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A Syntactic Embedding of Predicate Logic into
Second-Order Propositional Logic

Morten H. Sørensen and Paweł Urzyczyn

Abstract We give a syntactic translation from first-order intuitionistic predi-
cate logic into second-order intuitionistic propositional logic IPC2. The transla-
tion covers the full set of logical connectives ∧, ∨, →, ⊥, ∀, and ∃, extending
our previous work, which studied the significantly simpler case of the universal-
implicational fragment of predicate logic. As corollaries of our approach, we
obtain simple proofs of nondefinability of ∃ from the propositional connectives
and nondefinability of ∀ from ∃ in the second-order intuitionistic propositional
logic. We also show that the ∀-free fragment of IPC2 is undecidable.

1 Introduction

The standard textbook example of a Pspace-complete problem is validity (or satis-
fiability) for “Quantified Boolean Formulas,” that is, classical second-order proposi-
tional logic. This is in a visible contrast with the ordinary co-NP-complete propo-
sitional calculus. But the expressive power of classical propositional logic with or
without propositional quantifiers is identical: every formula with quantifiers is equiv-
alent to a propositional one. In other words, one can express exactly the same prop-
erties, although at a significantly different cost.

In the case of intuitionistic logic this difference becomes much more dramatic.
Propositional intuitionistic logic is Pspace-complete [15] and adding propositional
quantifiers makes it strictly more expressive and undecidable. There are essentially
two proofs of the latter fact. One is due to Gabbay and Sobolev [4; 5; 13] (seman-
tical); the other was given by Löb [7] and is based on a translation from first-order
logic. The translation applies to the universal-implicational fragment of first-order
classical logic with equality. In fact, the restriction to ∀ and → is not essential and
Löb’s translation can be applied to first-order intuitionistic logic as well. That was
briefly remarked in [7] and worked out by Arts and Dekkers [1].

Received December 30, 2008; accepted March 2, 2010; printed September 21, 2010
2010 Mathematics Subject Classification: Primary, 03B20, 03F03
Keywords: propositional quantification, IPC2
c© 2010 by University of Notre Dame 10.1215/00294527-2010-029

457

http://www.nd.edu/~ndjfl
http://www.nd.edu


458 Morten H. Sørensen and Paweł Urzyczyn

Löb’s original translation uses an intermediate language with terms represent-
ing second-order propositional formulas and with a special predicate I representing
provability in second-order propositional logic, which is expressed by a specific set
of axioms. A semantic argument (the axioms are satisfied in a certain extension of
any first-order model) is used to ensure correctness of the translation. While this
idea is certainly ingenious, the proofs in [7; 1] are quite complicated and not very
intuitive.

In [14; 20] we gave a simpler, purely syntactic, translation from a subset of the
universal-implicational first-order intuitionistic logic in order to obtain a direct un-
decidability proof of propositional second-order intuitionistic logic (IPC2). The pur-
pose of this paper is to extend that translation to the full first-order intuitionistic logic
(with ∃,∧,∨, and ⊥). Our approach differs from that of [7; 1] also in that we use
natural deduction rather than sequent calculus. We believe that using term assign-
ment (in the spirit of the Curry-Howard isomorphism [14]) makes the argument more
transparent and easier to grasp.

As a by-product of our main result we show (Corollary 4.8) that the ∀-free frag-
ment of IPC2 is undecidable. This ties in with the recent interest in the second-order
existential quantification [2; 3; 9; 17; 18; 22]. Moreover, we provide an analysis of
normal forms and a systematic proof-search for IPC2; we think that Proposition 2.8
is of independent interest. As an example we give short syntactic proofs of the non-
definability of ∃ from the propositional connectives and nondefinability of ∀ from ∃

(Corollaries 3.2 and 3.5).

2 Propositional Second-Order Logic

The language of intuitionistic second-order propositional logic is defined as in [14,
Ch. 11]. Formulas are built from the constant ⊥ and an infinite supply of propo-
sitional variables (written p, q, . . . ) using the connectives ∨, ∧, and →, and the
propositional quantifiers ∃ and ∀. The rules of inference in Figure 1 include a term
assignment, where we leave implicit some type information for simplicity.1 Later
we will sometimes use types as superscripts, writing, for example, Mτ if the type
of M is not clear from the context.

Thinking in terms of the Curry-Howard isomorphism, we identify a logical judg-
ment 0 ` ϕ with a type assignment 0 ` M : ϕ. In particular, we often ignore the
difference between 0 as a type environment and 0 as a set of formulas. The reduc-
tion rules are standard beta-reductions and commuting conversions (permutations).
The full list of reduction rules is given in the Appendix.

Normal forms Various strong normalization proofs for second-order systems can
be found in the literature, for example, [6; 8; 10; 16; 19]. To our astonishment, none
of these proofs applies exactly to our set of reductions, and only a recent paper saved
us the extra work of proving the following.

Proposition 2.1 ([21]) Our system has the strong normalization property.

It follows that every provable formula is inhabited by a normal form. We can induc-
tively classify all normal forms into three categories:
Introductions: λx : τ. N , 3p N , 〈N1, N2〉, ini (N ), [τ, N ];
Proper eliminators: x , P N , Pτ , P{i};
Improper eliminators: εϕ(P), case P of [x]N1 or [y]N2, let P be [p, x] in N ,
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0, x : τ ` x : τ
0 ` M : ⊥

0 ` ετ (M) : τ

0, x : σ ` M : τ

0 ` (λx :σ M) : σ → τ

0 ` M : σ → τ 0 ` N : σ

0 ` (M N ) : τ

0 ` M : τi

0 ` ini (M) : τ1 ∨ τ2

0 ` M : τ ∨ σ 0, x : τ ` P : ρ 0, y : σ ` Q : ρ

0 ` (case M of [x]P or [y]Q) : ρ

0 ` M : τ 0 ` N : σ

0 ` 〈M, N 〉 : τ ∧ σ

0 ` M : τ1 ∧ τ2

0 ` M{i} : τi

(p 6∈ FV(0))
0 ` M : σ

0 ` (3p M) : ∀p σ

0 ` M : ∀p σ

0 ` (Mτ) : σ [p := τ ]

0 ` M : σ [p := τ ]

0 ` [τ,M] : ∃pσ

0 ` M : ∃pσ 0, x : σ ` N : ρ
(p 6∈ FV(0, ρ))

0 ` (let M be [p, x] in N ) : ρ

Figure 1 Rules of IPC2

where P stands for a proper eliminator and N is an arbitrary normal form. It should
be clear that every proper eliminator is obtained from a variable (called its head
variable) by means of a sequence of applications and projections and thus its type
must be a “final” part of the type of the head variable. In contrast, types of improper
eliminators can be quite arbitrary.

