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A Single-Sorted Theory of Multisets

Hoang-Vu Dang

Abstract An axiomatic account of multiset theory is given, where multiplic-
ities are of the same sort as sets (with their own internal structures). Various
theories are proposed covering different existing multiset systems, as well as a
stronger theory which is equiconsistent with Zermelo–Fraenkel set theory and
with antifoundation. The inclusion relation receives a recursive definition in
terms of membership and is shown to be not always antisymmetric.

1 Introduction

Multisets are sets with possibly repeated elements, somewhat natural objects that
arise in various situations in both mathematics and computing. However despite nu-
merous accounts of multisets, some by quite well-known mathematicians, there has
been no consensus on how to axiomatize them. The best survey of these accounts is
Wayne Blizard’s “The development of multiset theory” [4], and the two most com-
prehensive proposals seem to be Blizard’s own in [2] and [5], the latter even allowing
for infinite multiplicities. However, like other multiset theories, they are both two-
sorted theories where the multiplicities are different types of objects from the multi-
sets they support. This means having separate axioms for multiplicity arithmetic, and
in the infinite case it assumes a predefined model of cardinal arithmetic; for example,
[5] uses cardinals in a model of Zermelo–Fraenkel (ZF) set theory.

Here we will propose a one-sorted account of multisets, where multiplicities and
sets come from the same domain and follow the same axioms. In this system, mul-
tiplicities are no longer predefined cardinal numbers but are also multisets with their
own internal structures. The natural ordering of multiplicities will be identified with
the subset relation; that is, intuitively we consider x to be less than y as multiplicities
if x is a proper subset of y. The axioms we propose will mirror Zermelo–Fraenkel
set theory, mutatis mutandis, the only real complication coming from the subset re-
lation for multisets (which becomes naturally recursive upon being identified with
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the ordering on multiplicities). Using a graph-based model closely related to the
construction in D’Agostino and Visser [6], we prove the consistency of our multiset
theory with antifoundation and show that unlike in set theory, the subset relation on
multisets under our definition need not be antisymmetric; hence an extra axiom is
necessary if one wants to enforce the antisymmetry of the inclusion relation.

2 Some Notes on Notation

For clarity we keep the number of brackets to a minimum and assign descending
priorities to the following symbols:
� universal and existential quantifiers and their variants,
� conjunction and disjunction,
� implications.

If R is a binary relation or binary predicate symbol, write

.8xRy/'.x/,df .8x/
�
xRy ) '.x/

�
;

.9xRy/'.x/,df .9x/
�
xRy ^ '.x/

�
:

Similarly, write .8hx1 � � � xniRy/'.x1 � � � xn/ and .9hx1 � � � xniRy/'.x1 � � � xn/
with the obvious meanings.

Relations and functions mean sets of ordered pairs (or tuples in the case of higher
arity) unless specified otherwise. Write f 2 Function to mean that f is a function
and f �1 for the inverse ¹hy; xi W hx; yi 2 f º (which may not be a function). Write
dom f for the domain of the function f and ran f for the range of f .

Write R 2 Relation to mean that R is a relation, and write DomR for the rela-
tional domain (or field) of R, that is, the set ¹x W .9y/.hx; yi 2 R _ hy; xi 2 R/º.

Remark 2.1 For any function f , we have Dom f D dom f [ ran f .

3 The Theory

This is a one-sorted theory where the same variables will be used for multisets and
multiplicities; we may call them sets where there is no danger of confusion with
traditional sets. The membership predicate x 2a y means that x belongs to y with
multiplicity a.

Definition 3.1 The language of multisets LM has one sort of variable and two
predicate symbols: the identity D and the ternary symbol 2. (In practice we write
x 2a y.)

Remark 3.2 The membership and subset relations we will define on multisets
will be denoted by overlined symbols to differentiate them from their set-theoretic
counterparts. This distinction is especially important when we build a model for our
multiset theory from a model of set theory.

Definition 3.3 We write x 2 y for .9a/x 2a y, that is, x belongs to y.

Axiom 3.0.1 (Axiom of unique multiplicity) We have

.8x; y; a; b/.x 2a y ^ x 2b y ) a D b/:

Definition 3.4 We write y
x
for the unique multiplicity of x in y.
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Axiom 3.0.2 (Axiom of extensionality) We have
.8x; y/

�
x D y , .8a; b/.a 2b x, a 2b y/

�
:

Definition 3.5 If '.x; y/ has two free variables and possibly parameters such that
.8x/.9Šy/'.x; y/, we say that ' defines a function class on multisets.
Axiom 3.0.3 (Axiom of empty set) We have

.9x/.8y/y 62 x:

Extensionality ensures that the empty multiset, which we denote by ;, is unique.
Axiom Schema 3.0.4 (Axiom schema of comprehension) We have

.8x/.9y/.8z; b/
�
z 2b y , z 2b x ^ '.z; b/

�
for all formulas ' with two free variables and possibly parameters.
Note that the set given by comprehension inherits the multiplicities from the original
set. By introducing axioms that deal with multiplicities separately, we can extend the
basic theory to incorporate different systems of multisets, for example, those with
only finite multiplicities or cardinal multiplicities.
Definition 3.6 Let ' define a function class on multisets.

Write ¹x˝ y W '.x; y/º for the multiset a satisfying .8x; y/.x 2y a, '.x; y//

(i.e., a contains x with multiplicity y if and only if '.x; y/ holds) if such a multiset
exists.

As a special case, for any concrete natural number n we write ¹x1 ˝ y1; : : : ;

xn ˝ ynº for the multiset a satisfying the following if it exists (though later with all
of our axioms, such multisets do indeed exist):

.8x; y/
�
x 2y a, .x D x1 ^ y D y1/ _ � � � _ .x D xn ^ y D yn/

�
:

The multisets specified in the definition above are unique by extensionality.
Axiom 3.0.5 (Axiom of pairing) We have

.8x; y/.9a/a D ¹x ˝ ;; y ˝ ;º:

Definition 3.7 We have an ordered pair

hx; yi WD
®
¹x ˝ ;º ˝ ;; ¹x ˝ ;; y ˝ ;º ˝ ;

¯
:

3.1 The subset relation Intuitively in our theory there should be an ordering on mul-
tiplicities (namely, there are more copies of something than of another). With this
in mind, we regard a multiset x as a subset of y if and only if every member of x
appears in y with greater or equal multiplicity. As mentioned before, identifying
the subset relation with the ordering on multiplicities gives us a natural recursive
definition of subset.
Axiom Schema 3.1.1 The relation � is a partial order and the largest class rela-
tion such that

.8x; y/
�
x � y , .8a 2 x/

�
a 2 y ^

x

a
�
y

a

��
:

In other words, if '.x; y/ is a formula (possibly with parameters) such that

.8x; y/
�
'.x; y/, .8a 2 x/

�
a 2 y ^ '

�x
a
;
y

a

���
;

then .8x; y/.'.x; y/) x � y/.
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We will prove this schema from the other axioms by formally defining x � y as
shorthand for the formula below. It trivially follows from that definition that if x � y,
then every member of x is a member of y. Furthermore, ; is a subset of everything,
while nothing else is a subset of ;.

Definition 3.8 We have

x � y ,df x D y _ .9R/
�
hx; yi 2 R

^ .8v;w/
�
hv;wi 2 R) .8a 2 v/

�
a 2 w ^

Dv
a
;
w

a

E
2 R

���
:

Lemma 3.9 We have .8x/.8y/.x 2 y , ¹x ˝ ;º � y/.

Proof In one direction ¹x ˝ ;º � y since ; is a subset of everything; the other
direction is trivial.

Axiom 3.1.2 (Axiom of subset) We have

.8x; y/.x � y ^ y � x) x D y/:

Remark 3.10 At this point one may question the necessity of this axiom, as the
subset relation in set theory is trivially antisymmetric. However, in the last section
we will show that the axiom of subset is independent from the remaining multiset
axioms by means of a syntactic model.

We define the union of x to be the minimal superset of all members of x. In the
context of two-sorted multiset theory, this definition corresponds to taking the supre-
mum of multiplicities of the same object, as opposed to what [2] calls the additive
union where multiplicities are added.

Axiom 3.1.3 (Axiom of union) We have

.8x/.9b/.8a/
�
b � a, .8y 2 x/y � a

�
:

Following set theory convention, we denote the union of x by
S
x and write x [ y

for
S
¹x ˝ ;; y ˝ ;º. Since � is antisymmetric,

S
x is unique for every x.

We follow the same approach in defining replacement. Let the formula ' define
a function on x, and let a be in the image of x. If a is the image of more than one
y 2 x, let the multiplicity of a be the �-least upper bound (i.e., the union) of x

y
for

all preimages y of a. If y is unique, it easily follows that the multiplicity of a is x
y

since � is both reflexive and antisymmetric.

Axiom Schema 3.1.4 (Axiom schema of replacement) We have

.8x/
�
.8a 2 x/.9Šb/'.a; b/) .9y/.8b; d/

�
b 2d y

, .9a 2 x/'.a; b/ ^ .8e/
�
d � e, .8a 2 x/

�
'.a; b/)

x

a
� e

����
for all formulas ' with two free variables and possibly with parameters.

Definition 3.11 It is clear that the multiset given by replacement is unique for
each x and each function class ', and we will denote it by Rep' x.

Lemma 3.12 We have .8x; b/.b D
S
x) .8a/.a 2 b, .9y 2 x/a 2 y//.
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Proof If .8y 2 x/a 62 y, by comprehension let z WD ¹v ˝ w W v 2w b ^ v ¤ aº.
Let y 2 x, and letR be a witness to y � b. LetA WD

S
¹R˝;; ¹hy; zi˝;º˝;º,

and define by comprehension from A the multiset

S WD
®
v ˝ w W v 2w A ^

�
v 2 R _ v D hy; zi

�¯
:

As a binary relation, S is obtained by adding hy; zi to R. Since a 62 y,�
8hv;wi 2 S

�
.8c 2 v/

�
c 2 w ^

Dv
c
;
w

c

E
2 S

�
:

Hence S is a witness to y � z, and thus b � z by definition of union, so a 62 b.
Conversely, let y 2 x and a 2 y; then a 2 b since y � b by definition.

We will prove later that the multiplicity of a 2
S
x is the union of multiplicities of

a in all b 2 x, using the schema of multiplicity replacement.

Definition 3.13 The canonical power set of x is Px WD ¹y ˝ ; W y � xº.

Axiom 3.1.5 (Axiom of power set) We have

.8x/.9y/y D Px:

Lemma 3.14 For any x; y there exists the product of x and y, namely,

x � y WD
®
hv;wi ˝ ; W v 2 x ^ w 2 y

¯
:

Proof This is proved by comprehension from P 3.x [ y/.

Lemma 3.15 The relation � is transitive and thus a partial order.

Proof Suppose a � b and b � c. If a D b or b D c the proof is trivial, so
suppose that they are distinct. Let R1 witness a � b, and let R2 witness b � c; then
the following relation witnesses a � c:

R WD
®
hx; zi ˝ ; W .9y/

�
hx; yi 2 R1 ^ hy; zi 2 R2

�¯
:

Lemma 3.16 (Intersection) We have

.9x/'.x/) .9b/.8a/
�
a � b, .8y/

�
'.y/) a � y

��
for any formula ' with one free variable and possibly parameters.

Proof Let '.x/ hold for some x. By comprehension from Px and union we have
the multiset

b WD
[®

v ˝ ; W v � x ^ .8y/
�
'.y/) v � y

�¯
:

If '.y/ holds, then v � y for any v in the multiset whose union is b; hence
b � y by the definition of union. Therefore .8a � b/a � y by transitivity of �.
Conversely, if a � y for all y such that '.y/ holds, then a � x. Hence a is in the
union, so a � b.

For convenience we denote the intersection as defined in Lemma 3.16 by
T
'.x/ x.

The intersection is unique if it exists since� is antisymmetric. If '.x/ is the formula
x 2 y, we simply write

T
y. If '.x/ is the formula x 2 a ^ x 2 b, we write a \ b.



304 Hoang-Vu Dang

Remark 3.17 Normally one would expect x 2
;
y to denote nonmembership,

since it fits with the intuition of x belonging to y zero times. However, that would
give rise to odd phenomena, for example, nonempty multisets with the same mem-
bers but empty intersection. Suppose that x and y are nonempty and disjoint, which
always exist if the model has more than one nonempty object. Then ¹; ˝ xº and
¹;˝ yº have the same member, namely ;, but the multiplicity of ; in the intersec-
tion must be empty since it is a subset of both x and y.

Remark 3.18 There is no negative membership in our theory since ; is already
the bottom multiplicity. (Recall that ; is a subset of everything, and we already chose
to identify the ordering of multiplicities with the subset relation on multisets.) For
a quick overview of negative multiplicities and a theory of multisets with integer
multiplicities (including the negative integers), see Blizard [3].

