborhood U of e in K there exists J ∈ J
such that supp(J ) ⊂ U . Further, suppose that for each J ∈ J there exists δJ ∈
M b(K) with compact support such that for each χ ∈ supp(π) ⊂ K̂ (supp(π) the
support of the Plancherel measure) there exists a constant cχ such that∫

K

χ dδJ = cχ

∫
K

χ dJ

for all J ∈ J. In this situation, we say K is a hypergroup with associated integral
equation.

We remark in advance that every commutative hypergroup has an associated
integral equation, namely, its functional equation (see Example 6.1). Recall that
C (K) denotes the collection of nonvoid compact subsets of K endowed with the
Michael topology (see (2.1)).

Definition 5.1. Let S : K → L(X) be a multiplicative operator function on a
hypergroup K with associated integral equation. Then the universal generator
A0 is defined by

A0x := limJ
supp(J )→{e} in C (K)

J∈J

∫
K
S(·)x dδJ

J (K)

with domain

D(A0) := {x ∈ X : lim . . . exists}.
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The term universal generator emphasizes that its definition does not depend
on the properties of a concrete integral equation or abstract Cauchy problem;
however, for specific examples, the notion of an adapted generator, or generator
for short, may be more convenient (see (6.1) and (6.8)).

Proposition 5.2. Let S : K → L(X) be a multiplicative operator function on a
hypergroup K with associated integral equation, and let A0 be its universal gener-
ator. Suppose that x ∈ D(A0). Then S(t)x ∈ D(A0) and A0S(t)x = S(t)A0x for
all t ∈ K.

Proof. The values of S commute since K is commutative. So the assertion is clear
by Definition 5.1 and Hille’s theorem (see, e.g., [5, pp. 47–48, Theorem 6]). �

Theorem 5.3. Let S : K → L(X) be a multiplicative operator function on a
hypergroup K with associated integral equation, and let A0 be its universal gen-
erator. Suppose that x ∈ X. Then

∫
K
S(·)x dJ ∈ D(A0) and∫

K

S(·)x dδJ = A0

∫
K

S(·)x dJ

for all J ∈ J.

Proof. (1) Suppose that j , J ∈ J. Then for all χ ∈ supp(π)

cχ

∫
K

χ dj

∫
K

χ dJ =

∫
K

χ dδj

∫
K

χ dJ

=

∫
K

∫
K

∫
K

χ d(εt ∗ εs) δj (dt) J (ds) (5.1)

and ∫
K

χ dj cχ

∫
K

χ dJ =

∫
K

χ d j

∫
K

χ d δJ

=

∫
K

∫
K

∫
K

χ d(εt ∗ εs) j(dt) δJ (ds). (5.2)

The measures defined by the right-hand sides of (5.1) and (5.2) coincide since the
Fourier–Stieltjes transform is injective (see [2, Theorem 2.2.24]).

(2) Suppose that x ∈ X. Reading Step (1) backwards, as far as possible, with
the vector-valued function S(·)x in place of χ, we arrive at∫

K

S(·) dδj

∫
K

S(·)x dJ =

∫
K

S(·) dj

∫
K

S(·)x dδJ , (5.3)

where we have used that S is multiplicative (and Hille’s theorem); the operator-
valued integrals are defined in the strong sense. Dividing (5.3) by j(K) > 0, and
taking the limit supp(j) → {e} in C (K), j ∈ J, the right-hand side gives

1

j(K)

∫
K

S(·) dj

∫
K

S(·)x dδJ =

∫
K

S(s)
1

j(K)

∫
K

S(t)x j(dt) δJ (ds)

→
∫
K

S(s)x δJ (ds),



366 F. FRÜCHTL

where we have used that j are nonnegative, nonzero measures. Thus the left-hand
side of (5.3) yields

∫
K
S(·)x dJ ∈ D(A0) and

A0

∫
K

S(·)x dJ =

∫
K

S(·)x dδJ . �

The following conclusions of Theorem 5.3 are almost copies of those in the
Sturm–Liouville setting (see [11]); in the cosine setting the ideas can be traced
back to Sova and Kurepa. The proofs are included for the sake of completeness.