Suffixes and targets In the simply typed lambda-calculus, every type τ can be
written as τ = σ1 → · · · → σk → p, where p is a type variable, often called
the “target” of τ . Any application beginning with a variable of type τ must be of
a “suffix” type σi → · · · → σk → p, for some i , or just of type p. Another
simple observation is that an atomic type is inhabited in an environment 0 only if it
is a target of one of the types in 0.

In the presence of other connectives and quantifiers, this must be properly gen-
eralized. For every type τ , we define the set S(τ ) of suffixes of τ as the least set
such that

1. τ ∈ S(τ );
2. if α → β ∈ S(τ ), then β ∈ S(τ );
3. if α ∧ β ∈ S(τ ), then α, β ∈ S(τ );
4. if ∀p α ∈ S(τ ), then α[p := β] ∈ S(τ ), for all types β.

Clearly, we have the following lemma.

Lemma 2.2 If ϕ ∈ S(ψ), then S(ϕ) ⊆ S(ψ).

The next lemma states a direct characterization of suffixes.

Lemma 2.3

1. S(⊥) = {⊥} and S(p) = {p} .
2. S(α → β) = {α → β} ∪ S(β) .
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3. S(α ∧ β) = {α ∧ β} ∪ S(α) ∪ S(β) .
4. S(α ∨ β) = {α ∨ β} .
5. S(∀p α) = {∀p α} ∪

⋃
{S(α[p := β]) | β is a type} .

6. S(∃p α) = {∃p α} .

Proof In each part, the inclusion from left to right is shown by induction with re-
spect to the definition of S. The opposite direction follows from Lemma 2.2. �

For every τ we also define the set T (τ ) of targets of τ . Targets of a type are always
atoms, that is, propositional variables or ⊥. The symbol A below stands for the
(infinite) set of all atoms.

1. T (⊥) = {⊥} and T (p) = {p}, for a type variable.
2. T (α → β) = T (β).
3. T (α ♦ β) = T (α) ∪ T (β), for ♦ ∈ {∧,∨} .

4. T (∀p α) =

{
A, if p ∈ T (α);
T (α), otherwise.

5. T (∃p α) =

{
A, if T (α) = A;
T (α)− {p}, otherwise.

Note that if T (τ ) 6= A then T (τ ) ⊆ FV(τ ) ∪ {⊥}; in particular, T (τ ) is finite.
The correctness of the above definition of T (τ ) (invariance with respect to alpha-
conversion) follows from the next lemma, which, strictly speaking, should itself be
part of the definition.

Lemma 2.4

T (α[p := σ ]) =

{
(T (α)− {p}) ∪ T (σ ), if p ∈ T (α) 6= A;
T (α), otherwise. (*)

In particular, if q is a target of α[p := σ ] , then either p or q is a target of α.

Proof Induction with respect to α. The nonobvious cases are when α begins with
a quantifier. Let α = ∀q β, where we can assume p 6= q 6∈ FV(σ ). From the
induction hypothesis we know, in particular, that T (β[p := σ ]) = A if and only if
either T (β) = A or T (σ ) = A (with p ∈ T (β)). In these cases we have A at both
sides of the equation (*).

The same happens when q ∈ T (β), so we are left with two cases to consider. One
is when p, q 6∈ T (β) 6= A, and then we have T (β) on both sides of (*). The other
case is when T (σ ) 6= A, and p ∈ T (β), but q 6∈ T (β); in particular, T (β) 6= A.
We know that q 6∈ FV(σ ), and this implies q 6∈ T (σ ) (as otherwise T (σ ) = A).
Therefore, q 6∈ T (β[p := σ ]), and, by definition, T (α[p := σ ]) = T (β[p := σ ])
and T (α) = T (β). Hence the equation (*) follows immediately from the induction
hypothesis.

Now let α = ∃q β. As in the previous case, we have A on both sides of
(*) when either T (β) = A or T (σ ) = A, with p ∈ T (β). So assume that
T (β[p := σ ]), T (β) 6= A, whence T (α[p := σ ]) = T (β[p := σ ]) − {q} and
T (α) = T (β)− {q} by definition. If p 6∈ T (β), then T (β[p := σ ]) = T (β) and (*)
follows easily. If p ∈ T (β), then T (σ ) 6= A, and it remains to verify the equation

((T (β)− {p}) ∪ T (σ ))− {q} = ((T (β)− {q})− {p}) ∪ T (σ ),

using the fact that q 6∈ FV(σ ) ⊇ T (σ ). �
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Lemma 2.5 If α ∈ S(ψ), then T (α) ⊆ T (ψ). In particular, S(ψ) ∩ A ⊆ T (ψ).