3.2 Relations and functions

Definition 3.19 A multiset R is a (binary) relation if all its members are ordered
pairs. Define the canonical domain (or field) of R by comprehension as

DomR WD
°
x ˝ v W .9y/

�
hx; yi 2 R _ hy; xi 2 R

�
^ x 2v

[2
R
±
:

Definition 3.20 A relation f is a function if
.8a; x; y/

��
ha; xi 2 f ^ ha; yi 2 f

�
) x D y

�
:

We define the canonical domain and range of a function f as

dom f WD
°
x ˝ v W .9y/hx; yi 2 f ^ x 2v

[2
f
±
;

ran f WD
°
y ˝ v W .9x/hx; yi 2 f ^ y 2v

[2
f
±
:

Note that if f is a function, then Dom f D dom f [ ran f . In general, f can be
regarded as a function on any multiset with the same members as dom f . Intuitively
when viewed from outside the model of our theory, a function is just a map which
sends multisets to multisets; the multiplicities in the domain and in the graph of the
function itself are thus of no importance.

For convenience we also extend our notation with ¹f .x/˝g.y/ W '.x; y/º where
f; g are either functions or formulas defining function classes on multisets, with the
obvious meaning.

3.3 Well-orders and infinity

Definition 3.21 Say that X is a closed multiset, and write X 2 Closed if
.8v 2 X/.8a; b/

�
a 2b v) .a 2 X ^ b 2 X/

�
:

Definition 3.22 A relationR is a well-order if it is a total order and any nonempty
multiset A � DomR has an R-minimal member.

For the axiom of infinity we define an analogue of the von Neumann !.

Definition 3.23 Write ˛ 2 ON for the formula saying both of the following:
� .8x 2 ˛/.˛

x
D ; ^ .8y 2 x/.y 2 ˛ ^ x

y
D ;//,

� the relation 2 restricted to ˛ is a well-order.
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Write ˛C for ˛[¹˛˝;º, and write ˛ < ˇ for ˛ 2 ˇ when ˛ and ˇ are both ordinals.

Lemma 3.24 If ˛ 2 ON , then ˛ is closed. Furthermore, if ˇ 2 ˛, then ˇ 2 ON .

Proof For ˛ to be closed it suffices to show ; 2 a, but the 2-minimal member of
˛ has to be empty.

Suppose ˇ 2 ˛ and x 2 ˇ; then ˇ
x
D ; since ˛ 2 ON . But x 2 ˛, so for any

y 2 x we have y 2 ˛ and x
y
D ;. Now 2 well-orders ˛, and ˇ 2 y would violate

well-foundedness of 2 on ˛, so y 2 ˇ. To prove that 2 well-orders ˇ, note that every
member of ˇ is a member of ˛ and 2 well-orders ˛.

Remark 3.25 It follows directly from the definition of ˛C that ˛ 2
;
˛C (note that

˛ cannot be a member of itself due to the well-ordering condition in the definition of
ordinals), and ˛C 2 ON whenever ˛ 2 ON .

Axiom 3.3.1 (Axiom of infinity) We have

.9x 2 ON/
�
; 2

;
x ^ .8y 2 x/

��
y D ; _ .9z 2 x/y D zC

�
^ yC 2

;
x
��
:

Definition 3.26 We call this multiset ! and use the usual numerals to stand for
the appropriate finite ordinals; that is, nC 1 stands for nC.

Remark 3.27 The usual schema of induction on the ordinals also works here since
multiset ordinals are defined to be closed.

3.4 The maximal property of �

Lemma 3.28 For any x, there exists a closed multiset with x as a member.

Proof Define  .v;w/,df w D v [ ¹b ˝ b W .9a/a 2b vº.
By union and replacement .8v/.9w/ .v;w/.
Define a function class '.x; y/ from ! to the universe of multisets as follows:
'.x; y/ ,df .9f 2 Function/.f .x/ D y ^ f .0/ D ¹x ˝ ;º ^ dom f � !

^.8n 2 dom f /.8m < n/m 2 dom f ^.8n 2 dom f /f .nC1/ D
S

Rep f .n//.
The formula ' defines a function on all of !: if there is n 2 ! such that

.Ày/'.n; y/, without loss of generality assume that n is 2-minimal. Then n ¤ 0,
so n D m C 1 for some m 2 !, and some function f witnesses '.m; z/. By re-
placement, union, and comprehension we can extend f to include the ordered pair
hn;

S
Rep f .m/i; then it witnesses '.n;

S
Rep f .m//, a contradiction.

Hence for any n 2 ! we can write F.n/ for the unique y such that '.n; y/.
By replacement, let X WD Rep' ! (see Definition 3.11). Thus

.8y/
�
y 2 X , .9a 2 !/F.a/ D y

�
:

For any v 2
S
X , there exists n 2 ! such that v 2 F.n/.

Let w be such that  .v;w/ holds. If a 2b v, then a; b 2 w, so

a; b 2
[

Rep F.n/ D F.nC 1/:

Thus
S
X has the desired closure property, and x 2

S
X since x 2 F.0/.

Corollary 3.29 For any x there is a �-minimal closed multiset containing x.

Proof Let '.y/ state that y is closed and x 2 y; then there exists y such that '.y/
holds. Hence take the intersection of all multisets satisfying '.
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Lemma 3.30 We have

.8x; y/
�
x � y , .8a 2 x/

�
a 2 y ^

x

a
�
y

a

��
:

Moreover, .8x; y/.'.x; y/) x � y/ for any formula '.x; y/ such that

.8x; y/
�
'.x; y/) .8a 2 x/

�
a 2 y ^ '

�x
a
;
y

a

���
:

Proof If x D y the first claim is trivial, so we assume otherwise. If R witnesses
x � y, then all members of x are members of y and R itself witnesses x

a
�

y
a
.

Conversely, suppose

.8a 2 x/
�
a 2 y ^

x

a
�
y

a

�
:

Let X , Y be closed, and let x 2 X , y 2 Y . Define a relation R as follows:

R WD
°
hv;wi ˝ a W .8b 2 v/

�
b 2 w ^

v

b
�
w

b

�
^ hv;wi 2a X � Y

±
:

By the proven direction of the claim, we have

.8v 2 X/.8w 2 Y /
�
v � w) hv;wi 2 R

�
:

From this and the definition of R, we have

.8v;w/
�
hv;wi 2 R) .8b 2 v/

�
b 2 w ^

Dv
b
;
w

b

E
2 R

��
:

But hx; yi 2 R by the hypothesis, so R witnesses x � y and the converse holds.
Now suppose that '.x; y/ is a formula such that

.8x; y/
�
'.x; y/) .8a 2 x/

�
a 2 y ^ '

�x
a
;
y

a

���
and that '.x; y/ holds for some particular pair x, y. Again let X , Y be closed
multisets containing x, y, respectively, and define a relation R by

R WD
°
hv;wi ˝ a W .8b 2 v/

�
b 2 w ^ '

�v
b
;
w

b

��
^ hv;wi 2a X ˝ Y

±
:

Then the same argument as above shows that R witnesses x � y.

3.5 Transitive closures There are two obvious candidates for the definition of transi-
tive multisets:

.8x 2 a/.8y 2 x/y 2 a or .8x 2 a/x � a:

The second trivially implies the first, but the converse is false: consider
X WD ¹; ˝ ¹; ˝ ;ºº and Y WD ¹X ˝ ;; ¹; ˝ ;º ˝ ;;; ˝ ;º; then the sec-
ond condition fails for Y . Here we adopt the stronger condition.

Definition 3.31 A multiset a is transitive if .8x 2 a/x � a.

Remark 3.32 For X and Y defined in the previous paragraph, X is transitive but
not closed while Y is closed but not transitive.

Lemma 3.33 Let '.x/ be a formula with one free variable such that .9x/'.x/,
and '.x/ only holds for transitive multisets. Then

T
' x is transitive.

Proof Let a 2
T
' x, and suppose that '.x/ holds; then a 2 x since

T
' x � x.

By transitivity a � x for all such x, so a �
T
' x by definition.
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Remark 3.34 Ordinals are transitive: if ˛ 2 ON and x 2 ˛, then for any y 2 x
we have y 2 ˛ and x

y
D ; �

˛
y
; hence x � ˛.

Lemma 3.35 For any multiset x, there exists a �-minimal transitive multiset
TC.x/ such that x � TC.x/.

Proof Let x be any multiset. We can define a function class ' on ! (see
Lemma 3.28) such that '.0/ D x and '.˛ C 1/ D

S
'.˛/ for all ˛ 2 !.

Hence by replacement there exists v WD ¹b ˝ ; W .9a 2 !/'.a; b/º.
Let w WD

S
v; then x � w since x 2 v. Given e 2 w, by Lemma 3.12,

.9˛/e 2 '.˛/. Then
S
'.˛/ D '.˛ C 1/ 2 v, so '.˛/ � w. But e � '.˛/, so

e � w.
Thus there is a transitive w such that x � w, so let TC.x/ be the intersection

of all such w. By Lemma 3.3, TC.x/ is transitive, and by definition of intersection
x � TC.x/ and TC.x/ is �-minimal.

Corollary 3.36 We have the following:

.8x; y/
�
x 2 TC.y/) TC.x/ � TC.y/

�
;

.8x; y/
�
x 2 TC.y/,

�
x 2 y _ .9a 2 y/x 2 TC.a/

��
:

Proof If x 2 TC.y/, then x � TC.y/, so by definition TC.x/ � TC.y/ and the
left-to-right direction of the second claim follows trivially.

Conversely, suppose x 62 y and .8a 2 y/x 62 TC.a/. By replacement, compre-
hension, and union let

v WD y [
[®

TC.a/˝ b W a 2b y
¯
:

If w 2 v, then w ¤ x. Either w 2 y so w � TC.w/ � v, or w 2 TC.a/
for some a 2 y so w � TC.a/ � v. Hence v is transitive and TC.y/ � v, so
x 62 TC.y/.

We propose the following basic system, leaving foundation for later discussion.

Definition 3.37 The theory MS consists of the following axioms and schemas:
unique multiplicity, extensionality, comprehension, pairing, subset, union, replace-
ment, power set, and infinity.

3.6 The collection of sets In this subsection we work in a model of MS.

Definition 3.38 For any multiset x, if there exists c such that

.8y/.y 2 c , y 2 x/ ^ .8y 2 c/
c

y
D ;;

we say that c D core.x/. Write x 2 Core for .8y 2 x/x
y
D ;.

Remark 3.39 The axioms of MS might not guarantee that core.x/ exists for all x,
but core.x/ is unique by extensionality if it exists.

It trivially follows that the core of core.x/ is itself, and two multisets have the
same core if and only if they have the same members. Note that if ˛ 2 ON , then
core.˛/ D ˛ by definition.

Definition 3.40 We say that x 2 Set if x 2 Core^.8y 2 TC.x//y 2 Core.
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It immediately follows that .8x/.x 2 Set, x 2 Core^.8y 2 x/y 2 Set/.
Consider the following interpretation of the language of set theory: D is the iden-

tity relation, 2 is interpreted as 2, whereas 9 and 8 are relative to Set. The set-
theoretic inclusion relation under this interpretation coincides with �, that is,

.8x; y 2 Set/
�
x � y , .8a 2 x/a 2 y

�
:

Theorem 3.41 If MS is consistent, so is ZF.

Proof The given interpretation turns Set into a model of ZF minus foundation. For
infinity we have ! 2 Set, while for any other axiom the multiset given by its multiset
counterpart is in Set as long as the parameters are in Set.

Remark 3.42 Note that Definition 3.23 ensures that .8˛ 2 ON/˛ 2 Set.

Remark 3.43 Up to this point, since we have avoided manipulation of multiplic-
ities, note that any model of ZF set theory provides a model for MS by interpreting
x 2a y ,df x 2 y ^ a D ;. Hence the consistency strength of MS is trivially the
same as ZF.

3.7 Multiplicity replacement By adding different axioms to handle multiplicities,
we can extend MS to implement different systems of multisets of various strengths.
For example, consider the following theory.

Axiom 3.7.1 (Axiom of finite multiplicities) We have

.8x; y; a/.x 2a y ) a 2 !/ ^ .8x/.8a 2 !/.9y/y D ¹x ˝ aº:

Definition 3.44 The theory MS! consists of all MS axioms, plus the axiom of
finite multiplicities.

The theory MS! describes a system of multisets with finite multiplicities, essentially
equivalent to the theory MST in [2]. The one major difference is that in MST the
multiplicity 0 means nonmembership, that is, the multiplicity n in MS! corresponds
to the multiplicity nC 1 in MST.

To define a theory where multiplicities are ZF cardinals like MSTC in [5], note
that Set is a model of ZF. Thus we would only need to add the following axioms to
MS (where Card is the class of set-theoretic cardinals defined in Set).

