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ABSTRACT. We generate a representation of the Toeplitz C*-algebra T4, on
a Hilbert space H, that encodes the orbit of an escape point z € I of a
Markov interval map f, with transition matrix Ay. This leads to a family
of representations of T4, labeled by points in all intervals I. The underlying
dynamics of the interval map are used in the study of this family.

1. INTRODUCTION

The Toeplitz algebra T4 of a finite (0,1)-matrix A is an extension of the
Cuntz—Krieger algebra O, in which the Cuntz—Krieger relations are replaced by
inequalities (see [8], [10], [11]). In [4] and [3], we produced and studied orbit rep-
resentations m, of the Cuntz—Krieger algebra O4, associated with the transition
(0, 1)-matrix A arising from a Markov interval map f. Using f-transformations
f(z) = Bx (mod 1), we were able to recover Bratteli and Jorgensen permutation
representations of the Cuntz algebra (where Ay = (a;;) is the full matrix a;; =1
for all ’s and j’s) (see [2]). The representation m, acts on a Hilbert space H, that
naturally arises from the generalized orbit of a point x, provided = remains in the
domain of f under the iteration of f.

In the following we consider the case where the point x is in the escape set of
[ (i.e., f5(x) € I does not belong to the domain of f for a certain k € N). We
can likewise define a Hilbert space H, from the backward orbit of x and partial
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isometries on H,. If x is in the escape set, we prove that these operators do
define a representation v, of the Toeplitz algebra T4, on H, (which is no longer a
representation of the Cuntz-Krieger algebra Oy, ). The backward orbit of x has
a natural structure of a rooted tree, where the root is the point in the escape set.
We show that these rooted trees together with the underlying dynamics can be
used to understand when two such representations of 7T, are unitarily equivalent.
We show that these representations v, can be recast in a Fock-like space F,, as
in the original spirit of [7, Section 5.2].

Therefore, we now have a representation of T4, for each point in I (either a
point is in the escape set or it remains in the domain of f for any iteration of f).
We show that the representations m, of Ta, arising from those of O4, produced
in [4] and [3] are not unitarily equivalent to the representations v, of T4, when y
is in the escape set.

This article is organized as follows. In Section 2, we review the definitions of
the operator algebras (Cuntz—Krieger and Toeplitz algebra) that we consider in
the main portion of the article, together with the main tools from the interval
map dynamical systems side. In particular, we review the class of Markov interval
maps M(I) as in Definition 2.1 and the transition matrix A; that codifies the
transitions among the subintervals Iy,..., I,.

In Section 3, we extend the symbolic dynamics to the case of interval maps with
escape sets and, in particular, we introduce in Definition 3.2 a matrix A; which
extends Ay and which is labeled by both the subintervals I, ..., I,, and the escape
subintervals Fy,..., E, 1, adding one more symbol for each escape subinterval.
Then we provide some examples of such interval maps (with nonempty escape
sets) and draw some conclusions in the rooted tree structures of the backward
orbit of escape set points.

In Section 4.1, we fix an interval map f € M([) with transition n x n matrix
Ay and a point x € E; in the escape set of f. Then in (4.1) we define the partial
isometries 171, ...,7, acting on the Hilbert space H, attached to the backward
orbit of z. We then show in Lemma 4.1 that indeed these operators generate
a representation v, of the Toeplitz algebra T4,. Since the matrix Ay is aperi-
odic, we prove in Proposition 4.4 that v,(74,) is an extension of the universal
Cuntz-Krieger algebra O, by the C*-algebra K (H,) of the compacts operators
on H,.

In Section 4.2, if we are given two points x and y in E¢, then Theorem 4.5 shows
that the associated Toeplitz representations v, and v, are unitarily equivalent
whenever the rooted trees of  and y are isomorphic. We also remark that if
y is not in the escape set, then the associated representation 7, of the Toeplitz
algebra T4, that arises from the Cuntz-Krieger algebra O 4, on H,, is not unitarily
equivalent to any representation v, for z € Ey.

In Section 4.3, we relate our representations v, of the Toeplitz algebra with
another one that is constructed in a Fock space F, associated with the matrix
Ay, remarking that they are unitarily equivalent.
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2. BACKGROUND MATERIAL

In this section, we provide some useful tools, starting with the operator algebras
we obtain from dynamical systems that underline the interval maps we consider
in this article.

2.1. Toeplitz C*-algebra from a finite matrix. A representation 7 of a
x-algebra A on a complex Hilbert space H is a *-homomorphism m: A — B(H)
into the x-algebra B(H) of bounded linear operators on H. Usually, representa-
tions are studied up to unitary equivalence. Two representations 7 : A — B(H)

and T : A — B(H) are (unitarily) equivalent if there is a unitary operator
U: H — H (ie., if U is a surjective isometry) such that Un(a) = 7(a)U for
every a € A.