Proof We say that ψ ′ is an instance of ψ when ψ ′
= ψ[ Ep := Eβ] for some variables

Ep 6∈ T (ψ) and some types Eβ. Note that by Lemma 2.4 we then have T (ψ ′) = T (ψ).
By induction with respect to ψ we prove that if α ∈ S(ψ ′) for some instance ψ ′

of ψ then T (α) ⊆ T (ψ). Most cases are immediate; we consider the two quantifiers.
Letψ = ∀q σ . First note that an instanceψ ′ ofψ must be of the formψ ′

= ∀q σ ′,
where σ ′ is an instance of σ . This is because Ep 6∈ T (ψ) implies Ep 6∈ T (σ ). Let
α ∈ S(ψ ′). If α = ψ ′, then T (α) = T (ψ) as already observed, so we can assume
α ∈ S(σ ′

[q := β]). If q 6∈ T (σ ), then σ ′
[q := β] is an instance of σ and by

the induction hypothesis we have T (α) ⊆ T (σ ) = T (ψ). But if q ∈ T (σ ), then
T (ψ) = A, so the conclusion is immediate.

If ψ = ∃q σ and α ∈ S(ψ ′), then α = ψ ′ and again we have T (α) = T (ψ). �

If 0 is an environment, then T (0) is the union of T (σ ) for all σ declared in 0.

Lemma 2.6

1. If 0, x : τ ` P : σ , and P is a proper eliminator beginning with x, then
σ ∈ S(τ ).

2. If 0 ` a, where a is an atom, then either a ∈ T (0), or ⊥ ∈ T (0) and
0 ` ⊥.

Proof (1) Easy induction with respect to P .

(2) Induction with respect to the size of a normal proof M of a. Since a is an
atom, the term M cannot be an introduction, and if it is a proper eliminator then
part (1) applies together with Lemma 2.5. By a similar argument, if M = ε(P) then
0 ` P : ⊥ and ⊥ ∈ T (0). Now let M = case Pα∨β of [x]N or [y]R. By the
induction hypothesis for N (respectively, R) we have either a or ⊥ in T (0) ∪ T (α)
(respectively, T (0) ∪ T (β)). But T (α), T (β) ⊆ T (0), by Lemma 2.5, because
α∨β ∈ S(0). Thus either a or ⊥ is in T (0). If it is a, then we are done. If, however,
a 6∈ T (0), then the induction hypothesis yields 0, α ` ⊥ as well as 0, β ` ⊥,
whence 0 ` ⊥. The case M = let P be [p, x] in N is treated similarly. �

It follows from the above lemma that if ⊥ 6∈ T (0), then 0 6` ⊥; that is, 0 is
consistent. Lemmas 2.5 and 2.6 together imply that if 0 ` P : σ , with proper P ,
then T (σ ) ⊆ T (0), that is, that proper eliminators do not produce new targets.

Lemma 2.7 If q,⊥ 6∈ T (0) and 0, ϕ → q ` q, then 0, ϕ → q ` ϕ.

Proof Consider the shortest normal proof of q . It must be an eliminator, and if it is
proper, then by Lemma 2.6(1) it must be of the form yM , where y is the assumption
of type ϕ → q . Then of course M proves ϕ.

An improper eliminator beginning with ε is excluded by the consistency
of 0, ϕ → q. If the proof is of the form case Pα∨β of [x]Q or [y]R then
we have 0, ϕ → q, α ` Q : q and 0, ϕ → q, β ` R : q. By Lemmas 2.5 and 2.6,
types α and β do not introduce new targets, so we still have q,⊥ 6∈ T (0, α) and
q,⊥ 6∈ T (0, β), and we can apply the induction hypothesis to R and Q. Therefore,
0, ϕ → q, α ` ϕ and 0, ϕ → q, β ` ϕ. Since 0, ϕ → q ` α ∨ β, we conclude that
0, ϕ → q ` ϕ.
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If the proof is of the form let P∃p τ be [p, x] in N , then we apply the induction
hypothesis to the proof 0, ϕ → q, τ ` N : q . We obtain 0, ϕ → q, τ ` ϕ and thus
also 0, ϕ → q ` ϕ, because 0, ϕ → q ` ∃p τ . �

Indirect targets and splits A suffix of a formula is weak when it is of the form
α ∨ β or ∃p α. A target of a weak suffix of σ is called an indirect target of σ . The
set of all indirect targets of σ is denoted by I (σ ). It follows from Lemma 2.5 that
I (σ ) ⊆ T (σ ); that is, indirect targets are indeed targets. Of course, I (0) stands for
the union of all I (σ ) where σ ∈ 0.

If 0 ` ∃ Ep (σ1 ∨ · · · ∨ σn), where Ep are fresh variables, 0, σi 0 ⊥, and
T (σi ) ⊆ I (0) ∪ Ep, for each σi , then we say that the formula ∃ Ep (σ1 ∨ · · · ∨ σn) is
a split of 0. Formulas σi are called components of the split. For every consistent 0
there is a trivial split of the form ∃p p.

The Wajsberg/Ben-Yelles algorithm [14] for the simply typed lambda-calculus
uses the fact that a normal inhabitant must either be an abstraction (an introduction)
or an application (a proper eliminator). We have a weaker form of this property;
namely, a type is inhabited by an introduction or a proper eliminator in every com-
ponent of a certain split. More precisely, we have the following.

Proposition 2.8 Assume that 0 0 ⊥, and let 0 ` ζ , where ζ is any formula. There
exists a split ∃ Ep (σ1 ∨ · · · ∨ σn) of 0 such that, for every i , we have 0, σi ` Ni : ζ
with Ni being either an introduction or a proper eliminator.

Proof We proceed by induction with respect to the size of a normal inhabitant M
of ζ . If M is an introduction or a proper eliminator, then the thesis holds with a trivial
split. Since 0 is consistent, M is not of the form ε(P).

Assume that M = case P of [x]Q or [y]R, where P is a proper eliminator of
type α ∨ β. Then we have 0 ` α ∨ β and 0, x :α ` Q : ζ and 0, y :β ` R : ζ .

If 0, α ` ⊥ then we actually have 0 ` β; in particular, 0, β 0 ⊥. By the induc-
tion hypothesis, there is a split 0, β ` ∃ Ep (ρ1 ∨· · ·∨ρl) such that 0, β∧ρi ` Qi : ζ ,
for all i and no Qi is improper. Then the formula ∃ Ep ((β ∧ ρ1) ∨ · · · ∨ (β ∧ ρl)) is
the required split of 0 (note that T (β) ⊆ I (0), because P is proper, and its type is a
weak suffix).