Axiom Schema 3.7.2 For any ' with two free variables and possibly parameters

.8x/
�
.8a 2 x/.9Šb 2 Card/'.a; b/) .9y/y D

®
a˝ b W a 2 x ^ '.a; b/

¯�
:

Axiom 3.7.3 We have .8x; y; a/.x 2a y ) a 2 Card/.

Remark 3.45 As long as our axiom is strong enough to replace any multiplicity
by ;, two multiset ordinals will have a bijection in the universe of multisets if and
only if they have a bijection in the class Set; thus the alephs in the multiset model
will be the same as the set-theoretic alephs in the ZF interpretation of Set.

The strongest axiom to manipulate multiplicities is given below.

Axiom Schema 3.7.4 (Axiom schema of multiplicity replacement) We have

.8x/
�
.8a 2 x/.9Šb/'.a; b/) .9y/y D

®
a˝ b W a 2 x ^ '.a; b/

¯�
for any formula ' with two free variables and possibly parameters.
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With this axiom, our multiset theory can no longer accept models of set theory since
set-theoretic extensionality is provably false: for example, ¹;˝;º and ¹;˝¹;˝;ºº
are distinct multisets with exactly the same members. In the same way, it cannot
accept models of any traditional multiset theory where multiplicities are integers
or cardinals, since multiplicity replacement can create multiplicities not allowed by
those theories.

Definition 3.46 The theory MSR consists of MS plus multiplicity replacement.

Lemma 3.47 We have (MSR) .8x/.8a 2
S
x/.

S
x
a
D
S
¹
y
a
˝ b W y 2b x ^

a 2 yº/.

Proof By multiplicity replacement let

A WD
°
v ˝ w W v 2

[
x ^ w D

[°y
v
˝ b W y 2b x ^ v 2 y

±±
:

Let y 2 x. If v 2 y, then v 2
S
x, so v 2 A and y

v
�

A
v
by definition of A. By

Lemma 3.30, y � A; thus
S
x � A, so .8a 2

S
x/

S
x
a
�

A
a
.

Conversely, if a 2 y 2 x, then y �
S
x, so y

a
�

S
x
a
. Hence A

a
�

S
x
a
, and the

claim follows by antisymmetry of �.

3.8 Well-founded multisets Start with a model of MSR.

Definition 3.48 Say that x is well founded if every submultiset A of the �-
minimal multiset containing x (see Corollary 3.29) has a minimal member y such
that

.8z 2 y/
�
z 62 A ^

y

z
62 A

�
:

Alternatively we can define the class WF of well-founded multisets by an analogue
of the von Neumann hierarchy, where V

;
WD ;,

V˛C1 WD
®
x ˝ ; W .8y; a/

�
y 2a x) .y 2 V˛ ^ a 2 V˛/

�¯
;

and V� WD
S
¹V˛ ˝ ; W ˛ < �º for limit �.

A simple induction shows that the V˛ are all closed and nested and that WF is
precisely the class of well-founded multisets. We can then define the rank of x 2 WF
as the minimal ˛ such that x 2 V˛ , and thus

rank x WD max
°
sup
y2x

rank y C 1; sup
y2x

rank
x

y
C 1

±
:

Lemma 3.49 We have .8x/..8y 2 x/.y 2 WF ^ x
y
2 WF /) x 2 WF /.

Proof Let ˛ WD max¹supy2x rank yC 1; supy2x rank x
y
C 1º; then x 2 V˛C1.

Lemma 3.50 We have .8x 2 WF /.8y � x/y 2 WF .

Proof If there exist x and y contradicting the claim, let x be of minimal rank.

Lemma 3.51 We have .8˛ 2 ON/˛ 2 WF .

Proof Since ordinals are closed, it is easy to show that ˛C is the�-minimal closed
multiset that has ˛ as a member. Suppose A � ˛C, and let y 2 A be the 2-minimal;
then y satisfies Definition 3.48 straightforwardly.

Axiom 3.8.1 (Axiom of foundation) We have .8v/v 2 WF .
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Theorem 3.52 WF is a model of MSR plus foundation.

Proof Extensionality holds sinceWF is closed downwards. Comprehension, pair-
ing, power set, and multiplicity replacement all hold by Lemma 3.49. Union holds
by an induction on rank, using the recursive relation in Lemma 3.47. Replacement
follows from union and Lemma 3.49. Infinity holds since ! is well founded by
Lemma 3.51. Foundation holds since the cumulative hierarchy defined relative to
WF is exactly the same as the cumulative hierarchy that forms WF .

Lemma 3.53 (MSR) For any multiset x there is a transitive closed multiset y such
that x 2 y (see Corollary 3.29 and Lemma 3.35).

Proof Let a be closed such that ¹x ˝ ;º 2 a, and let b D
S
a; then x 2 b.

If v 2 b, then v 2 w for somew 2 a, so v 2 a. Thus v � b; that is, b is transitive.
Also w

v
2 a whenever v 2 w 2 a; thus

b

v
D

[°w
v
˝ ; W v 2 w 2 a

±
� b:

Let c be the smallest closed multiset such that b 2 c. Then an easy induction on
the minimal property of c shows that for all w 2 c,

w � b ^ .8v 2 w/
w

v
� b:

By multiplicity replacement let y WD ¹v ˝ b W v 2 cº; then y is also closed and
obviously x 2 y. Let w 2 y; then w 2 c, so .8v 2 w/w

v
� b D y

v
. Hence w � y,

that is, y is transitive, as required.

Remark 3.54 Any model of Zermelo (not ZF) set theory that refutes transitive
containment (such as that given in Mathias [10]) readily provides a model of MS
minus replacement in which some multiset is not contained in any transitive multiset.

4 A Model for the Theory

We prove the consistency of MSR relative to ZF, starting with a model V of ZF.
It is possible to construct a well-founded model for our multiset theory from V by

interpreting x 2a y in the language of multisets as hx; ai 2 y within a recursively
defined subclass of V . However, here we will construct a graph-based model, which
will give us the consistency of MSR with antifoundation. Furthermore, in any well-
founded model of multiset theory the inclusion relation is necessarily antisymmetric
(by induction on the membership relation), whereas our graph-based model will also
prove the independence of the axiom of subset from the rest of MSR.

4.1 Accessible pointed hypergraphs We will only consider directed 3-uniform hy-
pergraphs; our model will be a definable class of these hypergraphs. A hypergraph
H is thus a set of ordered triples hx; y; zi (i.e., its edges).

Remark 4.1 We sometimes writeH.x; y; z/ as shorthand for hx; y; zi 2 H .

Definition 4.2 LetH be a hypergraph, and let x be any set.
LetH�1x WD ¹y W .9z/hx; y; zi 2 H º andH�2x WD ¹z W .9y/hx; y; zi 2 H º.
LetH�1 WD ¹y W .9x; z/hx; y; zi 2 H º andH�2 WD ¹z W .9x; y/hx; y; zi 2 H º.
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Definition 4.3 A pointed hypergraph ŒH; h� is an ordered pair hH;hi whereH is
a hypergraph and h a set (often a vertex ofH ) which we call the point of ŒH; h�. Say
that ŒG; h� Š ŒH; h� if there is an isomorphism between G andH that takes g to h.

Definition 4.4 Write DomŒH; h� for the set of vertices ofH , plus h.

Definition 4.5 A finite directed path from x1 to xn in ŒH; h� is a finite sequence
x1 � � � xn in DomŒH; h�, where xiC1 2 H�1xi or xiC1 2 H�2xi .

Definition 4.6 We have xH WD
T
¹X W x 2 X^.8y 2 X/.H�1y � X^H�2 �

y � X/º;
xH contains x and all vertices ofH accessible from x by a finite directed path.

Definition 4.7 Let Hx be the restriction of H to xH . It is the smallest subgraph
ofH containing x and closed under outward edges.

Definition 4.8 The pointed hypergraph ŒH; h� is accessible if DomŒH; h� D hH .
Equivalently, for any x 2 DomŒH; h� there is a finite directed path in ŒH; h� from h

to x.

Remark 4.9 For any hypergraphH and any x, ŒHx ; x� is accessible.

4.2 Bisimulations and extensionality To enforce extensionality, we borrow the con-
cept of a bisimulation from computer science. Our definition of multiset bisimulation
was adapted from Aczel [1] and is very close to what D’Agostino and Visser use in
[6] and [7], except that they have a fixed implementation of multiplicities (which
are positive cardinals). In fact our model, when restricted to cardinal multiplicities,
describes essentially the same multiset universe as in [6], though the particular con-
structions are different: while the latter followed a parallel course to Aczel’s approach
in [1], ours is generalized from the graph-based models of set theory in Hinnion [8]
and Holmes [9].

Definition 4.10 Call a relation � � DomŒG; g� � DomŒH; h� a bisimulation
between ŒG; g� and ŒH; h� if for any a � x we have

.8b; c/
�
G.a; b; c/) .9y; z/

�
H.x; y; z/ ^ b � y ^ c � z

��
^ .8y; z/

�
H.x; y; z/) .9b; c/

�
G.a; b; c/ ^ b � y ^ c � z

��
:

If ŒG; g� D ŒH; h�, we say that � is a bisimulation on ŒH; h�.

Lemma 4.11 Let� be a bisimulation between ŒG; g� and ŒH; h�; then we have the
following.

1. The relation ' WD ¹hx; yi W y � xº is a bisimulation between ŒH; h� and
ŒG; g�.

2. If' is a bisimulation between ŒH; h� and ŒQ; q�, then x � d ,df .9a/.x �

a ^ a ' d/ is a bisimulation between ŒG; g� and ŒQ; q�.
3. The restriction of � to DomŒGx ; x� �DomŒHy ; y� is a bisimulation between
ŒGx ; x� and ŒHy ; y�.

4. Any bisimulation between ŒGx ; x� and ŒHy ; y� is a bisimulation between
ŒG; g� and ŒH; h�.

5. If ŒG; g�, ŒH; h� are accessible and g � h, then�
8y 2 DomŒH; h�

�
.9x/x � y ^

�
8x 2 DomŒG; g�

�
.9y/x � y:
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Proof

1. The result is immediate from the definition of bisimulation.
2. Let x � a ' d and G.x; y; z/. There are b; c 2 DomŒH; h� such that y � b,
z � c, andH.a; b; c/. Hence there are e; f 2 ŒQ; q� such that b ' e, c ' f ,
andQ.d; e; f /, but then we have y � e and z � f .

The other direction is similar, so� is a bisimulation.
3. If a � d where a 2 DomŒGx ; x�, d 2 DomŒHy ; y�, and Gx.a; b; c/, then

clearly G.a; b; c/. Hence there are e; f 2 DomŒH; h� such that b � e,
c � f , andH.d; e; f /. But thenHy.d; e; f / by definition of ŒHy ; y�.

The other direction is similar.
4. If a � d and G.a; b; c/, then Gx.a; b; c/ by definition of ŒGx ; x�. Thus there

are e; f 2 DomŒHy ; y� such that b � e, d � f , and Gy.d; e; f /. Hence
G.d; e; f /, and the other direction is similar.

5. Let y 2 DomŒH; h�. There exists a finite sequence y1 � � �yn in DomŒH; h�
where y1 D h, yn D y, and yiC1 2 H�1yi [ H�2yi for all i . We show
by induction on n that there is a sequence x1 � � � xn in DomŒG; g� such that
xi � yi and xiC1 2 G�1xi [G�2xi for all i . The case n D 1 is trivial.

If n > 1, by the induction hypothesis we have a sequence x1 � � � xn�1 such
that xi � yi and xiC1 2 G�1xi [ G�2xi for all i . Now yn 2 H

�1yn�1 [

H�2yn�1 and xn�1 � yn � 1, so there exists xn 2 H�1xn�1 [ H�2xn�1
such that xn � yn since � is a bisimulation.

We proceed similarly for the other direction.

Definition 4.12 Say that ŒH; h� is extensional if the only nonempty bisimulation
on ŒH; h� is (contained in) the identity.

Lemma 4.13 Let ŒH; h� be extensional; then ŒHx ; x� is extensional for any
x 2 DomŒH; h�. Furthermore, if ŒHx ; x� Š ŒHy ; y� for x; y 2 DomŒH; h�, then
x D y.

Proof The first claim follows trivially from Lemma 4.11(3) and (4), whereas the
second claim follows from (4) of the same lemma.

4.3 The domain of our model We will define a canonical member for each equiva-
lence class. The collection of those forms a definable class of hypergraphs, which
we will denote by M.

Lemma 4.14 (Quotient lemma) For any pointed hypergraph ŒH; h�, there ex-
ists an extensional pointed hypergraph ŒQ; q� and a surjective quotient map � from
DomŒH; h� to DomŒQ; q� such that q D �.h/ and

.8a; b; c/
�
Q.a; b; c/, .9x; y; z/

�
a D �.x/ ^ b D �.y/ ^ c D �.z/

��
and such that the relation �.x/ D y is a bisimulation between ŒH; h� and ŒQ; q�.

We call ŒQ; q� the extensional quotient of ŒH; h�. Furthermore, we have the fol-
lowing.