A representation m : A — B(H) of some *-algebra is said to be irreducible
if there is no nontrivial subspace of H invariant with respect to all operators
m(a) with a € A. Then (see, e.g., [12, Proposition 3.13.2]) 7 is irreducible if and
only if each nonzero vector £ € H is cyclic for m(.A); that is, if 7(A){ = H. The
representation is called faithful if it is injective.

Here we deal with a special family of *-algebras defined as follows. Let A = (a;;)
be an n x n (0, 1)-matrix such that each row and column has at least one nonzero
entry. The Cuntz—Krieger algebra O4 associated with the matrix A satisfying a
condition (I) was defined in [5] as the universal C*-algebra generated by (nonzero)
partial isometries sq, ..., s, satisfying

S;S; :Zaijsjs;, i=1,...,n, Zsisf =1, (2.1)
J 7

where 1 denotes the identity. In [1], an Huef and Raeburn introduced the universal
C*-algebra associated to any finite (0,1)-matrix with no zero row or column
(following [6], which is a faithful realization of an Huef and Raeburn’s universal
Cuntz—Krieger algebra). Readers familiar with the work of Cuntz and Krieger will
note that sis; = 0 for ¢ # j and s;s; = a;;5;5;. Moreover, the range projections
p; = s;s; and support projections g; = s;s; obey the following:

pip; = 0ijpi, %45 = 4%, ¢iSj = ;jS;. (2.2)
The C*-algebra O, is uniquely determined by the relations (2.1) if A satisfies
Cuntz and Krieger’s condition (I) (see [5, Theorem 2.13]). A special case is the
Cuntz algebra O,, when A is full: a;; = 1 for all 7 and j.

For the same (0,1)-matrix A, a Toeplitz—Cuntz—Krieger A-family in a C*-
algebra B is a pair (t,q) where t: i — t; assigns to each i = 1,...,n a partial
isometry t; € B, and ¢ : i — ¢; assigns to each ¢ = 1,...,n a projection ¢; € B
such that (see [13]):

(TCK1) titi L5ty foralld,j=1,...,n withi# j,
(TCK2) tit;=¢q; foreachi=1,...,n,

(TCK3) Z aijtit; < tit; for each i.
j=1
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Then . ¢;t; < 1 and (t/t;)(¢;t;) = t;t] if a;; = 1. Readers acquainted with the
work of Cuntz and Krieger [5] will notice that (TCK1), (TCK2), and (TCKS3)
are satisfied by the partial isometries of the Cuntz—Krieger algebra O4 (see
(2.2)). Moreover, there is a C*-algebra T, generated by a Toeplitz—Cuntz—Krieger
A-family (¢, q) which is universal (see [10]) in the sense that, given any Toeplitz—
Cuntz—Krieger A-family (s,p) in a C*-algebra B, there exists a homomorphism
Tiq @ Ta — B such that m (¢;) = s; and m 4(g;) = p; for all i. This universal
C*-algebra Ty is called the Toeplitz algebra of the matriz A.

It is clear that the Cuntz—Krieger algebra O, is a quotient of the Toeplitz
algebra T4. In particular, a representation of Q4 gives rise to a representation of
Ta.

The Toeplitz algebra T4 can be nicely described in the context of graph alge-
bras, as was done in [11]: for that we note that, for any n x n matrix A = (a;;)
with entries in {0, 1}, we can construct a directed graph G4 = (G, GY, r, s) such
that the vertex set G% = {1,...,n} and G} = {e;; : s(e;;) = i and r(e;y) =
jif a;; = 1} (i.e., we draw an edge e;; from ¢ to j if and only if a;; = 1), where s
and r are the source and range maps, respectively. For completeness, we briefly
provide the definition of the graph C*-algebra C*(FE) associated to this graph G4
or to a more general row-finite (directed) graph E: it is the universal C*-algebra
generated by partial isometries s, with e € £ and mutually orthogonal projec-
tions ¢, with v € E° such that

StSe = (r(e)s Qo = Z sest if and only if s7'(v) # 0.

ecEl:s(e)=v

Then, thanks to [11, Theorem 3.7], the above Toeplitz algebra T4 is canonically

isomorphic to the graph algebra C*(G 4), where G4 extends G4 by adding a sink
v’ for every v € GY as well as edges to this sink from each vertex (in GY) that
feeds into v.

Note that a representation m of the Cuntz—Krieger algebra Q4 on a Hilbert
space H is a representation of the Toeplitz algebra T, (by the universality of 74)
on the same Hilbert space H.

2.2. Symbolic dynamics for interval maps. Let ' = {co,ci,cf,...,¢, 1,
¢t 1,ca} be an ordered set of 2n real numbers such that
c<c <cf <cg << <o <cp. (2.3)
Given I' as above, we define the collection of closed intervals Cr = {1y, ..., I,}
with
L=lco,er)s - L=y, c5 ] I =)y, el (2.4)
We also consider the collection of open intervals { £, ..., E, 1}, each one defined
by
By =]er e, EBuoy =]e, 1,60 ] (2.5)

in such a way that I := [co, ¢,] = (U, ;) U (U=, E;).