Remark 5.4. For x ∈ D(A0), the universal generator A0 and the integral commute,
that is

A0

∫
K

S(·)x dJ =

∫
K

S(·)A0x dJ .

Indeed, this can be seen from (5.3), using∫
K

S(·) dδj

∫
K

S(·)x dJ =

∫
K

S(s)

∫
K

S(t)x δj (dt) J (ds).

Theorem 5.5. Let S : K → L(X) be a multiplicative operator function on a
hypergroup K with associated integral equation. Then its universal generator A0

is densely defined and closed.

Proof. To show that A0 is densely defined, choose an arbitrary x ∈ X and ε > 0.
Then there exists j ∈ J close to {e} in C (K) such that ‖x− xj‖ < ε where

xj :=
(

j(K)
)−1

∫
K

S(·)x dj .

Theorem 5.3 yields xj ∈ D(A0) and

A0xj =
(

j(K)
)−1

∫
K

S(·)x dδj .

Hence A0 is densely defined.
To show that A0 is closed, assume (xn)n∈N ⊂ D(A0), x, y ∈ X and xn → x,

A0xn → y as n → ∞. Applying Theorem 5.3 to xn, n ∈ N, using Remark 5.4,
and taking the limit n → ∞, we obtain for any j ∈ J∫

K

S(·)x dδj =

∫
K

S(·)y dj .

It follows from Definition 5.1 that x ∈ D(A0) and A0x = y. �

Remark 5.6. The proof above also shows, by iteration, that D(An
0 ) is dense in X

for all n ∈ N.

Theorem 5.7. Let S : K → L(X) be a multiplicative operator function on a
hypergroup K with associated integral equation, and let A0 be its universal gen-
erator. Then limt→0+ S(t) = I in uniform operator topology if and only if S is
uniformly continuous. In this case, A0 is bounded.
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Proof. The first equivalence is content of Theorem 3.15. So suppose that S is
uniformly continuous. According to Theorem 5.3 it is sufficient to show that
there exists j ∈ J such that the operator

∫
K
S(·) dj , defined as Bochner integral

in L(X), is invertible. Therefore take j ∈ J close to {e} in C (K) such that∥∥∥I − (
j(K)

)−1
∫
K

S(·) dj
∥∥∥ ≤

(
j(K)

)−1
∫
K

∥∥I − S(·)
∥∥ dj <

1

2
. �

In the general setting of Theorem 5.7, the converse assertion is not true, that is
if A0 is bounded then S may or may not be uniformly continuous, see Example 6.1.

6. Examples

The results of the previous section take quite different forms when applied to
specific hypergroups. The following list reflects examples found in the literature
as well as examples of current or possible future interest.

6.1. Abstract functional equations, problems of discrete type. The first
example is somehow of pedagogical nature, stating that given a multiplicative
operator function on an arbitrary commutative hypergroup the functional equa-
tion itself can be regarded as an abstract Cauchy problem. Interesting enough,
the discrete setting contains a model for birth and death processes described by
orthogonal polynomials, see the following subexample.

Example 6.1 (Abstract functional equation). LetK be a commutative hypergroup
and suppose that t0 ∈ K. Set J := {εs, s ∈ K} and δεs := εt0 ∗ εs for each

εs ∈ J. Further, given χ ∈ K̂ set cχ := χ(t0). This mimics the functional equation
χ(t0 ∗ s) = χ(t0)χ(s), i.e. ∫

K

χ dδεs = cχ

∫
K

χ dεs

for all εs ∈ J.
Let S be a multiplicative operator function on K. Then for each x ∈ X,

A0x = lims
{s}→{e} in C (K)

s∈K

∫
K
S(·)x dδεs
εs(K)

= lim
s→e

S(t0)S(s)x

1
= S(t0)x,

that is the universal generator is given by

A0 = S(t0) ∈ L(X),

and the corresponding abstract Cauchy problem states that for each x ∈ X

S(t0 ∗ s)x = A0S(s)x

for all s ∈ K.