1. The extensional quotient is unique up to isomorphism.
2. We have DomŒQ�.x/; �.x/� D ¹�.y/ W y 2 DomŒHx ; x�º. In particular, if
ŒH; h� is accessible, then so is ŒQ; q� (by taking x D h).

3. The extensional quotient of ŒHx ; x� is (isomorphic to) ŒQ�.x/; �.x/�.
4. If ŒHx ; x� is extensional, then ŒQ�.x/; �.x/� is isomorphic to ŒHx ; x�.
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Proof If � � DomŒH; h�2, define �C by

a �C x,df .8b; c/
�
H.a; b; c/) .9y; z/

�
H.x; y; z/ ^ b � y ^ c � z

��
^ .8y; z/

�
H.x; y; z/) .9b; c/

�
H.a; b; c/ ^ b � y ^ c � z

��
:

Clearly �1 � �2 implies �C1 � �
C
2 and � is a bisimulation if and only if � � �C.

Let� � DomŒH; h�2 be the union of all bisimulations on ŒH; h�, that is,

x � y ,df .9 �/.� � �
C
^ x � y/:

The identity on DomŒH; h� is a bisimulation, so � is reflexive. By Lemma 4.11
the relations ¹hy; xi W x � yº and ¹hx; zi W .9y/x � y � zº are also bisimulations,
so � is symmetric and transitive. The set of relations on DomŒH; h� ordered by �
forms a complete lattice, and the operation � 7!�C is monotonic. Hence by the
Knaster–Tarski theorem (see, e.g., Tarski [11])� is the same as�C.

Let DomŒQ; q� be the set of equivalence classes of �, let q be the equivalence
class of h, and let � W DomŒH; h�! DomŒQ; q� be the corresponding quotient map.

Define the relationQ on DomŒQ; q� by

Q.a; b; c/,df .9x; y; z/
�
H.x; y; z/ ^ �.x/ D a ^ �.y/ D b ^ �.z/ D c

�
:

We show that any bisimulation �Q on ŒQ; q� must be the identity.
Define x �H y ,df �.x/ �Q �.y/; then it is straightforward to check that�H

is a bisimulation. This means that �H � �, so �.x/ D �.y/ for any x �H y, and
thus �Q is the identity. We have shown that ŒQ; q� is extensional.

If �.x/ D a and Q.a; b; c/, there are d; e; f such that �.d/ D a, �.e/ D b,
�.f / D c, and H.d; e; f /. Then x � d , so there are y � e, z � f such that
H.x; y; z/. But then �.y/ D b and �.z/ D c.

On the other hand, if H.x; y; z/, then Q.�.x/; �.y/; �.z//. Thus the relation
�.x/ D y is a bisimulation between ŒH; h� and ŒQ; q�.

Now we turn to prove the further claims in the lemma.
1. Define x � y ,df �.x/ D �.y/; then � is a bisimulation on ŒH; h� by

Lemma 4.11(2) since the relation �.x/ D y is a bisimulation. Similarly,
given a bisimulation� on ŒH; h� we have a bisimulation on ŒQ; q�,

x ' y ,df .9a; b/
�
x D �.a/ ^ a � b ^ �.b/ D y

�
:

But ŒQ; q� is extensional, so ' is the identity, and thus � � �. Hence � is
the union of all bisimulations on ŒH; h�, which is unique.

2. ŒHx ; x� and ŒQ�.x/; �.x/� are accessible, and by Lemma 4.11(3) the relation
�.x/ D y is a bisimulation between them. Hence by part (5) of the same
lemma DomŒQ�.x/; �.x/� D �“DomŒHx ; x�.

3. LetG be the restriction ofQ to �“DomŒHx ; x�, and let� be the union of all
bisimulations on ŒH; h�. By Lemma 4.11 the restriction of� to DomŒHx ; x�2
is the union of all bisimulations on ŒHx ; x�, so the extensional quotient of
ŒHx ; x� is isomorphic to ŒG; �.x/� by mapping the equivalence class of any
vertex a in DomŒHx ; x� to the equivalence class of a in DomŒH; h�.

By part (2) of this lemma ŒG; �.x/� is the same as ŒQ�.x/; �.x/�.
4. If ŒHx ; x� is extensional, the restriction of any bisimulation on ŒH; h� to

DomŒHx ; x� D xH is the identity. Hence � W DomŒHx ; x�$ DomŒQ�.x/; x�
is a bijection by construction.
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Suppose a; b; c 2 DomŒHx ; x� and Q.�.a/; �.b/; �.c//; then there are
d; e 2 DomŒH; h� such that �.d/ D �.b/; �.e/ D �.c/, and H.a; d; e/.
But then d; e 2 DomŒHx ; x�, so d D b and e D c, that is,H.a; b; c/.

Conversely, we already know that H.a; b; c/ ) Q.�.a/; �.b/; �.c//;
hence ŒQ�.x/; �.x/� Š ŒHx ; x�.

Definition 4.15 The hypergraph ŒQ; q� constructed in the quotient lemma pro-
vides a canonical example of an extensional quotient of ŒH; h�. From now on we
simply refer to it as the extensional quotient of ŒH; h�.

Definition 4.16 Say that ŒG; g� and ŒH; h� are similar if their extensional quo-
tients are isomorphic, and write ŒG; g� � ŒH; h�.

Remark 4.17 It is immediate from the definition above and the quotient lemma
that if ŒG; g� and ŒH; h� are extensional, then ŒG; g� � ŒH; h�, ŒG; g� Š ŒH; h�.

Lemma 4.18 Let ŒG; g� and ŒH; h� be accessible. Then ŒG; g� � ŒH; h� if and
only if there exists a bisimulation � between ŒG; g� and ŒH; h� such that g � h.

Proof Let �G W ŒG; g�! ŒP; p� and �H W ŒH; h�! ŒQ; q� be the quotient maps.
If � is an isomorphism between ŒP; p� and ŒQ; q�, then the relation �.x/ D y

is clearly a bisimulation, so x � y ,df ��G.x/ D �H .y/ is a bisimulation by
Lemma 4.11(2). Furthermore, ��G.g/ D �.p/ D q D �H .h/, so g � h.

Conversely, let � be a bisimulation between ŒG; g� and ŒH; h� such that g � h.
Define relations� between DomŒP; p� and DomŒQ; q� and' on DomŒP; p� by

x � a,df .9y; b/
�
�G.y/ D x ^ �H .b/ D a ^ y � b

�
;

x ' y ,df

�
9a 2 DomŒQ; q�

�
.x � a ^ y � a/:

By Lemma 4.11(2) again both are bisimulations. Since ŒP; p� is extensional, ' is
the identity, so� is a partial function from DomŒP; p� to DomŒQ; q�.

The same reasoning with ŒQ; q� shows that � is injective. Moreover, p � q and
the hypergraphs are accessible, so by Lemma 4.11 we know that � is defined on the
whole of DomŒP; p� and surjective on DomŒQ; q�.

Thus� is a bijection between DomŒP; p� and DomŒQ; q�, but it is also a bisimu-
lation between ŒP; p� and ŒQ; q�, and furthermore p � q.

Corollary 4.19 For any x; y 2 DomŒH; h�, ŒHx ; x� � ŒHy ; y� if and only if there
is a bisimulation � on ŒH; h� such that x � y.

Proof The proof is immediate from the Lemma 4.18 and Lemma 4.11.

We are now ready to define the class of canonical representations for multisets.

Definition 4.20 We call ŒH; h� a multigraph if it is accessible, extensional, and�
8a; b; c; d 2 DomŒH; h�

��
H.a; b; c/ ^H.a; b; d/) c D d

�
:

Write M for the class of multigraphs.

Remark 4.21 Note that our definition of a multigraph is quite different from that
of [6] and [7] despite the similarity of the eventual construction. The reason is both
our different axiomatization of multiplicities and that our multigraphs are defined to
be already extensional (or “collapsed” in other words).
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Lemma 4.22 Let ŒH; h� be accessible, and for all a; b; c; d; e 2 DomŒH; h�, let�
H.a; b; c/ ^H.a; d; e/ ^ ŒHb; b� � ŒHd ; d �

�
) ŒHc ; c� � ŒHe; e�:

Then the extensional quotient ŒQ; q� of ŒH; h� is a multigraph.

Proof Let � be the quotient map from ŒH; h� to ŒQ; q�. By construction ŒQ; q� is
extensional, and its accessibility comes from ŒH; h�.

If Q.�.a/; �.b/; �.c// and Q.�.a/; �.b/; �.d//, without loss of generality as-
sume H.a; b; c/. Since the relation �.x/ D y is a bisimulation between ŒH; h� and
ŒQ; q�, there exist e; f 2 DomŒH; h� such that �.e/ D �.b/; �.f / D �.d/, and
H.a; e; f /.

The relation �.x/ D �.y/ is a bisimulation on ŒH; h�, so ŒHe; e� � ŒHb; b� and
ŒHf ; f � � ŒHd ; d � by Corollary 4.19. By the hypothesis ŒHf ; f � � ŒHc ; c�, so
ŒHc ; c� � ŒHd ; d �. By Corollary 4.19 again, there is a bisimulation � on ŒH; h�
such that c � d , so �.c/ D �.d/, as required.

Definition 4.23 If ŒH; h�; ŒQ; q� 2 M, say, ŒQ; q� 2 ŒH; h� if there exists
d 2 H�1h such that ŒQ; q� Š ŒHd ; d �.

Definition 4.24 If ŒQ; q� 2 ŒH; h�, there is a unique edge hh; n; vi 2 H such that
ŒHn; n� Š ŒQ; q�. Let ŒH;h�ŒQ;q�

WD ŒHv; v�.

Remark 4.25 The definitions above overload the notation of the language of mul-
tisets in an obvious manner and will be used in the following interpretation.

Given any formula ' in the language of multiset (see Definition 3.1), form the for-
mula 'M in the language of set theory by
� restricting all universal and existential quantifiers to the class M;
� replacing the identity relation with the bisimilarity relation�;
� replacing the membership relation x 2a y with x 2 y ^ a D y

x
.

Definition 4.26 Write M ˆ ' to say that 'M is true in the starting ZF model.

We proceed to prove the axioms of MSR under the given interpretation.

4.4 Extensionality and subset

Lemma 4.27 (Axiom of extensionality) Two pointed hypergraphs ŒG; g�; ŒH;
h� 2M are isomorphic if the following both hold:�
8hg; x; yi 2 G

��
9hh; a; bi 2 H

��
ŒGx ; x� Š ŒHa; a� ^ ŒGy ; y� Š ŒHb; b�

�
;�

8hh; a; bi 2 H
��
9hg; x; yi 2 G

��
ŒGx ; x� Š ŒHa; a� ^ ŒGy ; y� Š ŒHb; b�

�
:

Proof Define x � y ,df .x D g ^ y D h/ _ ŒGx ; x� Š ŒHy ; y�.
One can readily check from the hypothesis that � is a bisimulation between

ŒG; g� and ŒH; h�. Since ŒG; g�, ŒH; h� are accessible and g � h, by Lemma 4.18
ŒG; g� � ŒH; h�, but they are extensional so ŒG; g� Š ŒH; h�.

Definition 4.28 For any ŒH; h� 2 M and y 2 H�1x, write H.x; y/ for the
unique z such thatH.x; y; z/.

Definition 4.29 Let ŒG; g�; ŒH; h� 2 M. Say that ŒG; g� � ŒH; h� if there is a
relation C � DomŒG; g� � DomŒH; h� in the ZF model V , such that g C h and
x C y ) .8a 2 G�1x/.9b 2 H�1y/

�
ŒGa; a� Š ŒHb; b� ^G.x; a/ C H.y; b/

�
:
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Lemma 4.30 The relation � respects isomorphisms of multigraphs; that is,

ŒQ; q� Š ŒG; g� ^ ŒG; g� � ŒH; h�) ŒQ; q� � ŒH; h�;

ŒQ; q� � ŒG; g� ^ ŒH; h� Š ŒG; g�) ŒQ; q� � ŒH; h�:

Proof If ŒQ; q� Š ŒG; g� by the isomorphism ' and ŒG; g� � ŒH; g� as witnessed
by the relation C, then the relation '.x/ C y witnesses ŒQ; q� � ŒH; h�.

The second claim is proved similarly.

The following lemma shows that � is precisely the internal inclusion relation of M

as defined in Definition 3.8 and satisfies Axiom 3.1.1.

Lemma 4.31 Let '.x; y/ be a formula in the language of multisets with two free
variables and possibly parameters, such that

M ˆ .8x; y/
�
'.x; y/

�
, .8a 2 x/

�
a 2 y ^ '

�x
a
;
y

a

��
:

Then .8ŒQ; q�; ŒH; h� 2M/..M ˆ '.ŒQ; q�; ŒH; h�//) ŒQ; q� � ŒH; h�/.
Furthermore, ŒG; g� � ŒH; h� if and only if�

8ŒQ; q� 2 ŒG; g�
��
ŒQ; q� 2 ŒH; h� ^

ŒG; g�

ŒQ; q�
�
ŒH; h�

ŒQ; q�

�
:

Finally, � is reflexive, transitive, and

ŒG; g� � ŒH; h� ^ ŒH; h� � ŒG; g�) ŒG; g� Š ŒH; h�;

that is, � is antisymmetric if we interpretŠ as the identity relation.