]:
We now consider the interval maps for which we can construct partitions of

the interval I as in (2.3), (2.4), and (2.5).
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Definition 2.1 (see [4, Definition 1]). Let I C R be an interval. A map f is in the
class M(I) if it satisfies the properties (P1), (P2), (P3'), (P4) presented below,
and it is in the class PL([) if it satisfies the properties (P1), (P2), (P3), (P4).
(P1) [Existence of a finite partition in the domain of f] There is a partition
C ={1,...,1,} of closed intervals with #(I;N1;) < 1fori # j, dom(f) =
Uj_, I; € I, and im(f) = I.
(P2) [Markov property] For every i = 1,...,n the set f(L;) N (U,_, ;) is a
nonempty union of intervals from C'.
(P3) [Piecewise linear and expansive map] We have fi;, € C'(I;), |f\1 (z)| =

d; >1,foreveryx € l;, j=1,...,n.
(P3') [Expansive map] We have fi, € C'(I;), monotone and |fir, (@) > 0> 1
for every x € I;,j = 1,...,n, and some b.

(P4) [Aperiodicity] For every interval I; with j = 1,...,n there is a natural
number ¢ such that dom(f) C fI(I;).

Clearly, PL(I) C M(I). The minimal partition C' satisfying Definition 2.1 is
denoted by Cy. We remark that the Markov property (P2) allows us to encode
the transitions between the intervals in the so-called (Markov) transition n x n
matrix Ay = (a;;), defined as follows:

. — {1 if £(I,) D I, 26)

0 otherwise.

A map f € M(I) uniquely determines (together with the minimal partition
Cr=A{6L,....1,}):
(i) the f-invariant set Q; :={x € I : fk(x) € dom(f) forall k =0,1,.. }
(ii) the collection of open intervals {Ey, ..., E,_;} such that I\ ", I; Uiy 4
Ui B

(iii) the tran81t10n matrix Ay = (aij)ij=1

For the proof of (i) see [9]; (ii) is stralghtforward; (iii) is a consequence of the
Markov property (P2) as in Definition 2.1.

Matrices A for which there exists a positive integer m such that all the entries
of A™ are nonzero are called aperiodic (or primitive). We note that the matrix
Ay is aperiodic (thus irreducible) because f € M(I) (see Definition 2.1).

Definition 2.2. The address map ad : |J;_, int(I;) — {1,2,...,n} is defined as
follows: ad(x) = i if x € I;, where 1nt(I ) denotes the interior of I;. The itinerary
map ity : U" Lint(7;) — {1,2,...,n} is defined as ity(z) = ad( Yad(f(z)) x

ad(f*(z))--
Note that €2y is the set of points that remain in dom(f) under iteration of f,
and is usually called a cookie-cutter set (see [9]). The open set

n—1

Ef:[\Qf—Uf* (U > (2.7)

k=0 j=1



TOEPLITZ ALGEBRAS AND INTERVAL MAPS 541

is usually called the escape set. Every point in Ey will eventually fall, under
iteration of f, into the interior of some interval E; (where f is not defined) and
the iteration process will end. We may say that x is the escape set Ey of f if
and only there is k € N such that f*(x) ¢ dom(f). If c; = c;r, for some j, then
E; = () and ¢; is a singular point, either a critical point or a discontinuity point
of f.

Note that E; = 0 if and only if U;:ll E; = (). Moreover, we assume that I is

invariant under f, which means that each boundary point ¢ is sent to a boundary
R
point ¢;.

As in [4], we will consider the equivalence relation Ry defined by
Ry = {(z,y) : f"(z) = f™(y) for some n,m € Ny}. (2.8)

In that previous work, we considered R restricted to €2y. Here, however, we
extend Ry to the whole interval I. The relation R, is a countable equivalence
relation in the sense that the equivalence class Ry(x) of x € I is a countable set.
We denote x ~ y whenever (z,y) € Ry.

3. DYNAMICS OF ESCAPE ORBIT POINTS

Let f € M(I) such that E; # (). This means that there is at least a nonempty
open interval E; =]c;, c;r[, with ¢; # cj, with j € {1,...,n—1}. The nonempty
open subinterval £ is called an escape interval. Now, to define orbit representa-
tions associated with escape orbits, that is, associated to points y € Ey, we need
to introduce some preliminary notions, from a dynamical point of view. For every
y € E; there is a least natural number 7(y) such that f7%(y) ¢ dom(f), which

means that f7%(y) € E; for some j such that F; # (.

Notation 3.1. The final escape point, for the orbit of y, is denoted by e(y) :=
7 (y) and the final escape interval index is denoted by «(y); that is, if f7®)(y) €
E;, then ((y) = j.