The case 0, β ` ⊥ is analogous, so let us suppose that neither 0, α ` ⊥ nor
0, β ` ⊥. Then the induction hypothesis yields two splits 0, α ` ∃Er (τ1 ∨ · · · ∨ τk)
and 0, β ` ∃Eq (ρ1 ∨ · · · ∨ ρl) such that 0, α ∧ τi ` ζ and 0, β ∧ ρ j ` ζ
hold by either introductions or proper eliminators. Then we can use the split
∃Er Eq ((α ∧ τ1) ∨ · · · ∨ (α ∧ τk) ∨ (β ∧ ρ1) ∨ · · · ∨ (β ∧ ρl)).

Now let M = let P be [q, x] in N , where 0 ` P : ∃q.α. From the induction
hypothesis we have a split ∃ Ep (σ1 ∨ · · · ∨ σn) of 0, α such that 0, α ∧ σi ` Pi : ζ
with Pi proper eliminators or introductions. We obtain a new split of 0 of the form
∃q Ep ((α ∧ σ1) ∨ · · · ∨ (α ∧ σn)). �

3 Intermezzo

Before defining our translation, we play a little intermezzo to demonstrate the use
of Proposition 2.8. Corollaries 3.2 and 3.5 are not new, but the proofs we know are
semantical [12; 22].

Lemma 3.1 If ` α → ∀p(p ∨ ¬p), and ∀ does not occur in α, then ` α ↔ ⊥.



Syntactic Embedding of Predicate Logic 463

Proof Assume the contrary. Then α 6` ⊥, and T (α) 6= A, because α has no oc-
currence of ∀. From α ` ∀p(p ∨ ¬p) it follows that α ` p ∨ ¬p for p not free
in α, in particular, for p 6∈ T (α). There is a split α ` ∃ Ep (σ1 ∨ · · · ∨ σn) with
α, σi ` Pi : p ∨ ¬p, where all Pi are either introductions or proper eliminators.
However, since p is not a target of α (and thus also not a target of σi ), proper elimi-
nators are excluded, and we actually have either α, σi ` p or α, σi ` ¬p for each i .
Since p is not free in the environment we conclude that either α, σi ` ∀p p or
α, σi ` ∀p ¬p; in other words, α, σi ` ⊥, for all i . Therefore, α ` ⊥. �

Corollary 3.2 The universal quantifier is not definable from the other connectives
in the intuitionistic second-order propositional logic: there is no formula α without ∀

such that ` α ↔ ∀p(p ∨ ¬p).

Proof Immediate from Lemma 3.1, as ∀p(p ∨ ¬p) 0 ⊥. �

Remark 3.3 Let A stand for the so-called Pitt’s quantifier [11; 12]. It follows
immediately from Lemma 3.1 that Ap(p ∨¬p) is just ⊥. Note that the result of [11]
is often misunderstood. Pitt’s construction shows that a model of second-order logic
can be built over the propositional language. But the class of formulas satisfied in
this specific model is a proper extension of IPC2. Therefore, Pitt’s quantifier cannot
be taken as a definition of ∀ (even if we restrict attention to the fragment with open
instantiation.)

Lemma 3.4 If 0 ` ∃p β(p) and 0 contains no quantifiers, then 0 ` β(σ1) ∨

· · · ∨ β(σn), for some σ1, . . . , σn .

Proof Induction with respect to the length of a normal proof. The only interesting
case is 0 ` case Pγ∨δ of [x]Q or [y]R : ∃p β(p) where we apply induction to
Q and R obtaining 0, γ ` β(σ1) ∨ · · · ∨ β(σn) and 0, δ ` β(σn+1) ∨ · · · ∨ β(σm).
Clearly, 0 ` β(σ1) ∨ · · · ∨ β(σm). Other cases are left to the reader. �

Corollary 3.5 The existential quantifier is not definable from the propositional con-
nectives in the intuitionistic second-order propositional logic: there is no proposi-
tional formula α such that ` α ↔ ∃q((p → (¬q ∨ q)) → p).

Proof Write β(p, q) for (p → (¬q∨q)) → p, and assume that ` α ↔ ∃q β(p, q).
By Lemma 3.4, we have α ` β(p, σ1) ∨ · · · ∨ β(p, σn), for some σ1, . . . , σn . It
follows that we also have ∃q β(p, q) ` β(p, σ1) ∨ · · · ∨ β(p, σn), and even sim-
pler, β(p, q) ` β(p, σ1) ∨ · · · ∨ β(p, σn), where q does not occur in σi . Since
no suffix of β(p, q) is a disjunction, we easily observe that a normal proof of
β(p, σ1) ∨ · · · ∨ β(p, σn) must be an introduction. Thus one of the components
is provable; that is, we have β(p, q) ` β(p, σ ), for some σ , not containing q .
Therefore,

(p → (¬q ∨ q)) → p, p → (¬σ ∨ σ) ` p.

By induction with respect to the length of a normal proof, we show that this cannot
happen. Of course, a normal proof of p cannot be an introduction. An improper
eliminator using ε is excluded because ⊥ is not a suffix. A case eliminator requires
a shorter proof of p (necessary to reach ¬σ ∨ σ ) and is excluded by induction.
Consider the case of a proper eliminator. Then

(p → (¬q ∨ q)) → p, p → (¬σ ∨ σ), p ` ¬q ∨ q,
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and, therefore, also ¬σ ∨ σ, p ` ¬q ∨ q .
The environment ¬σ ∨ σ, p is consistent (otherwise, p ` ¬(¬σ ∨ σ),

whence p ` ⊥) so we can apply Proposition 2.8. Consider an appropriate split
¬σ ∨ σ, p ` ∃Eq(σ1 ∨ · · · ∨ σn). The proofs ¬σ ∨ σ, p, σi ` ¬q ∨ q cannot be
proper eliminators (q is not a target) so for each i we either have ¬σ∨σ, p, σi ` ¬q
or ¬σ ∨ σ, p, σi ` q. If the former case holds for all i , then we actually have
¬σ ∨ σ, p ` ¬q. But the environment ¬σ ∨ σ, p, q is consistent, by an argument
similar to the one above, so we must have ¬σ ∨ σ, p, σi ` q at least once. This,
however, contradicts Lemma 2.6(2). �

4 The Translation

Our source language is intuitionistic first-order logic over a signature consisting of
a finite number of binary predicate symbols P,Q, . . .. The restriction to binary pred-
icates is not essential and our coding can easily be adopted to arbitrary arities.