For clarity we divide the proof into several parts.

Lemma 4.32 Let '.x; y/ be a formula in the language of multisets with two free
variables and possibly parameters, such that

M ˆ .8x; y/
�
'.x; y/

�
, .8a 2 x/

�
a 2 y ^ '

�x
a
;
y

a

��
:

Then .8ŒQ; q�; ŒH; h� 2M/..M ˆ '.ŒQ; q�; ŒH; h�//) ŒQ; q� � ŒH; h�/.

Proof Suppose M ˆ '.ŒQ; q�; ŒH; h�/. Define a set relation C by

x C y ,df M ˆ '
�
ŒQx ; x�; ŒHy ; y�

�
:

Then C satisfies the condition in Definition 4.29, so ŒQ; q� � ŒH; h�.

Definition 4.33 Given any relation C � DomŒG; g��DomŒH; h�, define CC by

x CC y ,df .8a 2 G
�1x/.9b 2 H�1y/

�
�
ŒGa; a� Š ŒHb; b� ^G.x; a/ C H.y; b/

�
:

Remark 4.34 The operation taking C to CC depends on ŒG; g� and ŒH; h�, but
we omit the associated multigraphs where there is no danger of confusion. Then
C1 � C2) CC1 � CC2 given the same associated multigraphs.

Definition 4.35 Define the greatest subset relation by

x � y ,df

�
9 C� DomŒG; g� � DomŒH; h�

�
.C � CC ^ x C y/:

Remark 4.36 Clearly ŒG; g� � ŒH; h� if and only if g � h.
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Lemma 4.37 For the greatest subset relation � between ŒG; g� and ŒH; h�,

x � y , .8a 2 G�1x/.9b 2 H�1y/
�
ŒGa; a� Š ŒHb; b� ^G.x; a/ � H.y; b/

�
:

Proof If C�CC and x C y, then by definition of CC we haveG.x; a/ � H.y; b/
trivially for any a 2 G�1x and b 2 H�1y, so x �C y. This shows that � � �C, so
�C � �CC and thus � D �C by maximality.

Remark 4.38 If x 2 DomŒG; g�, y 2 DomŒH; h� and C � DomŒGx ; x� �
DomŒHy ; y�, clearly CC is the same relation whether defined relative to ŒG; g� and
ŒH; h� or ŒGx ; x� and ŒHy ; y�. This means the restriction of � to DomŒGx ; x� �
DomŒHy ; y� is the greatest subset relation between ŒGx ; x� and ŒHy ; y�; hence

ŒGx ; x� � ŒHy ; y�, x � y:

Lemma 4.39 For any multigraphs ŒG; g� and ŒH; h�,

ŒG; g� � ŒH; h�,
�
8ŒQ; q� 2 ŒG; g�

��
ŒQ; q� 2 ŒH; h� ^

ŒG; g�

ŒQ; q�
�
ŒH; h�

ŒQ; q�

�
:

Proof Suppose the right-hand side holds. Extend the greatest subset relation �
between ŒG; g� and ŒH; h� to the following:

x � y ,df x � y _ .x D g ^ y D h/:

One can check that � � �C, so � D �. This means that g � h, so
ŒG; g� � ŒH; h�.

Conversely, let ŒG; g� � ŒH; h� and ŒQ; q� 2 ŒG; g�; then g � h and ŒQ; q� Š
ŒGx ; x� for some x 2 G�1g. There exists y 2 H�1h such that

ŒHy ; y� Š ŒGx ; x� ^G.g; x/ � H.h; y/:

But then ŒHy ; y� Š ŒQ; q�, so ŒQ; q� 2 ŒH; h� and
ŒG; g�

ŒQ; q�
Š
�
GG.g;x/; G.g; x/

�
�
�
HH.h;y/;H.H; y/

�
Š
ŒH; h�

ŒQ; q�
;

so ŒG;g�
ŒQ;q�

�
ŒH;h�
ŒQ;q�

since � respects isomorphism.

Lemma 4.40 The relation � is reflexive, transitive, and

ŒG; g� � ŒH; h� ^ ŒH; h� � ŒG; g�) ŒG; g� Š ŒH; h�I

that is, � is antisymmetric if we interpretŠ as the identity relation.

Proof If C is the identity, then trivially C � CC, so � is reflexive.
Let C1 witness ŒQ; q� � ŒG; g�, and let C2 witness ŒG; g� � ŒH; h�. Define

x C y ,df .9d/.x C1 d ^ d C2 y/:

It is straightforward to verify that C � CC. Furthermore, q C1 g C2 h, so q C h

and thus C witnesses ŒQ; q� � ŒH; h�. This means that � is transitive.
Let �1 be the greatest subset relation between ŒG; g� and ŒH; h�, and let �2 be

the greatest subset relation between ŒH; h� and ŒG; g�. Define � � DomŒG; g� �
DomŒH; h� by

x � y ,df x �1 y ^ y �2 x:

If x � y and G.x; a; b/, there exists c 2 H�1y such that ŒGa; a� Š ŒHc ; c� and
b �1 H.y; c/. Then a � c and b � H.y; c/.



318 Hoang-Vu Dang

Similarly if x � y and H.y; c; d/, then there are a � c, b � d such that
G.x; a; b/. Hence � is a bisimulation and ŒG; g� Š ŒH; h�.

Thus all claims in Lemma 4.31 have been proved.

4.5 The axiom of union For ease of reference we give the statement of the axiom
first, whereas the proof will be divided into several lemmas.

Lemma 4.41 (Axiom of union) Let ŒH; h� 2 M. There exists ŒG; g� 2 M such
that the following both hold:�

8ŒQ; q� 2 ŒH; h�
�
ŒQ; q� � ŒG; g�;�

8ŒP; p� 2M
���
8ŒQ; q� 2 ŒH; h�

�
ŒQ; q� � ŒP; p�) ŒG; g� � ŒP; p�

�
:

Remark 4.42 We will define a recursive relation between vertices of ŒG; g� and
sets of vertices of ŒH; h�. Intuitively the vertex a is related to the setX if the subgraph
ŒGa; a� is the �-least upper bound of ¹ŒHx ; x� W x 2 Xº. Hence ŒG; g� is the union
of ŒH; h� if and only if g is related toH�1h.

Let ŒG; g� and ŒH; h� be fixed, and define (see Lemma 3.47) the following.

Definition 4.43 For any relation C � DomŒG; g� �P .DomŒH; h�/ define

a CC X ,df

�
8ŒQ; q� 2M

��
ŒQ; q� 2 ŒGa; a�, .9x 2 X/ŒQ; q� 2 ŒHx ; x�

�
^ .8b 2 G�1a/G.a; b/ C

®
z W .9x 2 X/.9y/

�
H.x; y; z/

^ ŒGb; b� Š ŒHy ; y�
�¯
:

The recursive relation we mentioned is the following.

Definition 4.44 For any a 2 DomŒG; g� and X � DomŒH; h� let

a � X ,df

�
9 C� DomŒG; g� �P

�
DomŒH; h�

��
.C � CC ^ a C X/:

Remark 4.45 It is straightforward to see that C1 � C2 ) CC1 � CC2 . As
before, by the Knaster–Tarski theorem we have � D �C.

Lemma 4.46 For each X � DomŒH; h� there is no more than one a � X .

Proof Define a relation � on DomŒG; g� by

a � b,df

�
9X � DomŒH; h�

�
.a � X ^ b � X/:

If a � b, then .8ŒQ; q� 2M/.ŒQ; q� 2 ŒGa; a�, ŒQ; q� 2 ŒGb; b�/.
But ŒG; g� is extensional, so G�1a D G�1b. Now let c 2 G�1a; then

G.a; c/ �
®
z W .9x 2 X/.9y/

�
H.x; y; z/ ^ ŒGc ; c� Š ŒHy ; y�

�¯
;

G.b; c/ �
®
z W .9x 2 X/.9y/

�
H.x; y; z/ ^ ŒGc ; c� Š ŒHy ; y�

�¯
;

so G.a; c/ � G.b; c/. Hence � is a bisimulation on ŒG; g�, so it is the identity.

Lemma 4.47 If g � H�1h, then ŒG; g� is the supposed multiset union of ŒH; h�
(i.e., they satisfy the condition in Lemma 4.41).
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Proof First let ŒQ; q� 2 ŒH; h�; then ŒQ; q� Š ŒHd ; d � for some d 2 H�1h.
Define C � DomŒH; h� � DomŒG; g� to witness ŒHd ; d � � ŒG; g� by

x C y ,df

�
9X � DomŒH; h�

�
.x 2 X ^ y � X/:

If x C y, then by the defining property of �,�
8ŒQ; q� 2 ŒHx ; x�

�
ŒQ; q� 2 ŒGy ; y�;

so for any a 2 H�1x there exists b 2 G�1y such that ŒHa; a� Š ŒGb; b�.
Let X witness x C y; thenH.x; a/ C G.y; b/ since the following both hold:

H.x; a/ 2
®
z W .9x 2 X/.9y/

�
H.x; y; z/ ^ ŒGb; b� Š ŒHy ; y�

�¯
;

G.y; b/ �
®
z W .9x 2 X/.9y/

�
H.x; y; z/ ^ ŒGb; b� Š ŒHy ; y�

�¯
:

Trivially d C g, so C witnesses ŒHd ; d � � ŒG; g� and thus ŒQ; q� � ŒG; g�.
Conversely, suppose ŒP; p� is such that ŒQ; q� � ŒP; p� for any ŒQ; q� 2 ŒH; h�.
Define C � DomŒG; g� � DomŒP; p� to witness ŒG; g� � ŒP; p� by
a C b,df

�
9X � DomŒH; h�

��
a � X ^ .8x 2 X/ŒHx ; x� � ŒPb; b�

�
:

First note that g C p as witnessed byH�1h.
Let c 2 G�1a, and let X witness a C b. Since a � X , ŒGc ; c� 2 ŒHx ; x� for

some x 2 X . But ŒHx ; x� � ŒPb; b�, so ŒGc ; c� Š ŒPv; v� for some v 2 P�1b.
Also G.a; c/ � Y by the recursive property of � where

Y WD
®
y W .9d 2 X/.9e/

�
H.d; e; y/ ^ ŒGc ; c� Š ŒHe; e�

�¯
:

Suppose that d , e witness y 2 Y as above; then ŒHe; e� Š ŒPv; v�. But d 2 X , so
ŒHd ; d � � ŒPb; b�; hence ŒHy ; y� � ŒPP.b;v/; P.b; v/� by the property of �. Thus

.8y 2 Y /ŒHw ; w� �
�
PP.b;v/; P.b; v/

�
:

Therefore G.a; c/ C P.b; v/, and so C witnesses ŒG; g� � ŒP; p�, as required.

Thus it suffices to construct a multigraph ŒG; g� such that g � H�1h, where �
is defined as in Definition 4.44. Intuitively we add a new vertex �.X/ for each
X � DomŒH; h� and build a new graph D recursively so that the extensional quo-
tient of ŒD�.X/; �.X/� is the �-least upper bound of ¹ŒHx ; x� W x 2 Xº. Then we let
d WD �.H�1h/, and the extensional quotient of ŒD; d � will be the required ŒG; g�.

Definition 4.48 Let � be a fixed bijection from P .DomŒH; h�/ to some set A
disjoint from DomŒH; h�, and let d WD �.H�1h/.

Remark 4.49 Since our underlying set-theoretic model is a model of ZF, it is
trivial to obtain a uniform definition for � given any ŒH; h�.

The range A of � will be the set of new vertices corresponding to subsets of
DomŒH; h�, and we will build a graph C in which each vertex in A represents the
union of its preimage under �.

Definition 4.50 Let C be the smallest set such that�
8b 2

[
¹H�1a W a 2 H�1hº

�˝
d; b; �

�®
c W .9a 2 H�1h/H.a; b; c/

¯�˛
2 C;

and proceed similarly for any X � DomŒH; h� such that �.X/ 2 DomC ,�
8b 2

[
¹H�1a W a 2 Xº

�˝
�.X/; b; �

�®
c W .9a 2 X/H.a; b; c/

¯�˛
2 C:

Note that the unions in this definition are set-theoretic.



320 Hoang-Vu Dang

Informally C is built by following the recursive property of a multiset union on mul-
tiplicities (see Lemma 3.47) from the top vertex d down. In the definition of C
above, the vertex b represents members of the union, their members, members of
their members, and so on; we simply copy the corresponding subgraphs of ŒH; h�
over to form the final hypergraph, that is, so that ŒCb; b� D ŒHb; b�.