In other words, for a point y € E; the orbit terminates at e(y) = f7W(y) €
E,(y), since f is not defined on E,(,). This means that the generalized orbit Rs(y)
is essentially the backward orbit of e(y). Although e(y) does not belong to the
domain of f, we impose the condition that it belongs to R¢(y) as a special point.
The last point in the orbit belonging to the domain of f is f7®=1(y).

Therefore, for every x € I we have a generalized orbit R¢(z) with a natural
graph structure simple to describe: the vertices are the points of R¢(x), and there
is a directed edge, y — z, between two points y, z, if and only if z = f(y). The
graph structure of R¢(z) depends on the following. If = € Q, then R¢(x) has a
graph structure without a preferred vertex. If x € Ey, then R¢(z) has a natural
structure of a rooted tree. The root of Ry(x) is precisely e(z), a point with no
outgoing edge. Thus, the generalized escape orbits can be parameterized by the
points of the escape intervals. More precisely, every point x in U?;ll E; gives origin
to a unique generalized orbit. Now, consider the preimage set of x, f~!(x). Since
f € M(I), the set f~'(x) is finite. We call the points in f~!(z) the (domain)
endpoints of Ry(x), and e(x) is the final escape point of R¢(x). Now, let us denote
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f;l : f(I;) — dom(f), the inverse branch of f whose domain is f(/;). Naturally,

we have f o fj_1 = id;; the identity function on [;. In this case, the preimages of
x are enumerated by

fit@), .. o (=)

whenever fj_l(x) exists, that is, fj_l(x) £0,7=1,...,n.
In order to describe symbolically the escape orbits, we extend the symbol space
adding a symbol for each escape interval F;, which will represent an end for the

symbolic sequence. For each escape interval £; we associate a symbol ; to distin-
guish the symbol associated with the interval partition /;. That is, we consider
the symbols ordered by

—

1<1<2<2<---<n—1l<n-—1<n. (3.1)

If E; is not an interval, that is E; = 0, then there is no symbol jy\ Moreover, we

define
Yp,={j:E#0,je{l,...,n—1}}. (3.2)
The address map ad (see Definition 2.2) is extended to the escape set Ey with

ad(z) := j ey ; if z € Ej. Therefore, the address map is defined for all points
of the interval I except the points of the boundary of the subintervals I, ..., I,
(see (2.3) and (2.4)); thus

ad:[\{co,cf,cn:izl,...,n—l}—>{1,...,n}UZEf.

The itinerary map (see Definition 2.2) is also extended such that

ity(z) = ad(x) ad(f(z)) - - ~ad(f7(z)’1(:v)) ad(e(z)). (3.3)
The itinerary of a point x € E; is always a finite word terminating in a symbol
J € XE,.
An admissible escape word is a word occurring as the itinerary of an escape
point € Fy. These words are formed by

E=66y- -6

=1fori=1,2,...,k— 1, and terminating in an escape symbol

such that age,,,

J.
Thus we have an index {1,...,n} U Xg, which is ordered in (3.1) and (3.2).

To deal with the possible transitions from Markov transition intervals to escape
intervals, we define a matrix Ay as follows.

Definition 3.2. Given the transition matrix A, as in (2.6), we define a matrix

A\f = (a;;) indexed by {1,...,n} UXg, such that

Qi ifi,je{l,...,n},
al'j = 1 ifi e {1,...,71},j S EEf and [Zﬂf_l(Ej) 7&@, (34)
0  otherwise.



TOEPLITZ ALGEBRAS AND INTERVAL MAPS 543

1.0 R R
0.8 108"
0.6 0.6
04 1 o4l
0.2 | ol
0.0 . L o 100 ’

00 02 04 06 08 1.0 00 02 04 06 08 1.0

FiGURE 1. Graphs of the functions of Examples 3.5 and 3.6.

Two graphs are isomorphic if there is a one-to-one correspondence between the
vertices, preserving the edges. In particular, for a pair of isomorphic rooted trees
their roots are in correspondence.

Lemma 3.3. Let y,z € E;. If ad(f'(e(y))) = ad(f(e(2))), then Ry(y) is
isomorphic to Ry(z) as graphs.

Proof. Consider y,z € E; and ad(f'(e(y))) = ad(f'(e(z))). Let us build
explicitly the isomorphism between R(y) and Rg(z). Consider the map h :
Rs(y) — Ry(z) defined such that h(e(y)) = e(z). Next, choose an element
j € ad(f~'(e(y))) and set h(f; Ye(y)) = fi (e(z)) which exists since j €
ad(f~'(e(2))). Since ad(f~ (e(y))) =ad(f!(e(z))), we have

ad(f_1 o f_l(e(y))) = ad(f_1 o f_l(e(z))).