The target language is IPC2 of Section 2. As in [14], we assume that all individual
variables (written a, b, . . . ) can be used as propositional variables (type variables) in
the target language. The plan is to systematically replace any atom P(a, b) in a given
first-order formula ϕ by a certain type P(a, b), to obtain a type ϕ such that ` ϕ is
equivalent to ` ϕ. The difficulty is to ensure that ϕ is not provable in an “ad hoc”
way. A most naïve attempt could be, for instance, to take P(a, b) = a → b → p, for
some p. The obvious confusion of P(a, b) being equivalent to P(b, a) can be easily
fixed, but here is a serious problem: the formula ∃b∀a P(a, b) is provable, because
the variable b can be instantiated by p. Our principal concern is to avoid such ad hoc
instantiations.

The solution might be to relativize all quantifiers in ϕ using a condition U such
that U(A) is inhabited only when A is an individual variable (i.e., U defines the
universe of individuals). We cannot do exactly this, but we can ensure a slightly
weaker property: a type A satisfying U(A) must behave (to a sufficient level) as an
individual variable (Lemma 4.3).

To define the translation we need some additional type variables:
1. Three variables: p,p1, and p2, for each binary relation symbol P;
2. And four more variables: •, ◦, O, and ?.

For an arbitrary type A we write A• for A → •. If P is a binary relation symbol, and
A, B are arbitrary types, then we define2

pAB = (A•
→ p1) → (B•

→ p2) → p;

p(A, B) = pAB ∨ ? .

For every type A, let U(A) be the conjunction of all types of the form

(A•
→ pi ) → ◦ and A•

→ O,

where i = 1, 2. As mentioned, the intended meaning of U is to define the uni-
verse of individuals. First-order quantifiers are encoded as second-order quantifiers
relativized to U.

The idea of the above definition is to “hide” the type A inside U(A) deep enough
and to consider environments where U(a) is assumed for every individual variable a.
Then an “ad hoc” proof of U(A) can only be obtained for a type A which is “repre-
sented” (see below) by an individual variable.
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For every first-order formula ϕ, we define a second-order propositional formula ϕ
as follows:

1. P(a, b) = p(a, b); that is, P(a, b) = ((a•
→ p1) → (b•

→ p2) → p) ∨ ? ;

2. ⊥ = ? ;

3. ϑ ♦ ψ = ϑ ♦ ψ , where ♦ ∈ {→,∧,∨};

4. ∀aψ = ∀a(U(a) → ψ);

5. ∃aψ = ∃a(U(a) ∧ ψ).
An individual variable a represents a type A in an environment 0 if and only if the
conditions

0, A•
` a•,

0, A•
→ pi ` a•

→ pi ,

hold for every relation symbol P and every i ∈ {1, 2}. Note that a variable represents
itself.

Lemma 4.1 Let us fix two atoms of the form pi , q j . Assume that no individual
variable nor any of the symbols •, ⊥, pi , q j is in T (0). If

0, A•
` a•,

0, A•
→ pi ` b•

→ q j ,

then a = b, p = q, and i = j .

Proof From 0, A•
` a• we obtain 0, a•

→ pi ` A•
→ pi . Therefore,

0, a•
→ pi ` b•

→ q j and thus 0, x : a•
→ pi , y : b•

` N : q j , for
some normal form N . Since q j ,⊥ 6∈ T (0), we must have q j = pi be-
cause of Lemma 2.6(2). Similarly, pi 6∈ T (0, b•), so by Lemma 2.7 we have
0, a•

→ pi , b•
` a•, that is, 0, a•

→ pi , b → •, a ` •. Applying again
Lemma 2.7, we conclude that 0, a•

→ pi , b → •, a ` b. The only individual
variable in T (0, a•

→ pi , b → •, a) is a, so it must be the case that a = b. �

Lemma 4.2 Assume that no individual variable and no variable of the form pi nor
any of the symbols •, ⊥ belongs to T (0). If a type A is represented in 0 by variables
a and b then a = b.

Proof Immediate from Lemma 4.1. �

Note that if 0 ⊆ 0′ and both the environments satisfy the assumptions of Lemma 4.2,
then the variable representing a type A in 0 and 0′ is the same.

Lemma 4.3 Assume that 0 is an environment such that
1. individual variables, variables of the form pi , types ⊥, and • do not belong

to T (0),
2. if ◦ ∈ T (ψ) or O ∈ T (ψ), for some ψ ∈ 0, then ψ = U(a), where a is an

individual variable.
Suppose that 0 ` U(A), for some type A. Then there is a unique individual vari-
able a representing A in 0. In addition, 0 must contain the assumption U(a).

Proof Since 0 ` U(A), we have 0 ` A•
→ O; that is, 0, A•

` O. By Proposi-
tion 2.8, there is a split ∃ Ep (σ1 ∨· · ·∨σn) of 0, A• such that 0, A•, σk ` Pk : O holds
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for every k with some proper eliminator Pk . But all targets of σk are in T (0, A•)∪ Ep
and, therefore, the only way in which O can be a target in 0, A•, σk is because some
U(a) is in 0. Since Pk is proper, we must have 0, A•, σk ` a• (Lemma 2.6(1)).