Definition 4.51 Let

D WD C [
[®

Hb W .9x; y 2 A/C.x; b; y/
¯
:

Let ŒG; g� be the extensional quotient of ŒD; d �, and let � be the quotient map.

Note that if C.x; b; y/, then .Àv;w/C.b; v; w/. Hence ŒDb; b� D ŒHb; b�.

Lemma 4.52 We have ŒG; g� 2M.

Proof Note that the subgraph Cd D C by minimality of C ; thus ŒC; d � is accessi-
ble. If a 2 DomHb where .9x; y 2 A/hx; b; yi 2 C , then a is in a finite directed
path from d through b, so ŒD; d � is accessible.

Now supposeD.x; a; v/ andD.x; b;w/ where ŒDa; a� � ŒDb; b�.
By construction ŒDa; a� D ŒHa; a� and ŒDb; b� D ŒHb; b�, but ŒH; h� is exten-

sional, so a D b. By construction of ŒD; d � there is a unique v such that D.x; a; v/,
so v D w. Hence ŒD; d � satisfies the conditions of Lemma 4.22 and ŒG; g� 2M.

Lemma 4.53 We have g � H�1h where � is as defined in Definition 4.44.

Proof Define a C X ,df a D ��.X/. We first show that C � CC.
Let a D ��.X/. If v 2 H�1x for some x 2 X , then˝

�.X/; v; �
®
w W .9x 2 X/H.x; v; w/

¯˛
2 D:

Hence �.v/ 2 G�1a. But ŒDv; v� D ŒHv; v� is extensional, so ŒG�.v/; �.v/� Š
ŒHv; v� by the quotient lemma.

Conversely, if b 2 G�1a, then b D �.v/ where v 2 H�1x for some x 2 X . But
then ŒDv; v� D ŒHv; v� is extensional, so ŒGb; b� Š ŒHv; v�.

We have shown that for anyQ 2M,

ŒQ; q� 2 ŒGa; a�, .9x 2 X/ŒQ; q� 2 ŒHx ; x�:

Also with b D �.v/, by construction G.a; b/ D ��.¹w W .9x 2 X/H.x; v; w/º/.
But v is the unique y such that ŒHy ; y� Š ŒGb; b� since ŒH; h� is extensional, so®

w W .9x 2 X/H.x; v; w/
¯

D
®
w W .9x 2 X/.9y/

�
H.x; y;w/ ^ ŒGb; b� Š ŒHy ; y�

�¯
:

Hence aCCX by definition. But g C H�1h, so g � H�1h, as required.

This concludes the proof of Lemma 4.41.

4.6 Supertransitivity The following lemma shows that M is in a sense supertransi-
tive; that is, for any set X �M there is a multigraph whose members in the sense of
M are precisely members of X in V .

Lemma 4.54 Let ' be a function in V such that dom '; ran ' �M and�
8ŒG; g�; ŒH; h� 2 dom '

�
ŒG; g� Š ŒH; h�) 'ŒG; g� D 'ŒH; h�:
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Then there exists ŒQ; q� 2M such that the following both hold:�
8ŒH; h� 2M

��
ŒH; h� 2 ŒQ; q�,

�
9ŒG; g� 2 dom '

�
ŒG; g� Š ŒH; h�

�
;�

8ŒH; h� 2 dom '
� ŒQ; q�
ŒH; h�

Š 'ŒH; h�:

Proof If ŒH; h� 2 dom ' [ ran ', define �ŒH; h� 2M as follows.
� If a 2 DomŒH; h� let Oa WD ha; ŒH; h�i and OH WD ¹h Oa; Ob; Oci W ha; b; ci 2 H º.
� Let �ŒH; h� WD Œ OH; Oh�; then clearly �ŒH; h� Š ŒH; h�.

Furthermore, if ŒG; g� and ŒH; h� are different multigraphs, then dom �ŒG; g� and
dom �ŒH; h� are disjoint. Thus we can assume without loss of generality that distinct
multigraphs in dom ' [ ran ' have disjoint domains.

Let d … DomŒG; g� for all ŒG; g� 2 dom ' [ ran '. Let

D WD
[®

G W ŒG; g� 2 dom ' [ ran '
¯
[
®
hd; g; hi W .9G;H/ŒH; h� D 'ŒG; g�

¯
;

and let ŒQ; q� be the extensional quotient of ŒD; d � with quotient map � .
It is easy to check that ŒD; d � is accessible and ŒQ; q� is a multigraph.
If ŒH; h� 2 ŒQ; q�, then ŒH; h� Š ŒQ�.a/; �.a/� for some ŒA; a� 2 dom '.
Since members of dom ' [ ran ' have disjoint domains, ŒDa; a� D ŒA; a�

by construction. But ŒA; a� is extensional, so ŒQ�.a/; �.a/� Š ŒA; a�, and thus
ŒH; h� Š ŒA; a�.

Conversely, let ŒH; h� 2 dom '; then ŒDh; h� D ŒH; h�, and thus ŒQ�.h/; �.h/� Š
ŒH; h� since ŒH; h� is extensional. Let ŒA; a� WD '.ŒH; h�/; then

ŒH; h� 2 ŒQ; q� ^
ŒQ; q�

ŒH; h�
D
�
Q�.a/; �.a/

�
:

But also ŒDa; a� D ŒA; a� and ŒQ�.a/; �.a/� Š ŒA; a�, so ŒQ;q�
ŒH;h�

Š 'ŒH; h�.

4.7 The axiom of power set We aim to obtain the M-power set of ŒH; h� by su-
pertransitivity. For any ŒH; h� 2 M we will define a subset of the class M which
contains an isomorphic copy of every ŒQ; q� � ŒH; h�.

Definition 4.55 An edge chain in ŒH; h� is a sequence of linked edges ofH , that
is, hh2i�1; h2i ; h2iC1i W 1 � i � n, where h1 D h and n � 1. We can denote such
an edge chain by the vertex sequence bh1 � � � h2nC1c without ambiguity.

The expansion expŒH; h� is the set of all edge chains in ŒH; h�.

Lemma 4.56 Two edge chains bg1 � � �g2nC1c and bh1 � � � h2nC1c in ŒH; h� are
identical if ŒHg2i

; g2i � Š ŒHh2i
; h2i � for all 1 � i � n.

Proof Since ŒH; h� is extensional, the hypothesis means that g2i D h2i for all
1 � i � n. But g1 D h D h1, so the result follows by induction on n and uniqueness
of multiplicity.

Lemma 4.57 If ŒQ; q� � ŒH; h�, then for any bq1 � � � q2nC1c 2 expŒQ; q�
there exists bh1 � � � h2nC1c 2 expŒH; h� such that ŒQq2i

; q2i � Š ŒHh2i
; h2i � and

ŒQq2iC1
; q2iC1� � ŒHh2iC1

; h2iC1� for all 1 � i � n.

Proof This follows by induction on n using Lemma 4.31 in the induction step.
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Definition 4.58 LetA � expŒQ; q� and B � expŒH; h�. A projection ' W A! B

is an injection which preserves chain length, that is,

'bq1 � � � q2nC1c D bh1 � � � h2mC1c ) m D n;

and is such that the following conditions hold.
� If 'bq1 � � � q2n�1c D bh1 � � � h2n�1c and hq2n�1; q2n; q2nC1i 2 Q, then
'bq1 � � � q2nC1c D bh1 � � � h2n�1; h2n; hnC1c for some h2n; h2nC1 2

DomŒH; h�.
� If 'bq1 � � � q2nC1c D bh1 � � � h2nC1c, then ŒQq2n

; q2n� Š ŒHh2n
; h2n�.

The next result follows trivially from the definition.

Corollary 4.59 Let A � expŒQ; q�, B � expŒH; h�, and C � expŒG; g�.
If ' W A! B and  W B ! C are projections, then the composite  ' W A! C

is a projection.

Lemma 4.60 Let A � expŒQ; q�, B � expŒH; h�, and let ' W A ! B be a
projection.

If 'bq1 � � � q2nC1c D bh1 � � � h2nC1c, then for any 1 � i � n,

'bq1 � � � q2iC1c D bh1 � � � h2iC1c ^ ŒQq2i
; q2i � Š ŒHh2i

; h2i �:

Proof We prove the claim for i D n � 1 from the case i D n (which is true by
definition); then an induction on i with the same argument in the inductive step will
complete the proof. Let 'bq1 � � � q2n�1c D bg1 � � �g2n�1c; then by the first condition
of Definition 4.58, 'bq1 � � � q2nC1c D bg1 � � �g2nC1c for some g2n; g2nC1. Hence
gm D hm for all 1 � m � 2n C 1. By the second condition of Definition 4.58 we
then have ŒQq2n

; q2n� Š ŒHh2n�2
; h2n�2�.

Lemma 4.61 Let A � expŒQ; q�, B � expŒH; h�, and let ' W A ! B be a
projection.

Then the inverse '�1 W ran ' ! A is also a projection.

Proof Clearly '�1 preserves chain length since ' does, and the second condition
in Definition 4.58 is also trivially satisfied.

Suppose 'bq1 � � � q2n�1c D bh1 � � � h2n�1c and hh2n�1; h2n; h2nC1i 2 H . Let
bg1 � � �g2nC1c D '

�1bh1 � � � h2nC1c; then by Lemma 4.60,

bg1 � � �g2n�1c D '
�1
bh1 � � � h2n�1c D bq1 � � � q2n�1c:

Hence the first condition in Definition 4.58 also holds.

Lemma 4.62 We have ŒQ; q� � ŒH; h� if and only if there is a projection
' W expŒQ; q�! expŒH; h�.

Proof For the first direction suppose ŒQ; q� � ŒH; h�.
Define 'bq1 � � � q2nC1c WD bh1 � � � h2nC1c if ŒQq2i

; q2i � � ŒHh2iC1
; h2iC1� and

ŒQq2i ; q2i � Š ŒHh2i
; h2i � for all 1 � i � n. By Lemmas 4.56 and 4.57, ' is a well-

defined function on all of expŒQ; q�; and the second condition in Definition 4.58
holds trivially.

If 'bq1 � � � q2nC1c D 'bb1 � � � b2mC1c, thenm D n since ' preserves chain length
by definition. Furthermore, ŒQq2i

; q2i � Š ŒQb2i
; b2i � for all 1 � i � n, so by

Lemma 4.56, bq1 � � � q2nC1c D bb1 � � � b2mC1c, and thus ' is injective.
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If 'bq1 � � � q2n�1c D bh1 � � � h2n�1c and hq2n�1; q2n; q2nC1i 2 Q, let
bb1 � � � b2nC1c WD 'bq1 � � � q2nC1c:

Then bb1 � � � b2n�1c D 'bq1 � � � q2n�1c by checking the definition of ', so
bb1 � � � b2n�1c D bh1 � � � h2n�1c. Thus the first condition of Definition 4.58 holds,
and ' is a projection.

Conversely, suppose that there exists a projection ' W expŒQ; q�! expŒH; h�.
Define x C y if there exists 'bq1 � � � q2nC1c D bh1 � � � h2nC1c such that

x D q2nC1 and y D h2nC1, or x D q and y D h.
Suppose n > 1 and 'bq1 � � � q2n�1c D bh1 � � � h2n�1c and hq2n�1; q2n;

q2nC1i 2 Q. By the first condition of Definition 4.58 we can extend bh1 � � � h2n�1c
to bh1 � � � h2nC1c D 'bq1 � � � q2nC1c.

If n D 1, just take bh1 � � � h2nC1c WD 'bq1 � � � q2nC1c since there is nothing to
extend.

By the second condition of Definition 4.58, ŒHh2n
; h2n� Š ŒQq2n

; q2n�, while
q2nC1 C h2nC1 by definition and hh2n�1; h2n; h2nC1i 2 H .

Hence C witnesses ŒQ; q� � ŒH; h� as in Definition 4.29.

Definition 4.63 Say that B � expŒH; h� is a subimage of ŒH; h� if it is
closed under initial subchains, that is, if bh1 � � � h2nC1c 2 B where n > 1, then
bh1 � � � h2n�1c 2 B .

We will establish a correspondence between the subimages of ŒH; h� and the sub-
multisets of ŒH; h� in our interpretation of multiset theory on M. To this end we first
define a unique pointed hypergraph for each subimage.

Definition 4.64 Write dx1 � � � xne for an arbitrary finite sequence, not necessarily
in any expansion.

For each multigraph ŒH; h� choose a fixed injection � where dom � is the set of all
finite vertex sequences of ŒH; h�, and ran � is disjoint from DomŒH; h�. Since ŒH; h�
lives in a model of ZF, we can find a uniform definition for � in terms of ŒH; h� by
utilizing foundation.