Next, choose i € ad(f~2(e(y))) such that a;; = 1. Then set h(f; ' o fj_l(e(y))) =
fito fi'(e(2)). With this process we associate every point in Ry(y) to the point

in Ry(z) which has the same itinerary. Therefore, h is an isomorphism of Ry(y)
to Ry(2). O

This allows us to identify the points in R;(y) with admissible words that finish
in the symbol ad(e(y)). The condition ad(f~*(e(y))) = ad(f~*(e(2))) is not a nec-
essary condition. There are special cases for which a certain symbolic symmetry
implies an isomorphism between the trees, despite the difference in the symbols,
as we can see in the following example.
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Example 3.4. Let f be such that

11100

110 ~ 00000
Ag= 111 and  A;=| 11111
01 1 00000
00111

The escape symbols set is Yp, = {T, /2\} The possible endings for escape orbits
are IT, 2/1\, 25, and 3/2\, and therefore

ad(f_1 (e(y))) € {1,2} and ad(f_1 (e(2))) € {2,3}
for points y € E; and z € E,. However, the trees Rs(y) and Ry(z) are isomorphic

through h: R¢(y) — Rs(z), which changes 1 — 3 within admissible words.

Ezample 3.5. Let f(z) = 3z(mod 1) (see the left-hand side of Figure 1). Consider
the domain of f given by dom(f) = I U Iy, with I; = [0,1/3] and I, = [2/3, 1].
In this case, we have Ey =]1/3,2/3[. The transition matrix associated with f is

11
=1 1)
The escape symbols set is YXp, = {1} and the address map is ad : [0,1] \
{0,1/3,2/3,1} — {1,1,2}. The matrix A; is given by

~ 111
Ar=[ o000
1 11
For points z,y in the escape set Ef, we have «(x) = «(y) = 1. Moreover,

ad(f~'(e(x))) = ad(f*(e(y))) € {1,2}. Therefore, R;(x) is isomorphic to R;(y)
(see Notation 3.1). In particular, they are both isomorphic to the tree in the
left-hand side of Figure 2.

11 21 29 39
111 211 121 221 222 329 132 232 332

FIGURE 2. Rooted trees, part I.
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Ezample 3.6. Let f be the map (see the right-hand side of Figure 1)

ba+4/5 if x < 1/25,
flx)=<bx—2 if2/5<x<3/5,
br—4  if4/5<x <1

The domain of f is given by dom(f) = I U I, U I3, with Iy = [0,1/25], I, =
12/5,3/5], I3 = [4/5,1]. The escape intervals are F; =]1/25,2/5] and Ey =
13/5,4/5[. The escape symbols set is Xz = {1,2} and the transition matrix asso-
ciated with f is

A =

_—_ o
_—_ O
—_ = =

The address map is ad : [0,1] \ {0,1/25,2/5,3/5,4/5,1} — {1,1,2,2,3}. The
matrix Ay is given by

00001
R 00000
Ap=]1 11111
00000
11111

For points z,y in the escape set Ey, we have either «(z) = «(y) =1, «(x) = 1 and
t(y) =2, u(z) =2and t(y) =1, or t(z) = 1(y) = 2. Nevertheless, ad(f~!(e(z))) =
ad(f~1(e(y))) € {2,3}. Therefore, we have one rooted tree, up to isomorphism.
We present two (isomorphic) trees, one with root T and the other with root 2 (see
the left-hand side of Figure 4 and the right-hand side of Figure 2, respectively).
Note that they are essentially the same tree.

Ezample 3.7. Let f be the map (see Figure 3)

br+2/5 if x <3/25,
fl@)={sr—2 if2/5<z<3/5
S5z — 4 if4/5 <x<1.

The domain of f is given by dom(f) = I; U I, U I3, with I, = [0,3/25], I, =
2/5,3/5], I3 = [4/5,1]. The escape intervals are F; =]3/25,2/5] and Ey, =
13/5,4/5[. The escape symbols set is X = {1,2} and the matrix associated with
fis

Ap=

=
—_ = =
—_ = =
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1.0F
08
06 |
0!/

0.2+

00
00 02 04 06 08 10

F1GURE 3. Graph of the function in Example 3.7.

—>
“
> DN

21 sL 13 2% 39

221 321 131 231 331 912 319 1299222 325 132 232 332

FIGURE 4. Rooted trees, part II.

The address map is ad : [0,1] \ {0,3/25,2/5,3/5,4/5,1} — {1,1,2,2,3}. The
matrix Ay is given by

-

[ e )
[ e )
— O RO R
— O = O
— O = O

For points x,y in the escape set Ey, we have either «(z) = t(y) = 1, o(z) =1
and (y) = 2, t(xr) = 2 and «(y) = 1, or o(z) = (y) = 2. If y € Ey, then
ad(f~Y(y)) € {2,3}. If 2 € Ey, then ad(f~*(2)) € {1,2,3}. Therefore, we have
two nonisomorphic rooted trees: R(y) if e(y) € E; (see the left-hand side of
Figure 4) and Ry(z) if e(z) € E; (see the right-hand side of Figure 4).