Example 6.2 (Abstract linear difference equations). This is a special subexample
of Example 6.1 in the discrete setting,K = N0 a polynomial hypergroup, extracted
from [8]. We start with a quick introduction to polynomial hypergroups, see [20],
[21]. Let (an)n∈N, (bn)n∈N, and (cn)n∈N be sequences of nonnegative real numbers
such that an + bn + cn = 1 for all n ∈ N, an, cn > 0 for all n ∈ N, and suppose
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that a0 > 0, b0 ∈ R, and a0+b0 = 1. Let (Rn)n∈N0 be the sequence of polynomials
defined recursively by

R0(t) = 1, R1(t) =
1

a0
(t− b0) and

R1(t)Rn(t) = anRn+1(t) + bnRn(t) + cnRn(t), n ∈ N

with t ∈ R. By construction Rn(1) = 1 for all n ∈ N0. According to Favard’s
theorem, (Rn)n∈N0 is orthogonal with respect to some measure π ∈ M1(R). From
the orthogonality one can deduce that

Rn(t)Rm(t) =
n+m∑

k=|n−m|

g(n,m; k)Rk(t)

for all n,m ∈ N0 and t ∈ R, where g(n,m; k) ∈ R for all k = |n−m|, . . . , n+m
and g(n,m; |n −m|) 6= 0, g(n,m;n +m) 6= 0. Many important and well-known
examples of orthogonal polynomials satisfy the crucial condition

g(n,m; k) ≥ 0 for all k = |n−m|, . . . , n+m.

In this case,

εn ∗ εm =
n+m∑

k=|n−m|

g(n,m; k)εk, n,m ∈ N0

defines the convolution of point measures of a hypergroup K = N0, called poly-
nomial hypergroup with respect to (Rn)n∈N0 , and denoted by (N0, ∗(Rn)). The

neutral element is 0, involution is the identity map, and the dual space N̂0 is
homeomorphic to

DS :=
{
t ∈ R :

∣∣Rn(t)
∣∣ ≤ 1 for all n ∈ N

}
⊂ [1− 2a0, 1].

Let (N0, ∗(Rn)) be a polynomial hypergroup. We consider

R1(t) = ctR0(t) for n = 0,

anRn+1(t) + bnRn(t) + cnRn−1(t) = ctRn(t) for all n ∈ N

as the associated integral equation; here J = {εn, n ∈ N0}, and δε0 = ε1, δεn =
anεn+1 + bnεn + cnεn−1 for all n ∈ N, and t ∈ DS, ct = R1(t).

Let S be a multiplicative operator function on (N0, ∗(Rn)). Then its universal
generator is given by

A0 =

∫
N0

S(·) dδε0
ε0(N0)

= S(1) ∈ L(X),

and the corresponding abstract Cauchy problem takes the form

S(1) = A0S(0) for n = 0,

anS(n+ 1) + bnS(n) + cnS(n− 1) = A0S(n) for all n ∈ N.

In this setting it is convenient to define the (adapted) generator A through

A0 = R1(A); (6.1)
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that is

A = a0A0 + b0 = a0S(1) + b0.

Then it is easy to see that

S(n) = Rn(A)
for all n ∈ N0 (cf. [8, Theorem 1]).

6.2. Problems of compact type. It seems that only few is known about the fol-
lowing classes of problems. The abstract Jacobi problem below occurs in a paper
by Weinmann and Lasser [30] in the context of duality of Lipschitz spaces with
respect to Jacobi translations. It is a special example of abstract Sturm–Liouville
problems of compact type, see the subsequent example.

Example 6.3 (Abstract Jacobi problems). This example is inspired by Section 3
of [30], where the case of translation operator functions on homogeneous Banach
spaces is investigated. Here the associated integral equation arises from dual
Jacobi polynomial hypergroups.