Definition 4.65 If bh1 � � � h2nC1c 2 expŒH; h�, define
Hdh1 � � � h2ne WD

®˝
�dh1 � � � h2n�1; ae; �dh1 � � � h2n�1; be; �dh1 � � � h2n�1; ce

˛
W

ha; b; ci 2 Hh2n

¯
:

The point of the definition above is that ŒHdh1 � � � h2ne; �dh1 � � � h2ne� is an isomor-
phic copy of ŒHh2n

; h2n�, and these new multigraphs are all disjoint for different
bh1 � � � h2nC1c 2 expŒH; h�.

Definition 4.66 For any subimage B of ŒH; h�, define
B WD

®˝
�dh1 � � � h2n�1e; �dh1 � � � h2ne; �dh1 � � � h2nC1e

˛
W bh1 � � � h2nC1c 2 B

¯
[

[®
Hdh1 � � � h2ne W bh1 � � � h2nC1c 2 B

¯
:

IntuitivelyB is the graph created by first making a tree where the edge chains inB are
glued together at their common initial subchains, then attaching to each even-indexed
vertex �dh1 � � � h2ne the subgraphHdh1 � � � h2ne.

Lemma 4.67 The pointed hypergraph ŒB; �dhe� is accessible.
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Proof Let x be a vertex of ŒB; �dhe�; then it falls into one of two cases.
If x is in the edge h�dh1 � � � h2n�1e; �dh1 � � � h2ne; �dh1 � � � h2nC1ei where

bh1 � � � h2nC1c 2 B , the following finite directed path goes from �dhe to x:˝
�dh1 � � � h2i�1e; �dh1 � � � h2ie; �dh1 � � � h2iC1e

˛
W i D 1 � � �n:

If x 2 DomHdh1 � � � h2ne, there is a finite directed path from �dh1 � � � h2ne to x
since Hdh1 � � � h2ne Š Hh2n

(see Definition 4.65). Hence there is a path from �dhe

to x.

Lemma 4.68 If bh1 � � � h2nC1c 2 B , then ŒB�dh1���h2ne
; �dh1 � � � h2ne� Š ŒHh2n

;

h2n�.

Proof On the other hand, DomHdh1 � � � h2ne is disjoint from DomHdg1 � � �g2ne
for any other sequence dg1 � � �g2ne, and except for the top vertex �dh1 � � � h2ne it is
also disjoint from the tree®˝

�dh1 � � � h2n�1e; �dh1 � � � h2ne; �dh1 � � � h2nC1e
˛
W bh1 � � � h2nC1c 2 B

¯
:

NowHdh1 � � � h2ne is accessible from �dh1 � � � h2ne (see Lemma 4.67), so�
B�dh1���h2ne

; �dh1 � � � h2ne
�
D
�
Hdh1 � � � h2ne; �dh1 � � � h2ne

�
;

but ŒHdh1 � � � h2ne; �dh1 � � � h2ne� Š ŒHh2n
; h2n�, so the result follows.

Lemma 4.69 The pointed hypergraph ŒB; �dhe� satisfies the hypothesis of
Lemma 4.22; hence its extensional quotient is a multigraph.

Proof We have shown that ŒB; �dhe� is accessible.
Suppose B.x; a; v/ and B.x; b; w/, where ŒBa; a� � ŒBb; b�. We prove v D w

by considering the two cases with x again.
If x D �dh1 � � � h2nC1e where bh1 � � � h2nC1c 2 B , there are a0, b0 2 DomŒH; h�

such that a D �dh1 � � � h2nC1; a0e and b D �dh1 � � � hn; b0e.
By Lemma 4.68 ŒBa; a� Š ŒHa0

; a0� and ŒBb; b� Š ŒHb0
; b0�, so ŒHa0

; a0� �

ŒHb0
; b0�, and thus a0 D b0 since ŒH; h� is extensional. By construction of B we

have

v D �
˙
h1 � � � h2nC1; a0;H.h2nC1; a0/

�
D �

˙
h1 � � � h2nC1; b0;H.h2nC1; b0/

�
D w:

If x 2 DomHdh1 � � � h2ne where bh1 � � � h2nC1c 2 B (this case includes
x D �dh1 � � � h2ne), then ŒBx ; x� 2M by Lemma 4.68.

But ŒBa; a� � ŒBb; b�, so a D b since ŒBx ; x� is extensional. Thus v D w by the
same argument as in the previous case.

Hence the extensional quotient of ŒB; �dhe� is a multigraph.

Definition 4.70 If B is a subimage of ŒH; h�, define ŒQB ; qB � 2 M to be the
extensional quotient of ŒB; �dhe�.

Definition 4.71 If B is a subimage of ŒH; h�, denote the quotient map by
� W DomŒB; �dhe�! DomŒQB ; qB �.

Then the primary projection of B is®˝
bq1 � � � q2nC1c; bh1 � � � h2nC1c

˛
2 expŒQB ; qB � � B W .81 � i � 2nC 1/qi D ��dh1 � � � hie

¯
:
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Lemma 4.72 For any bq1 � � � q2nC1c 2 expŒQB ; qB � there exists bh1 � � � h2nC1c
such that hbq1 � � � q2nC1c; bh1 � � � h2nC1ci is in the primary projection.

Proof Suppose q2i�1 D ��dh1 � � � h2i�1e for some bh1 � � � h2i�1c 2 B , or sup-
pose i D 1 and q2i�1 D ��dhe.

Now hq2i�1; q2i ; q2iC1i 2 QB , and by Definition 4.66 the only edges of B to
come out of �dh1 � � � h2i�1e are®˝

�dh1 � � � h2i�1e; �dh1 � � � h2ie; �dh1 � � � h2iC1e
˛
W bh1 � � � h2iC1c 2 B

¯
:

So there are h2i , h2iC1 such that q2i D ��dh1 � � � h2ie, q2iC1 D ��dh1 � � � h2iC1e,
and bh1 � � � h2iC1c 2 B .

Since q1 D ��dhe, we can build the required edge chain bh1 � � � h2nC1c by in-
duction on i .

Lemma 4.73 The primary projection P of B is a projection to expŒH; h�, and its
range is precisely B .

Proof Let hbq1 � � � q2nC1c; bh1 � � � h2nC1ci, hbq1 � � � q2nC1c; bb1 � � � b2nC1ci 2 P .
For any 1 � i � n, by definition of the quotient map and Lemma 4.68,

ŒQB
q2i
; q2i � Š

�
B�dh1���h2i e

; �dh1 � � � h2ie
�
Š ŒHh2i

; h2i �:

Similarly ŒQB
q2i
; q2i � Š ŒHb2i

; b2i �, so h2i D b2i since ŒH; h� is extensional.
By Lemma 4.56, bh1 � � � h2nC1c D bb1 � � � b2nC1c, so P is the graph of a partial
function. By Lemma 4.72, this function is defined on all of expŒQB ; qB �, so we will
denote it by ' W expŒQB ; qB �! B .

If 'bq1 � � � q2nC1c D 'bg1 � � �g2nC1c, then ŒQB
q2i
; q2i � Š ŒHh2i

; h2i � Š

ŒQB
g2i
; g2i � for all 1 � i � n, so bq1 � � � q2nC1c D bg1 � � �g2nC1c by Lemma 4.56

again.
Thus ' is injective, and we have already verified the second condition of Defini-

tion 4.58 above.
Suppose 'bq1 � � � q2n�1c D bh1 � � � h2n�1c and 'bq1 � � � q2nC1c D bb1 � � � b2nC1c.

Then bb1 � � � b2n�1c 2 B and ŒHh2i
; h2i � Š ŒQB

q2i
; q2i � Š ŒHb2i

; b2i � for all
1 � i < n, so by Lemma 4.56, bh1 � � � h2n�1c D bb1 � � � b2n�1c and the first
condition of Definition 4.58 holds.

By definition, ' preserves chain length, so it is a projection.
Finally, for any bh1 � � � h2nC1c 2 B , let qi D ��dh1 � � � hie for 1 � i � 2nC 1.

By Definition 4.66 we have the following edge sequence in B:˝
�dh1 � � � h2i�1e; �dh1 � � � h2ie; �dh1 � � � h2iC1e

˛
W 1 � i � n:

Hence bq1 � � � q2nC1c 2 expŒQB ; qB � so 'bq1 � � � q2nC1c D bh1 � � � h2nC1c by
definition. Therefore ran ' D B .

Corollary 4.74 If B is a subimage of ŒH; h�, then ŒQB ; qB � � ŒH; h�.

Proof The corollary is proved by Lemmas 4.73 and 4.62.

For completeness we include the next result, though we will not use it.

Lemma 4.75 If A, B are subimages of ŒH; h� such that ŒQA; qA� Š ŒQB ; qB �,
then A D B .
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Proof Let  W DomŒQA; qA�! DomŒQB ; qB � be an isomorphism.
Let 'A W expŒQA; qA� ! A and 'B W expŒQB ; qB � ! B be the primary projec-

tions.
Suppose ba1 � � � a2nC1c 2 A; then ba1 � � � a2nC1c D 'Abq1 � � � q2nC1c for some

bq1 � � � q2nC1c 2 expŒQA; qA�. But b .q1/ � � � .q2nC1/c 2 expŒQB ; qB �, so let
bb1 � � � b2nC1c D 'Bb .q1/ � � � .q2nC1/c. Then for any 1 � i � n,

ŒHa2i
; a2i � Š ŒQ

A
q2i
; q2i � Š

�
QB
 .q2i /

;  .q2i /
�
Š ŒHb2i

; b2i �:

By Lemma 4.56 we have ba1 � � � a2nC1c D bb1 � � � b2nC1c 2 B . By the same argu-
ment any edge chain in B is also in A, so A D B .

Lemma 4.76 If ŒQ; q� � ŒH; h�, there exists a subimage B of ŒH; h� such that
ŒQ; q� Š ŒQB ; qB �.

Proof By Lemma 4.62 there is a projection  W expŒQ; q� ! expŒH; h�, so let
B D ran . By Lemma 4.60, B is closed under initial chains, so it is a subimage of
ŒH; h�.

Let ' W expŒQB ; qB � ! B be the primary projection of B . By Lemma 4.61
both inverses  �1 W B ! expŒQ; q� and '�1 W B ! expŒQB ; qB � are projec-
tions. Thus by Lemma 4.59 the composites  �1' W expŒQ; q� ! expŒQB ; qB � and
'�1 W expŒQB ; qB �! expŒQ; q� are also projections.

By Lemma 4.62 again ŒQ; q� � ŒQB ; qB � and ŒQB ; qB � � ŒQ; q�, so ŒQ; q� Š
ŒQB ; qB � by Lemma 4.31.

This means the set ¹ŒQB ; qB � W B is a subimage of ŒH; h�º contains one representa-
tive from each isomorphism class of multigraph ŒQ; q� � ŒH; h�. Define a constant
function ı on this set by ıŒQB ; qB � D Œ;; 0�. Note that Œ;; 0� corresponds to the
empty multiset in our interpretation of the language, which will give us the canoni-
cal power set of ŒH; h� by supertransitivity.

Lemma 4.77 (Axiom of power set) If ŒH; h� 2 M, there exists ŒD; d � 2 M such
that �

8ŒQ; q� 2M
��
ŒQ; q� � ŒH; h�,

�
ŒQ; q� 2 ŒD; d � ^

ŒH; h�

ŒQ; q�
Š Œ;; 0�

��
:

Proof We have proved that for any ŒQ; q� 2M,

ŒQ; q� � ŒH; h�,
�
9ŒQB ; qB � 2 dom ı

�
ŒQ; q� Š ŒQB ; qB �:

Therefore by Lemma 4.54 the result holds.

4.8 The remaining axioms

Lemma 4.78 (Axiom schema of multiplicity replacement) Let ŒH; h� 2 M and
'.x/ be a formula in LM (see Definition 3.1) with parameters in M. Suppose that
for any ŒQ; q� 2 ŒH; h� there is a unique ŒA; a� 2 M (up to isomorphism) such that
M ˆ '.ŒQ; q�; ŒA; a�/. Then there exists ŒD; d � 2 M such that the following both
hold: �

8ŒQ; q� 2M
��
ŒQ; q� 2 ŒD; d �, ŒQ; q� 2 ŒH; h�

�
;�

8ŒQ; q� 2 ŒD; d �
�
'
�
ŒQ; q�;

ŒD; d �

ŒQ; q�

�
:
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Proof By collection in V, there is a set N such that�
8ŒQ; q� 2 ŒH; h�

��
9ŒA; a� 2 N

�
M ˆ '

�
ŒQ; q�; ŒA; a�

�
:

By comprehension in V from N , there is a setM �M such that for all ŒE; e� 2M,��
9ŒA; a� 2M

�
ŒA; a� Š ŒE; e�

�
,M ˆ

�
9ŒQ; q� 2 ŒH; h�

�
'
�
ŒQ; q�; ŒE; e�

�
:

Without loss of generality assume that all members ofM have disjoint domains and
are disjoint from DomŒH; h�. We construct a pointed hypergraph ŒB; b� as follows.
� Let B WD

S
¹Hx W x 2 H

�1hº [
S
¹A W ŒA; a� 2M º.