TOEPLITZ ALGEBRAS AND INTERVAL MAPS 547

4. TOEPLITZ REPRESENTATIONS ON ORBIT SPACES

In this section, we provide representations of the Toeplitz algebra Ty, asso-
ciated to points in the escape set of the underlying Markov interval map, and
compare these representations with the previous ones considered by the authors.

4.1. Toeplitz—Cuntz—Krieger Aj-families. Let H,, with x € E}, be the Hil-
bert space with canonical base

{l2) s f5(2) = e(2), k € No}

associated with Rf(x). Note that there is a special vector basis which is |e(x)).
The rank one projection on the 1-dimensional space C|z) is denoted by P,, or as
usual in Dirac notation, P, = |2)(z|. Note also that H, = H, = H,(y) if for some
keN, fi(y) = 7@ (z) = e(x) (see Notation 3.1).

Let x € Ey, and let T, i = 1,...,n be defined by

Tily) = xpay W] 7' () for y € Ry(w), (4.1)
where xp denotes the characteristic function on a set B. Its adjoint 77" is given
by

T ly) = x1,(W)| f(v)).
In particular, T |z) = 0 for all ¢ = 1,...,n, and T;|z) = 0 if there are no

transitions from the interval /; to the escape interval £j. If there is any transition,

then T;|z) = |z) such that z € [; and f(z) =

Lemma 4.1. Let v € E;. Then the partial isometries T, j = 1,...,n, defined
in (4.1) satisfy the following relations:

(a) 2?21 T]Tj* + Py =1, and
(b) 30y arTyT} + Apue) Peey = Ty Ty for allk=1,....n
where Ay = (a;;) is the transition matriz of f and ¢ is as in Notation 5.1.

Proof. Consider T;T} acting on a vector |y) with y € Ry(x) \ {e(x)} in the
canonical basis, and let r € {1,...,n} such that y € I,.. Then

T |y) = xu. )T F W) = x6W)xeay (FW) | e fy) = x6.)ly)-
Thus

DT ) = D xnly) = xr.Wly) = lv). (4.2)

Now, let T;T}, act on the same vector |y):

TrTely) = Xra W Te | fi ' W) = X e WX, (F @) ) = Xro ®)1w),

since x7, (f '(y)) = 1. The condition x(,)(y) = 1 is equivalent to the existence
of a preimage of y in I; therefore, y € I, means that ag, = 1. On the other hand,

> aTiT] y) = Z%XI Ny) = aely) = y). (4.3)
j=1
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Since P.(g)|y) =0, (4.2) and (4.3) show statements (a) and (b) of the lemma for
all vectors ly) € H, with y € Ry(x) \ {e(x)}.

It remains to check (a) and (b) for the vector |e(x)).

For that we first note that T;[e(x)) = 0 for all j and

(ZTT*+P ) ZTT* ) + le(x)) = |e(x)).

This implies that (a) holds.

Statement (b) is also readily checked for the vector |e(x)) since T |e(z)) = 0
for all k, and T;Ty|e(z)) = |e(z)) if and only if f~'(e(z)) € I} (and this holds if
and only if G, ;) = 1 as in Definition 3.2). O

4.2. The unitary equivalence of Toeplitz algebra representations. Let
f € M(I) with E; # (. Thanks to Lemma 4.1 and the definition of 7y,, the
following is immediate.

Proposition 4.2. The partial isometries defined on H, as in (/.1) yield a rep-
resentation of the Toeplitz algebra Ty, .

Definition 4.3. We denote by v, the representation of the Toeplitz algebra Ta,
yielded in Proposition 4.2.

Note that the matrix Ay is aperiodic (all the entries of A} are nonzero for some
m) because f € M(I) (see Definition 2.1); thus Ay is an irreducible matrix.

Proposition 4.4. The concrete C*-algebra v,(Ta,) is an extension of the (uni-
versal) Cuntz—Krieger algebra O, by the C*-algebra K (H,) of compact operators
on H,, that is, the short sequence

0 — K(H,) — v2(Ta;) — Oa, — 0
15 exact.

Proof. If p = py--- pme(z) is an admissible escape word, then we can find a
vector |y) in the Canonlcal basis of H, by puttlng y = flo-- ( (x)).
In this way |y) = T,|e(z)), where T, = T}, ---T},.. Thus T*T] (x )> le(x)).
Since Z;L:1 TiT) + Py = 1, by Lemma 41 the finite rank projection P,
belongs to v,(Ta,). Moreover, if n = 1y -1 ( ) is an admissible escape word

and z = f, " o---o f(e(x)), then
Ty Pu)Ty|2) = Ty Pew) T, Tyle(2)) = Ty P |e(2)) = Tule(@)) = ly),

such that T, P.)T, is a rank one partial isometry from the vector |z) to |y). Thus
the C*-algebra generated by the operators T}, P.(,) T}y is nothing but the C*-algebra
of all compact operators K (H,) on H,. In particular, K (H,) C v4(7a,).