On the other hand, it follows from 0 ` U(A) that 0 ` (A•
→ pi ) → ◦; that is,

0, A•
→ pi ` ◦. Again, we have a split ∃Eq (τ1 ∨ · · · ∨ τn) of 0, A•

→ pi satisfying
0, A•

→ pi , τ` ` P` : ◦ with proper P`. The variable ◦ may occur in 0 only as
target of some U(b), and we get 0, A•

→ pi , τ` ` b•
→ q j .

For any k and `, the environment 0, τ`, σk satisfies the assumptions of Lemma 4.1.
This is because, by the definition of split, all targets of τ` are indirect targets of
0, A•

→ pi , or are in Ep. Since pi 6∈ T (0) ∪ Ep, we have that pi is not a target of τ`.
For a similar reason, • is not a target in 0, τ`, σk .

From Lemma 4.1 we have that pi = q j and a = b (in particular, one a is good
for every k), and we actually get 0, A•

→ pi , τ` ` a•
→ pi , for all ` = 1, . . . , n.

Since τ` are components of a split, we conclude that 0, A•
→ pi ` a•

→ pi , and,
similarly, 0, A•

` a•. It follows that a represents A. Uniqueness is a consequence
of Lemma 4.2. �

We say that an environment 0 is simple when 0 consists of

1. formulas of the form U(a), where a is an individual variable;
2. formulas of the form ϕ[Ea := EA] (written ϕ( EA) for simplicity), where Ea are

individual variables and EA are arbitrary types called ad hoc types of 0.

Note that the parsing of a type of the form ϕ( EA) is unique in the following sense: if
we have ϕ( EA) = ψ( EB) and no free individual variable occurs twice in ϕ or ψ then EB
is a permutation of EA, and ϕ is identical to ψ modulo a renaming of variables. Note
also that, no matter what EA is, the targets of ϕ( EA) are only ?, and variables of the
form q, where Q is a relation symbol. Therefore, only ?,q, ◦, O may be targets in
a simple environment. It follows that simple environments satisfy the assumptions
of Lemma 4.3.

Notice also that a suffix (type of a proper eliminator) in a simple environment is
either of the form ϕ( EA) or of the form U(B) → ϕ( EA, B) or is a suffix of some U(a).
In particular, a variable of the form p cannot be a suffix.

An environment 0′ is a variant of 0 when every formula in 0′ is either a member
of 0 or a conjunction of formulas in 0.

Lemma 4.4 Let 1 = 0 ∪6, where

1. 0 is a variant of a simple environment;
2. 6 consists exclusively of types of the form qC D , where C and D are repre-

sented in 1 by individual variables.

Assume that 1 ` pAB , where A and B are represented in 1 by individual vari-
ables. Then there is pC D ∈ 6 such that A and C are represented in 1 by the same
individual variable, and similarly for B and D.

Proof We have 1, A•
→ p1, B•

→ p2 ` M : p, for some normal proof M , and
we proceed by induction with respect to the size of M . The term M must be an
eliminator, and we have the following cases.
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Case 1 M is a proper eliminator. Since p may occur as a suffix only in 6, we have

1, A•
→ p1, B•

→ p2 ` C•
→ p1;

1, A•
→ p1, B•

→ p2 ` D•
→ p2,

for some C and D with pC D ∈ 6. Let a, c be the variables representing A,C in 1.
Then

1, A•
→ p1, B•

→ p2 ` c•
→ p1 and 1, A•, B•

→ p2 ` a•,

and, therefore, a = c, by Lemma 4.1. A similar argument applies to B and D.

Case 2 M = case P of [x]Q or [y]N , where P : τ ∨ σ . Then

0, σ,6, A•
→ p1, B•

→ p2 ` N : p.

Here N is a normal proof, shorter than M . Since ∨ does not occur in S(6), the proper
eliminator P must begin with a variable declared in 0. The type τ ∨ σ is therefore
a suffix of 0 (an instance of a formula), and we can assume that σ = ψ( EA), for
some ψ and EA. (It may happen that P is of type q(A, B) = qAB ∨ ?. In this case
we assume τ = qAB and σ = ? = ⊥.)

Thus the environment 0, x : σ is simple and we can apply the induction hypothesis
to N . It follows that pC D ∈ 6, where A and C (and also B and D) are represented
by the same variable in 1, σ . From the uniqueness we conclude that these types are
represented by the same variable in 1.

Case 3 M = let P be [a, x] in N . The head variable of the proper eliminator P
must be declared in 0, because an existential formula is a suffix of its type. Thus P
is of type ∃a ϕ(a, EA), where a is an individual variable, and we have

0, ϕ(a, EA),6, A•
→ p1, B•

→ p2 ` N : p,

where N is shorter than M . Again we apply induction.

Case 4 M = ε(P) is excluded, because ⊥ is not a target in the environment
0,6, A•

→ p1, B•
→ p2. �

For a first-order environment 6, we define

6 = {ϕ | ϕ ∈ 6} ∪ {U(a) | a ∈ FV(6)}.

Clearly, 6 is a simple environment.
Suppose that 0 is a simple environment such that 0 ` U(A), for every ad hoc

type A of 0. By Lemma 4.3, the ad hoc types are represented in 0 by individual
variables (and these variables occur free in 0). Thus, we can define the first-order
environment

|0| = {ϕ(Ea) | ϕ( EA) ∈ 0, for some EA, and variables Ea represent EA in 0}.

Of course, |6| = 6 for first-order 6. Note also that all free variables of |0| occur
free in 0.

Let 0′ be a variant of a simple environment 0 such that 0 ` U(A) for every ad
hoc type A of 0. We say that a union of the form 1 = 0′

∪6 is a good environment
(and we write 1 ≈ 0 ⊕6), when every type in 6 is of the form qAB , with

1. 1 ` U(A) and 1 ` U(B);
2. |0| ` Q(a, b), for a, b representing A, B in 1.
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Targets of a good environment are only of the form ?,q, ◦, O, quite like in a simple
environment.