� Add to B a new vertex b and edges hb; x; ai for each pair x 2 H�1h and
ŒA; a� 2M such that '.ŒHx ; x�; ŒA; a�/.

Then ŒB; b� satisfies the condition in Lemma 4.22, so its extensional quotient ŒD; d �
is a multigraph. By the quotient lemma, it is straightforward to verify that ŒD; d � is
the required multigraph.

Lemma 4.79 (Axiom schema of comprehension) Let ŒH; h� 2 M and '.x/ be a
formula in LM with parameters in M. Then there exists ŒD; d � 2 M such that the
following both hold:�

8ŒQ; q� 2M
��
ŒQ; q� 2 ŒD; d �,

�
ŒQ; q� 2 ŒH; h� ^M ˆ '

�
ŒQ; q�

���
;�

8ŒQ; q� 2 ŒD; d �
�� ŒD; d �
ŒQ; q�

Š
ŒH; h�

ŒQ; q�

�
:

Proof Let A WD ¹ŒHa; a� W a 2 H�1h^M ˆ '.ŒHa; a�/º, and define ı W A!M

by ı.ŒHa; a�/ WD ŒH;h�
ŒHa;a�

. Then ı sends isomorphic multigraphs to the same image,
so by Lemma 4.54 we have ŒD; d � 2M, as required.

With the presence of multiplicity replacement, the axiom of collection below implies
the axiom of replacement as formulated in the theory MS.

Lemma 4.80 (Axiom of collection) Let ŒH; h� 2 M and '.x; y/ be a formula in
LM with parameters in M such that�

8ŒQ; q� 2 ŒH; h�
��
9ŒA; a� 2M

�
M ˆ '

�
ŒQ; q�; ŒA; a�

�
:

Then there exists ŒD; d � 2M such that�
8ŒQ; q� 2 ŒH; h�

��
9ŒA; a� 2 ŒD; d �

�
M ˆ '

�
ŒQ; q�; ŒA; a�

�
:

Proof By collection in V , let B be a set such that

.8q 2 H�1h/
�
9ŒA; a� 2 B

�
M ˆ '

�
ŒHq; q�; ŒA; a�

�
:

By comprehension we have a set

D WD
®
ŒA; a� 2 B \M W

�
9ŒQ; q� 2 ŒH; h�

�
M ˆ '

�
ŒQ; q�; ŒA; a�

�¯
:

Define ı onD by ı.ŒA; a�/ WD ŒH; h�, and apply Lemma 4.54.

Lemma 4.81 (Axiom of infinity) There is a well-ordered multigraph ! that satis-
fies Axiom 3.3.1.
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Proof Let ˛0 WD Œ;; 0�, an empty multiset in the sense of M. If ˛n D ŒA; a�,
define ˛nC1 WD ŒB; b� where b … DomŒA; a� and B D A[ ¹hb; x; 0i W x 2 A�1aº [
¹b; a; 0º.

By induction on n, it is straightforward to show that ˛n 2M and

M ˆ ˛nC1 D ˛n [ ¹˛n ˝ ;º:

Define ' on ¹˛n W n 2 !º by '.˛n/ D Œ;; 0�, and apply Lemma 4.54.

We have showed that M interprets MSR, whence we have the following.

Theorem 4.82 If ZF is consistent, then MSR is consistent.

Our model also satisfies the following antifoundation axiom (adapted from Aczel’s
antifoundation axiom in [1, p. 6]).

Axiom 4.8.1 Multiset AFA
If H is a hypergraph (defined in the language of multiset theory using multiset re-
lations and ordered pairs in the same manner as hypergraphs in set theory) such
that

.8a; b; c; d; e 2 DomH/
��
H.a; b; c/ ^H.a; d; e/ ^ ŒHb; b� � ŒHd ; d �

�
) ŒHc ; c� � ŒHe; e�

�
;

then there exists a unique function ' such that dom ' D DomH and

.8x 2 DomH/.8a; b/
�
a 2b '.x/,

�
9hx; y; zi 2 H

��
'.y/ D a ^ '.z/ D b

��
:

Lemma 4.83 Under the given interpretation, M is a model of multiset AFA.

Proof Suppose that M believes ŒH; h� is a hypergraph satisfying the condition of
multiset AFA. Define a hypergraph G as�

8x; y; z 2 DomŒH; h�
��
hx; y; zi 2 G

,M ˆ
˝
ŒHx ; x�; ŒHy ; y�; ŒHz ; z�

˛
2 ŒH; h�

�
:

Then for any x 2 DomG, ŒGx ; x� satisfies the conditions of Lemma 4.22, so its
extensional quotient is a multigraph. Moreover, for all x; y; z 2 DomG,�

M ˆ ŒGy ; y� 2ŒGz ;z� ŒGx ; x�
�
,
�
M ˆ

˝
ŒHx ; x�; ŒHy ; y�; ŒHz ; z�

˛
2 ŒH; h�

�
:

For each x 2 DomG we can define a canonicalMx 2M such that

M ˆMx D
˝
ŒHx ; x�; ŒGx ; x�

˛
:

Define a constant function  W ¹Mx W x 2 DomGº !M by '.Mx/ D Œ;; 0�. Then
the supertransitivity lemma (Lemma 4.54) gives the required object in M.

5 A Model of Multiset Theory Where the Inclusion Relation is not Antisymmetric

In any well-founded model of MS an induction on the recursive definition of � will
show it to be antisymmetric; hence the axiom of foundation implies the axiom of
subset in that case. However, as an application of the antifoundation property of
our model M, we will modify it slightly to obtain a model of MSR where � is not
antisymmetric.
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5.1 Modified multigraphs Let M be the class of multigraphs as defined in Defini-
tion 4.20. In this section we will redefine multigraphs by strengthening the notions
of a bisimulation as follows.

Definition 5.1 LetA WD Œh1; 0; 1i; 1�, that is, the pointed hypergraph with vertices
0 and 1, where 1 is the point and 0 belongs to 1 with multiplicity 1.

Definition 5.2 A relation� � DomŒG; g��DomŒH; h� is a bisimulation between
ŒG; g� and ŒH; h� if all of the following hold.
� It is a bisimulation in the old definition, that is, Definition 4.10.
� If 1 � x and ŒG1; 1� D A, then 1 2 DomŒHx ; x� and ŒH1; 1� D A.
� If x � 1 and ŒH1; 1� D A, then 1 2 DomŒGx ; x� and ŒG1; 1� D A.

Informally speaking, under this new definition A is no longer equivalent to its other
isomorphic images. Nevertheless we can easily adapt the proofs of earlier results
about bisimilarity to this new definition. From this point on we construct the model
in exactly the same way as before except for a minor subtlety. First, we redefine
the class M of multigraphs using the new definition of bisimulation, and we define
relations on M to stand in for the identity and membership relations.

Definition 5.3 Say that ŒH; h� is extensional if any nonempty bisimulation on
ŒH; h� is the identity.

Definition 5.4 Say that ŒG; g� � ŒH; h�, that is, they are bisimilar, if there is a
bisimulation � between them such that g � h.

Definition 5.5 Say that ŒG; g� 2 ŒH; h� if there exists x 2 DomŒH; h� such that
ŒG; g� � ŒHx ; x�.

If ŒG; g� � ŒH; h�, then it is easy to see that their extensional quotients are isomor-
phic. However, unlike in the old model, even isomorphic multigraphs need not be
bisimilar. For example, let ŒG; g� be a distinct but isomorphic copy of A; then the
extensional quotients of ŒG; g� andA are just themselves, but there is no bisimulation
between them that relates the top vertices to each other (since by Definition 5.2 we
would then have g D 1 and ŒG; g� D A). Nevertheless we can easily check that
� is an equivalence relation that respects 2; thus when proving previous results in
the new model we need to replace all instances of isomorphism with the bisimilarity
relation.

5.2 The axioms of MSR

Remark 5.6 The proof of extensionality requires only trivial modification to
check the case when A is involved.

Let us now address a small inconvenience. In the old model, given any collection of
multigraphs we can easily create a copy in which all the multigraphs have disjoint
domains. This was crucial in the proof of many axioms such as collection, where a
large multigraph needs to be created. However, the special status of A in our new
model means that we are longer allowed to replace it with isomorphic copies. Thus
we have to slightly weaken the conditions of disjoint domains.

Definition 5.7 If A � M is a collection of multigraphs, say that A is almost
disjoint if the following hold for any ŒG; g�; ŒH; h� 2 A:
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� if 1 2 DomŒG; g�; 1 2 DomŒH; h�, and ŒG1; 1� D ŒH1; 1� D A, then
DomŒG; g� \ DomŒH; h� D ¹0; 1º;
� otherwise DomŒG; g� \ DomŒH; h� D ;.

Say that B is an almost disjoint copy of A if B is almost disjoint and there is a
bijection � W A$ B such that ŒG; g� � �ŒG; g� for all ŒG; g� 2 A.

Note that this definition also works for classes if we allow the bijection to be a func-
tion class, but for our current purposes it suffices to consider only sets.

Lemma 5.8 For any collection A �M there is an almost disjoint copy.

Proof If 1 … DomŒG; g� or ŒG1; 1� ¤ A, define �ŒG; g� as follows.
For any a 2 DomŒG; g� let Oa WD ha; ŒG; g�i, then trivially a ¤ 0 and a ¤ 1.
Let OG WD ¹h Oa; Ob; Oci W ha; b; ci 2 Gº and �ŒG; g� WD Œ OG; Og�. Then �ŒG; g� Š

ŒG; g� and the isomorphism is a bisimulation between them.
If 1 2 DomŒG; g� and ŒG1; 1� D A, define Oa for a 2 DomŒG; g� as above except

that O0 D 0 and O1 D 1, and define �ŒG; g� as above.
Then �ŒG; g� Š ŒG; g� is a bisimulation since both 0 and 1 are fixed.
It is straightforward to check that the range of � is almost disjoint.

Remark 5.9 Let A be an almost disjoint set of multigraphs, and let H be the
hypergraph obtained by taking the union of all hypergraphs in A. Then for any
ŒG; g� 2 A, ŒG; g� D ŒHg ; g�. Hence we can repeat the proof of supertransitivity,
using almost disjoint multigraphs where disjoint multigraphs were needed.

The proofs of comprehension, multiplicity replacement, collection, and infinity thus
carry over trivially. Now we give the updated definition of �.

Definition 5.10 Say that ŒG; g� � ŒH; h� if there is a relation C� DomŒG; g� �
DomŒH; h� such that g C h and for all x 2 DomŒG; g�, y 2 DomŒH; h�,

x C y ) .8a 2 G�1x/.9b 2 H�1y/
�
ŒGa; a� � ŒHb; b� ^G.x; a/ C H.y; b/

�
:

Lemma 5.11 If ŒG; g� � ŒH; h�, ŒP; p� � ŒQ; q� and ŒG; g� � ŒP; p�, then
ŒH; h� � ŒQ; q�. Furthermore, � is reflexive, transitive, and

ŒG; g� � ŒH; h�,
�
8ŒQ; q� 2 ŒG; g�

��
ŒQ; q� 2 ŒH; h� ^

ŒG; g�

ŒQ; q�
�
ŒH; h�

ŒQ; q�

�
:

Proof For the first part let�1;�2 be the bisimulations involved, and let C witness
ŒG; g� � ŒP; p�. Then the following relation witnesses ŒH; h� � ŒQ; q�:

x � y ,df

�
9a 2 DomŒG; g�

��
9b 2 DomŒP; p�

�
.a �1 x ^ b �2 y ^ a C b/:

The rest of the proof is mostly the same as for Lemma 4.31.

Note that in Lemma 4.31 we constructed a bisimulation explicitly to show that � is
antisymmetric, but that construction fails to be a bisimulation in the new definition.
In fact � is no longer antisymmetric.

Lemma 5.12 We have�
9ŒG; g�; ŒH; h� 2M

��
ŒG; g� � ŒH; h� ^ ŒH; h� � ŒG; g� ^ ŒG; g� 6� ŒH; h�

�
:



A Single-Sorted Theory of Multisets 331

Proof Let ŒG; g� D A, and let ŒH; h� be a distinct but isomorphic copy. Since
the empty multigraph Œ;; 0� is equivalent to any isomorphic copy of itself, the
isomorphism witnesses both ŒG; g� � ŒH; h� and ŒH; h� � ŒG; g�, but clearly
ŒG; g� 6� ŒH; h� (since by Definition 5.2 we would have h D 1 and ŒH; h� D A).

The axiom of union proceeds as before, and the proof of power set can be adapted
using almost disjointed multisets and making special cases for the occurrence of A.
Finally the multigraph constructed in the proof of Lemma 4.81 still satisfies the up-
dated definition of multigraph and proves infinity in this new model. Therefore we
have proved the following.

Theorem 5.13 It is consistent with the rest of our multiset theory that the inclusion
relation is not antisymmetric.
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