To begin with, let us collect some facts and notation for dual Jacobi polynomial

hypergroups. Let R
(α,β)
n , n ∈ N0, denote the Jacobi polynomials with parameters

(α, β) ∈ J , where J = {(α′, β′) ∈ R2 : α′ ≥ β′ ≥ −1
2
∨ (α′ ≥ β′ > −1 ∧ α′ + β′ ≥

0)}, normalized by R
(α,β)
n (1) = 1. These are orthogonal with respect to π(α,β),

the probability measure on S = [−1, 1] with Lebesgue density w(s) = cα,β(1 −
s)α(1 + s)β, cα,β = 2−α−β−1Γ(α+ β + 2)Γ(α+ 1)−1Γ(β + 1)−1. It has been shown
by Gasper in [13] that there exists a positive linearization formula on S = [−1, 1],
and Lasser in [20, Section 4] has shown that S becomes a hypergroup with dual

space Ŝ = {R(α,β)
n , n ∈ N0}. Its neutral element is 1, and involution is the identity

map. In the remainder, let (α, β) ∈ J be fixed; we drop its notation.
It is well-known that Jacobi polynomials satisfy the differential equation

d

dt

(
w(t)(1− t2)

d

dt
Rn(t)

)
= −n(n+ α + β + 1)w(t)Rn(t), (6.2)

Rn(1) = 1, R′
n(1) = − 1

2(α + 1)

[
−n(n+ α + β + 1)

]
. (6.3)

Integration gives the integral equation

Rn(t)− 1 = −n(n+ α + β + 1)

∫ 1

t

1

w(s)(1− s2)

∫ 1

s

Rn(r)w(r) dr ds,

t ∈ ]− 1, 1]; after integration by parts it takes the form

Rn(t)− 1 = −n(n+ α + β + 1)

∫ 1

t

θ(t, s)Rn(s)π(ds),

where

θ(t, s) :=

∫ s

t

1

w(r)(1− r2)
dr 1(t,1)(s)

and t ∈ ]− 1, 1] (see [30]).
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Suppose now that S is a multiplicative operator function on S = [−1, 1].
It is easily checked that Theorem 5.3 is applicable, thus for every x ∈ X,∫ 1

t
θ(t, s)S(s)xπ(ds) ∈ D(A0) and

S(t)x− x = A0

∫ 1

t

θ(t, s)S(s)xπ(ds)

for all t ∈ ] − 1, 1] (see Lemma 3.4 in [30], for the special case of a translation
operator function on a homogeneous Banach space, and a proof using Fourier
analysis).

The abstract Cauchy problem corresponding to (6.2), (6.3) takes the form

d

dt

(
w(t)(1− t2)

d

dt
S(t)x

)
= A0w(t)S(t)x, t ∈ ]− 1, 1],

S(1)x = x, S ′(1)x = − 1

2(α + 1)
A0x

for x ∈ D(A0).

Example 6.4 (Abstract Sturm–Liouville problems of compact type). Each dual
Jacobi polynomial hypergroup from Example 6.3 is isomorphic to a Sturm–
Liouville hypergroup of compact type. So, more generally, one could consider
this class of hypergroups; examples are provided by Achour–Trimèche, Zeuner,
and Fourier–Bessel hypergroups. (For the first statement, and the examples, see
[2, Examples 3.5.80–3.5.88].)

6.3. Problems of noncompact type. These are of primary interest. The dual-
ity between functional equation and abstract Cauchy problem is well-known for
C0-semigroups and cosine operator functions. Our approach contains C0-groups
and cosine operator functions, and can be extended to Sturm–Liouville operator
functions. The latter are investigated in detail by the author in [11].