Lemma 4.5 If 1 ≈ 0 ⊕ 6 is a good environment, and 1 ` P : σ , for a proper
eliminator P, then either σ ∈ 1 or one of the following cases holds:

1. σ = ϕ( EA) and 1 ` U(A), for each A ∈ EA;
2. σ = U(B) → ϕ( EA, B), where 1 ` U(A), for each A ∈ EA, and P = P ′ B,

for some P ′;
3. σ = σ1 ∧ σ2, where σ1, σ2 ∈ 0;
4. σ ∈ S(U(a)), for some individual variable a;
5. σ ∈ S(pAB), for some pAB ∈ 6.

Proof Induction with respect to the length of P . �

Here is our main lemma.

Lemma 4.6 If1 ≈ 0⊕6 is good and1 ` ϕ( EA), with1 ` U(A) for each A ∈ EA,
then |0| ` ϕ(Ea), in first-order logic, where Ea represent EA in 1.

Proof We prove a slightly more general statement, consisting of three claims
(where M is assumed normal, the variables Ea represent EA, and 1 ` U(A) for all A
in EA):

(a) If 1 ` M : ϕ( EA), then |0| ` ϕ(Ea).
(b) If1 ` M : U(a) → ϕ(a, EA), where a is not free in1, then |0| ` ∀aϕ(a, Ea).
(c) If 1 ` M : U(A) ∧ ϕ(A, EA), then |0| ` ϕ(a, Ea), where a represents A.

We proceed by induction with respect to M by inspecting the various forms M may
have. In each case we consider the relevant claims among (a)–(c).

Case 1 M is an abstraction. The relevant subcases are (a) and (b). If M in
part (a) is an abstraction of type ϕ( EA), then ϕ( EA) = ψ( EA) → ϑ( EA) and we have
M = λx :ψ( EA).N , where N is such that1, x :ψ( EA) ` N : ϑ( EA). The environment
1, x :ψ( EA) is good, because 0 ` U(A) holds for each A ∈ EA. From the induction
hypothesis we obtain |0|, x :ψ(Ea) ` ϑ(Ea), whence also |0| ` ψ(Ea) → ϑ(Ea).

If M in (b) is an abstraction λx :U(a).N of type U(a) → ϕ(a, EA), then
0, x : U(a) ` N : ϕ(a, EA). We apply the induction hypothesis and obtain
|0| ` ϕ(a, Ea). Since a is not free in 1, it is also not free in |0|, and we con-
clude with |0| ` ∀a ϕ(a, Ea).

Case 2 M is a polymorphic abstraction. Then we are in part (a) and M is of the
form 3a N and has type ϕ( EA) = ∀a (U(a) → ψ(a, EA)). Apply part (b) of the
induction hypothesis to N .

Case 3 If M = [A, N ], then only part (a) is relevant, with ϕ( EA) = ∃a (U(a)
∧ ψ(a, EA)) and we have 0 ` N : U(A) ∧ ψ(A, EA). We apply part (c) of the
induction hypothesis to N .

Case 4 M is a pair of the form 〈N1, N2〉. We consider parts (a) and (c). In part (a)
we have N1 : ϕ( EA) and N2 : ψ( EA), and applying induction to N1 and N2 we get
|0| ` ϕ(Ea) and |0| ` ψ(Ea). It follows that |0| ` ϕ(Ea) ∧ ψ(Ea). In part (c) the
pair 〈N1, N2〉 is of type U(A) ∧ ϕ(A, EA). We apply induction to N2 and obtain
|0| ` ϕ(a, Ea).
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Case 5 M = ini (N ). This can only happen in part (a), but we have three subcases.
The first subcase is when M is of type ϕ( EA) ∨ ψ( EA), and it follows easily from the
induction hypothesis. The second subcase is when 1 ` N : pAB and M = in1(N )
has type p(A, B) = pAB ∨ ?. It follows from Lemma 4.4 that there is an assumption
pC D in 6 such that the variables a, b representing A, B in 1 also represent C, D.
Therefore, |0| ` P(a, b). The third subcase is when 1 ` N : ?. Since ? = ⊥,
the induction hypothesis, part (a), applied to N , implies that |0| is inconsistent. In
particular, |0| ` P(a, b).

Now we assume that M is a proper eliminator.

Case 6 If M is a variable then the relevant parts are (a) and (c) and the claim is
obvious.

Case 7 The case of M being an application is only possible in part (a) and it splits
into two subcases. First we assume that M = P N , where 1 ` P : ψ( EB) → ϕ( EA).
Then 1 ` U(B) for B ∈ EB, by Lemma 4.5, and we can apply the induc-
tion hypothesis to both P and N . The other subcase is when M = P BW ,
where B is a type. Assume for simplicity that B ∈ EA, say EA = (B, EC). Then
1 ` P : ∀b (U(b) → ϕ(b, EC)) and 1 ` W : U(B). The induction hypothesis (b)
applies to Pa, for a fresh a, whence |0| ` ∀a ϕ(a, Ec) and thus also |0| ` ϕ(b, Ec),
for b representing B.

Case 8 The case of polymorphic application M = P B, where B is a type, is only
possible in part (b) and follows immediately from the induction hypothesis (a).

Case 9 If M is a projection, say M = P{2}, then by Lemma 4.5 we have
1 ` P : σ ∧ ϕ( EA), for some σ , and either ϕ( EA) is in 0 or the induction hypothesis
is applicable to P by Lemma 4.5.

There is no other possibility for M to be a proper eliminator, so we now assume
that M is improper.

Case 10 If M = case P of [x]Q or [y]R, then (regardless if we are in part (a),
(b), or (c)) we have two possibilities. One is that 1 ` P : ψ( EB) ∨ ϑ( EB). Then
by Lemma 4.5 we can apply induction to P , Q, and R. For instance, in part (a)
we then have |0| ` ψ(Eb) ∨ ϑ(Eb) and |0|, ψ(Eb) ` ϕ(Ea) and |0|, ϑ(Eb) ` ϕ(Ea), for
appropriate Eb, and therefore also |0| ` ϕ(Ea). The argument in parts (b) and (c) is
similar. The other possibility is that 1 ` P : pAB ∨ ?; that is, P is of type p(A, B).
By part (a) of the induction hypothesis, applied to P , we have |0| ` P(a, b) for
appropriate a, b, whence 1,pAB is good. Thus we can also apply (the appropriate
part of) the induction hypothesis to Q, obtaining the desired conclusion.