On the other hand, we may consider the (surjective) quotient map q : v,(7a,) —
Ve(Ta,)/K(H,) and also denote ¢(T;) by S;. In that case, Lemma 4.1 implies that
> -1 538 =1and > 77 ay;S;S; = S;Sk for all k =1,...,n, which are the rela-
tions of the Cuntz—Krieger algebra associated to the matrix Ay. Since Ay is an
irreducible matrix (note that f € M(I) as in Definition 2.1), the Cuntz—Krieger
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algebra Oy, is simple (see [5]) so the image of every (nonzero) representation of

O, is isomorphic to the universal C*-algebra O4,. Thus O, =~ v,(Ta,)/ K (H,).
This finishes the proof. O

Given two points x and y in Ey, we now investigate when the Toeplitz algebra
representations v, and v, (see Definition 4.3) are unitarily equivalent.

Theorem 4.5. The representations v,, v,, with x, y € Ey, are unitarily equiva-
lent if and only if R¢(x) and Rs(y) are isomorphic as rooted trees.

Proof. If Rf(x) and Ry(y) are isomorphic, then there is a homeomorphism A,
preserving edges, h : R¢(z) — Rs(y), such that h(e(y)) = e(z). This homeomor-
phism induces the unitary operator U : H, — H, such that Ul|z) = |w) if and only
if h(z) = w, with z € Ry(z) and w € R(y). Moreover, since the map h preserves
edges the unitary U satisfies Uv,(t;) = v, (t;)U. In fact, let z € Ry(x) with z € I;.
The outgoing edge connects z to f(z). The ingoing edges come from the points
fi'(z) € I; withi = 1,...,n such that a;; = 1. This means that v,(t})|z) = | f(2))
and v, (t5)|z) = 0 with r # 7, and that v,(t;)|z) = | f; *(2)) for i such that a;; = 1
and v,(t;)|2) = 0 with a;; = 0. Therefore, the preservation of edges means that
h(z) € I; and has an outgoing edge to f(h(z)) and that the ingoing edges of h(z)
are f; '(h(z)) € I; withi = 1,...,n such that a;; = 1. So v, (£)|h(2)) = | f(h(2)))
and v, (t2)|h(2)) = 0 with r # j, and v, (t;)|h(2)) = |7 (h(2))) for i such that
a;; = 1 and v,(t;)|h(z)) = 0 with a;; = 0. Thus we obtain

vy(6)[(2)) = | [ (R(2))) == vy ())U]2) = Ui (t])]2)

and

vy(t)|1h(2)) = [ /71 (1(2))) <= vy (t)U|2) = Ua(ti)]2).
Now, suppose that the representations v, v, with x, y € E, are unitarily equiv-
alent. This means that there is U € B(H,, H,) such that

Uvy(a) = v, (a)U for every a € Ty;,.

is, Ule(z)) = |e(y)). In fact, since Uv,(tf)|e(z)) =0 for all i = 1,...,
the only vector, up to scalar multiplication, in H, satisfying v, (t})|e(y)) =
all i = 1,...,n. With the same reasoning we conclude that for every z € R
with itf(z) = §1& - - - &, there is a unique w € Ry(y) such that U|z) =
fact, consider it;(z) = & - - - &L, with

|Z> = Vw(tﬁléz'"ﬁkf) }e(x)>

First note that U sends the vacuum vector |e(z)) to the vacuum vector |e(y)),
e
)

Then

U’Z) = UVZ@&&"{@)‘(B(]}» = Vfr(tﬁlﬁz-"ﬁkf)U‘e<x)>
= Vu(teg6) [e(y)) = |w).
Let h be the map sending z — w. The map h is one-to-one since U is unitary
(and invertible). The map h preserves edges. In fact, if z; = f;'(2) in Ry(x),
then v,(t;)|z1) = |22). Therefore, Uv,(t;)|z1) = |22) since Uv,(a) = v,(a)U for
every a € Ty,. Therefore, R(x) and Ry(y) are isomorphic as rooted trees. O
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If x € Ey, then the partial isometries 77, ..., T, defined in (4.1) provide our
new family of Toeplitz-Cuntz-Krieger operators. If y € ¢, then the family of
partial isometries Sy, ..., S, defined as

Si|z) = Xf(li)(z)‘fi’l(z)% for all z € Ry(y), (4.4)

gives rise to a representation m, of the Cuntz-Krieger algebra O4, on H, as in
[4, Theorem 6]. Therefore Sy, ..., S, gives a representation of the Toeplitz algebra
T4, on the same Hilbert space H,,.

Proposition 4.6. Let x € Ey and y € Qf. Then the representations v, and m,
of the Toeplitz algebra Ty, are not unitarily equivalent.