Example 6.5 (C0-groups). This is probably the most simple application of The-
orem 5.3. Let K = R be the group of real numbers with addition. The multi-
plicative functions are given by {exp(λ·), λ ∈ C}, consider the associated integral

equation exp(λt) − 1 = λ
∫ t

0
exp(λr) dr, λ ∈ C. Then a multiplicative operator

function S on K = R is a C0-group of operators, Theorem 5.3 yields the abstract
integral equation, and differentiation and Proposition 5.2 give

S ′(t)x = AS(t)x, t ∈ R,
S(0)x = x

for any x ∈ D(A) where A := A0 is the usual generator of the C0-group S; the
(adapted) generator A and the universal generator A0 coincide.

Example 6.6 (Cosine operator functions). Let K = R+ be the cosine hypergroup
on the nonnegative real line, that is the hypergroup with εt ∗ εs = 1

2
εt+s +

1
2
ε|t−s|

for all t, s ∈ R+ and multiplicative functions {cos(λ·), λ ∈ C}. Consider the

associated integral equation cos(λt)− 1 = −λ2
∫ t

0

∫ s

0
cos(λr) dr ds, λ ∈ C. Then a
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multiplicative operator function S on K = R+ is a cosine operator function, and,
similarly as above, Theorem 5.3 yields

S ′′(t)x = AS(t)x, t ∈ R+,

S(0)x = x, S ′(0)x = 0

for any x ∈ D(A) where A := A0 is the usual generator of the cosine operator
function S. This example is contained in Example 6.7 as the special case where
A ≡ 1.

The duality between the operator-valued cosine functional equation and the
abstract Cauchy problem of the second order can be traced back to Sova [29] (see
[1, Sections 3.14–3.16] for an introduction to cosine operator functions).

Example 6.7 (Abstract Sturm–Liouville problems on R+). Let us give a brief out-
line of the principal idea (see [11] for further details). Here K = R+ is a Sturm–
Liouville hypergroup on the nonnegative real line as investigated by Zeuner in
[31], [32] (see [10] for an asymptotic perspective).

A Sturm–Liouville hypergroup (R+, ∗(A)) is a hypergroup K = R+ together
with a function A : R+ → R+ (satisfying several conditions). Its multiplicative
functions are exactly the solutions Φλ, λ ∈ C of

LΦλ(t) = (λ2 − ρ2)Φλ(t), t > 0, (6.4)

Φλ(0) = 1, Φ′
λ(0) = 0, (6.5)

where L = d2/dt2 + A′(t)/A(t) · d/dt denotes the associated Sturm–Liouville
operator and ρ := 1

2
limt→∞A′(t)/A(t) ≥ 0 is the index of (R+, ∗(A)).

Now integration of (6.4) and (6.5) gives an associated integral equation, Theo-
rem 5.3 yields an abstract integral equation, and differentiating again one obtains
the abstract Sturm–Liouville equation

LS(t)x = (A− ρ2)S(t)x, t > 0, (6.6)

S(0)x = x, S ′(0)x = 0, (6.7)

where x ∈ D(A) and
A := ρ2 + A0 (6.8)

is called the adapted generator or shortly the generator (see [11]). In particular,
(6.6) and (6.7) contains cosine, Bessel, and Legendre operator functions as special
cases.
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Zbl 1226.34002. MR2798103. 347, 371

2. W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups,
de Gruyter Stud. Math. 20, de Gruyter, Berlin, 1995. Zbl 0828.43005. MR1312826. 349,
351, 353, 359, 362, 365, 370

3. Y. A. Chapovsky, Existence of an invariant measure on a hypergroup, preprint,
arXiv:1212.6571v1 [math.GR]. 350

http://www.emis.de/cgi-bin/MATH-item?1226.34002
http://www.ams.org/mathscinet-getitem?mr=2798103
http://www.emis.de/cgi-bin/MATH-item?0828.43005
http://www.ams.org/mathscinet-getitem?mr=1312826
http://arxiv.org/abs/arXiv:1212.6571v1


372 F. FRÜCHTL
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11. F. Früchtl, Sturm-Liouville operator functions, in preparation. 347, 348, 359, 360, 366, 370,
371
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