Case 11 Finally, let M = let P be [b, x] in N and let us consider part (a).
Then M is of type ϕ( EA) and 1 ` P : ∃b (U(b) ∧ ψ(b, EB)). We also have
1, x :U(b) ∧ ψ(b, EB) ` N : ϕ( EA). We apply induction to P and N and obtain
that |0| ` ∃bψ(b, Eb) and |0|, ψ(b, Eb) ` ϕ(Ea). That is, we have |0| ` ϕ(Ea). The
reasoning in parts (b) and (c) is similar.

The final remark is that M 6= ε(P), as ⊥ 6∈ T (1). �

Theorem 4.7 The translation is sound and complete in the following sense: For
any first-order 6 and ϕ, we have 6 ` ϕ if and only if 6 ` ϕ.
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Proof The “only if” part goes by a routine induction. (First show that ⊥ ` ϕ, for
all ϕ.) The “if” part is immediate from Lemma 4.6. �

Corollary 4.8 The ∀-free fragment of intuitionistic second-order propositional
logic is undecidable.

Proof We begin with the ∀-free fragment of classical first-order logic, which is of
course undecidable. Via Kolmogorov’s translation it reduces to the ∀-free fragment
of intuitionistic first-order logic. It remains to observe that our translation does not
introduce new universal quantifiers. �

5 Conclusion and Future Work

We have given a purely syntactic translation of first-order intuitionistic logic to
second-order intuitionistic propositional logic, thus reproving syntactically the result
of [7; 1]. It follows that second-order intuitionistic propositional logic is undecidable
and that the same holds for its ∀-free fragment. Note also that for the “only if” part
of Theorem 4.7 we only need to instantiate bound variables by variables. That is,
undecidability remains true under a strictly predicative regime.

At present, the translation applies to function-free signatures, and the extension to
functions remains future work. Another unsettled issue is the exact delineation of the
border between decidable and undecidable fragments of ∀-free IPC2. From [18] we
know that the ∃,∧,¬-fragment is decidable. Decidability with ∀, ∃,∧,¬ was also
recently announced [17]. The proof of Corollary 4.8 uses ∃, →, ∨, and ∧; it remains
open whether all these four connectives are indeed necessary.

The syntactic proof was made possible by an analysis of normal forms in the ex-
tended version of system F, involving all the logical connectives and quantifiers. This
classification appears to be useful on its own, as demonstrated by the simple proofs
of nondefinability of ∃ from the propositional connectives, and the nondefinability
of ∀ from ∃.

Appendix: Reductions in IPC2

Beta-reductions:
1. (λx M)N ⇒ M[x := N ];
2. (3p M)τ ⇒ M[p := τ ];
3. 〈M1,M2〉{i} ⇒ Mi ;
4. case ini (M) of [x1]P1 or [x2]P2 ⇒ Pi [xi := M];
5. let [τ,M] be [p, x] in N ⇒ N [p := τ ][x := M].

Commuting conversions for ε:
1. εψ (ε⊥(M)) ⇒ εψ (M);
2. εϕ→ψ (M)N ⇒ εψ (M);
3. ε∀p.σ (M)τ ⇒ εσ [p:=τ ](M);
4. εϕ1∧ϕ2(M){i} ⇒ εϕi (M);
5. case εσ∨τ (M) of [u]Rρ or [v]Sρ ⇒ ερ(M);
6. let ε∃p.σ (M) be [p, x] in Nρ

⇒ ερ(M);
Commuting conversions for case:

1. εϕ(case M of [x]P or [y]Q) ⇒ case M of [x]εϕ(P) or [y]εϕ(Q);
2. (case M of [x]P or [y]Q)N ⇒ case M of [x]P N or [y]QN ;
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3. (case M of [x]P or [y]Q)τ ⇒ case M of [x]Pτ or [y]Qτ ;
4. (case M of [x]P or [y]Q){i} ⇒ case M of [x]P{i} or [y]Q{i};
5. case (case M of [x]P or [y]Q) of [u]R or [v]S ⇒

case M of [x](case P of [u]R or [v]S)
or [y](case Q of [u]R or [v]S);

6. let (case M of [x]P or [y]Q) be [p, x] in N ⇒

case M of [x](let P be [p, x] in N )
or [y](let Q be [p, x] in N ).

Commuting conversions for let:
1. εϕ(let M be [p, x] in N ) ⇒ let M be [p, x] in εϕ(N );
2. (let M be [p, x] in N )P ⇒ let M be [p, x] in N P;
3. (let M be [p, x] in N )τ ⇒ let M be [p, x] in Nτ ;
4. (let M be [p, x] in N ){i} ⇒ let M be [p, x] in N {i};
5. case (let M be [p, x] in N ) of [x]P or [y]Q ⇒

let M be [p, x] in case N of [x]P or [y]Q;
6. let (let M be [p, x] in N ) be [q, y] in P ⇒

let M be [p, x] in (let N be [q, y] in P).

Notes

1. Strictly speaking, we should write, for example, [τ,M]∃pσ instead of [τ,M], etc.

2. This differs from the coding used in [14, Ch. 11], where we had p(A, B) = pAB → ?.
This coding was appropriate for the restricted class of formulas used there, but does
not work in general. Consider, for instance, the unprovable entailment z : (P(a, b) →

Q(c, d)) → P(a, b) ` P(a, b). The translation of [14] yields the assertion z : (p(a, b) →

q(c, d)) → p(a, b) ` p(a, b), inhabited by the term λxpab . z(λup(a,b)λvqcd . ux)x .
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