Proof. If f~'(z) = 0, then the result is clear as H, = Cle(z)).

So we assume that f~'(z) # () and the existence of a unitary operator U :
H, — H, (i.e., a surjective isometry) such that US;U* =T, for alli =1,...,n.
On the other hand, T;|e(z)) = 0 for all i = 1,...,n, hence US;U* = T; implies
that S;U*|e(z)) = 0 for all 4.

Now, write U*|e(z)) as a linear combination in the canonical basis of H,:
U*le(x)) = >, c:|2) for scalars c,. Since U*|e(x)) # 0, there exists z; such that
¢;, # 0 and so we may find k such that zy € f(I;) and ¢, # 0. Then by the
continuity of S, we obtain

0=SU"

e(z)) = Zcsz|z> # 0

because Si|20) = | f; ' (20)) # 0. O

Theorem 4.7. Let x € Ey. Let v, be the corresponding Toeplitz algebra Ta,
representation associated to x. Then v, is irreducible.

Proof. Note that every element in the basis of H, is cyclic. Let £ € H, be a
nonzero vector. Then we aim to prove that ¢ is cyclic, and for that it is enough
to find a sequence P, in v,(T4,) such that P.,§ — |zo) for some xo € Rf(z),
since |zo) is a cyclic vector. Choose xy € Ry(x) such that the inner product
between ¢ and e(z) is nonzero, that is, (§|zg) # 0. Let its(zo) = ocqag - - o)
be the itinerary of the point xo, and let a@y = (ou,...,ax) be its kth prefix
with k& < 7(z) (see Notation 3.1). For every n € N, let P, := T, T  and

a(n) g
denote by H,,(n) the range of the projection P,. Then (P,)nen is a deér)easing
sequence of orthogonal projections and it strongly converges to P, the orthogonal
projection onto (°~, H,,(n). Since f is expansive, x; is the unique point z such
that ity(z) = aqag - - age(x), hence (72, Hyy(n) = Clag). Since |zp) is a norm
one vector, we conclude that P& = (&|xg)|zo). O

4.3. Fock space representations. Consider the Fock space defined as follows.
An admissible escape word is a word occurring as the itinerary of an escape point
x € Ey. Let « = «(z), to simplify notation. These words are formed by

E=8&& &t
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such that age,,, = 1fori=1,2,... k—1, and terminating on an escape symbol

7 = (x) such that agk@ = 1. Let Ay = {&&-- & @ age,,, = 1}, and let

Ay = {57,\ 15 € Ak,agk’[: 1}

Let Fy be the Hilbert space generated by {|();}, the vacuum vector, let F; be the
Hilbert space generated by {|i); : @z = 1}, let Fy be the Hilbert space generated
by {|&1&2)i : age, = 1, = 1}, ..., let F), be the Hilbert space generated by
{l1€)7 : € € Ay, ag,w = 1}. Finally, the Fock space, for z € Ey, is

k=0

Since the dependence of F, on x appears only on the final symbol 7 associated
with the escape interval E,, naturally F, = F, if and only if «(z) = (y).

Note that, from a purely symbolic point of view, Ay and A are not sufficient
to determine the escape words since it is necessary to specify how the rggular
states transit to the escape states, which is accomplished by the matrix Ay, as
we can see in the next example.

Example 4.8. Consider again the interval map f as in Example 3.6. We have that
the possible endings for the admissible escape words are 21, 31, 22, and 32. We
can have a map g with A; = Ay such that

0001
» 0000
Ay = 1111
1111

In this case, the possible endings are only 21 and 31.

We now define the creation operator ﬁ as

ﬁ‘5>?: {|Z§>T if Zf € Ak‘—i—l; (45)

0 otherwise,

whose adjoint is the following annihilation operator

T &1 - &r)e = 0iey &2+ - Eu)e
There is a relation between the spaces [, H, and between the operators
T; and T;. In fact, let z € Ry(z), and consider V|z) = |&&---&)p, with
itr(2) = && - - - &l In this case, V' is a unitary operator and V*|&& - - - &x)p =
Teiere.le(x)). In fact, |2) = Tee,.e,|e(x)) is the only vector satisfying it(z) =
&1&o - - - &t. Therefore,
VT,V =1T,. (4.6)
The Fock space is explicitly based on the symbolic structure of the generalized
orbit.
If the generalized orbit is seen as a graph, then the basis vectors of F, can be
seen as the vertices of the graph. That is, each admissible finite word & - - - &t
labels one vertex and one basis vector £ - - - & )s. There is an edge between two
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vertices if and only if their labels differ in the first symbol. If the generalized
orbits Ry(x), Rs(y) for two different points z,y in the escape set (in different
escape intervals necessarily) are isomorphic as graphs, we may expect that there
is a unitary operator U relabeling the basis vectors, and therefore maintaining
the structure of the Fock spaces F), and Fj,.
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