
Notre Dame Journal of Formal Logic
Volume 51, Number 4, 2010

A Syntactic Embedding of Predicate Logic into
Second-Order Propositional Logic

Morten H. Sørensen and Paweł Urzyczyn

Abstract We give a syntactic translation from first-order intuitionistic predi-
cate logic into second-order intuitionistic propositional logic IPC2. The transla-
tion covers the full set of logical connectives ∧, ∨, →, ⊥, ∀, and ∃, extending
our previous work, which studied the significantly simpler case of the universal-
implicational fragment of predicate logic. As corollaries of our approach, we
obtain simple proofs of nondefinability of ∃ from the propositional connectives
and nondefinability of ∀ from ∃ in the second-order intuitionistic propositional
logic. We also show that the ∀-free fragment of IPC2 is undecidable.

1 Introduction

The standard textbook example of a Pspace-complete problem is validity (or satis-
fiability) for “Quantified Boolean Formulas,” that is, classical second-order proposi-
tional logic. This is in a visible contrast with the ordinary co-NP-complete propo-
sitional calculus. But the expressive power of classical propositional logic with or
without propositional quantifiers is identical: every formula with quantifiers is equiv-
alent to a propositional one. In other words, one can express exactly the same prop-
erties, although at a significantly different cost.

In the case of intuitionistic logic this difference becomes much more dramatic.
Propositional intuitionistic logic is Pspace-complete [15] and adding propositional
quantifiers makes it strictly more expressive and undecidable. There are essentially
two proofs of the latter fact. One is due to Gabbay and Sobolev [4; 5; 13] (seman-
tical); the other was given by Löb [7] and is based on a translation from first-order
logic. The translation applies to the universal-implicational fragment of first-order
classical logic with equality. In fact, the restriction to ∀ and → is not essential and
Löb’s translation can be applied to first-order intuitionistic logic as well. That was
briefly remarked in [7] and worked out by Arts and Dekkers [1].

Received December 30, 2008; accepted March 2, 2010; printed September 21, 2010
2010 Mathematics Subject Classification: Primary, 03B20, 03F03
Keywords: propositional quantification, IPC2
c© 2010 by University of Notre Dame 10.1215/00294527-2010-029

457

http://www.nd.edu/~ndjfl
http://www.nd.edu

458 Morten H. Sørensen and Paweł Urzyczyn

Löb’s original translation uses an intermediate language with terms represent-
ing second-order propositional formulas and with a special predicate I representing
provability in second-order propositional logic, which is expressed by a specific set
of axioms. A semantic argument (the axioms are satisfied in a certain extension of
any first-order model) is used to ensure correctness of the translation. While this
idea is certainly ingenious, the proofs in [7; 1] are quite complicated and not very
intuitive.

In [14; 20] we gave a simpler, purely syntactic, translation from a subset of the
universal-implicational first-order intuitionistic logic in order to obtain a direct un-
decidability proof of propositional second-order intuitionistic logic (IPC2). The pur-
pose of this paper is to extend that translation to the full first-order intuitionistic logic
(with ∃,∧,∨, and ⊥). Our approach differs from that of [7; 1] also in that we use
natural deduction rather than sequent calculus. We believe that using term assign-
ment (in the spirit of the Curry-Howard isomorphism [14]) makes the argument more
transparent and easier to grasp.

As a by-product of our main result we show (Corollary 4.8) that the ∀-free frag-
ment of IPC2 is undecidable. This ties in with the recent interest in the second-order
existential quantification [2; 3; 9; 17; 18; 22]. Moreover, we provide an analysis of
normal forms and a systematic proof-search for IPC2; we think that Proposition 2.8
is of independent interest. As an example we give short syntactic proofs of the non-
definability of ∃ from the propositional connectives and nondefinability of ∀ from ∃

(Corollaries 3.2 and 3.5).

2 Propositional Second-Order Logic

The language of intuitionistic second-order propositional logic is defined as in [14,
Ch. 11]. Formulas are built from the constant ⊥ and an infinite supply of propo-
sitional variables (written p, q, . . .) using the connectives ∨, ∧, and →, and the
propositional quantifiers ∃ and ∀. The rules of inference in Figure 1 include a term
assignment, where we leave implicit some type information for simplicity.1 Later
we will sometimes use types as superscripts, writing, for example, Mτ if the type
of M is not clear from the context.

Thinking in terms of the Curry-Howard isomorphism, we identify a logical judg-
ment 0 ` ϕ with a type assignment 0 ` M : ϕ. In particular, we often ignore the
difference between 0 as a type environment and 0 as a set of formulas. The reduc-
tion rules are standard beta-reductions and commuting conversions (permutations).
The full list of reduction rules is given in the Appendix.

Normal forms Various strong normalization proofs for second-order systems can
be found in the literature, for example, [6; 8; 10; 16; 19]. To our astonishment, none
of these proofs applies exactly to our set of reductions, and only a recent paper saved
us the extra work of proving the following.

Proposition 2.1 ([21]) Our system has the strong normalization property.

It follows that every provable formula is inhabited by a normal form. We can induc-
tively classify all normal forms into three categories:
Introductions: λx : τ. N , 3p N , 〈N1, N2〉, ini (N), [τ, N];
Proper eliminators: x , P N , Pτ , P{i};
Improper eliminators: εϕ(P), case P of [x]N1 or [y]N2, let P be [p, x] in N ,

Syntactic Embedding of Predicate Logic 459

0, x : τ ` x : τ
0 ` M : ⊥

0 ` ετ (M) : τ

0, x : σ ` M : τ

0 ` (λx :σ M) : σ → τ

0 ` M : σ → τ 0 ` N : σ

0 ` (M N) : τ

0 ` M : τi

0 ` ini (M) : τ1 ∨ τ2

0 ` M : τ ∨ σ 0, x : τ ` P : ρ 0, y : σ ` Q : ρ

0 ` (case M of [x]P or [y]Q) : ρ

0 ` M : τ 0 ` N : σ

0 ` 〈M, N 〉 : τ ∧ σ

0 ` M : τ1 ∧ τ2

0 ` M{i} : τi

(p 6∈ FV(0))
0 ` M : σ

0 ` (3p M) : ∀p σ

0 ` M : ∀p σ

0 ` (Mτ) : σ [p := τ]

0 ` M : σ [p := τ]

0 ` [τ,M] : ∃pσ

0 ` M : ∃pσ 0, x : σ ` N : ρ
(p 6∈ FV(0, ρ))

0 ` (let M be [p, x] in N) : ρ

Figure 1 Rules of IPC2

where P stands for a proper eliminator and N is an arbitrary normal form. It should
be clear that every proper eliminator is obtained from a variable (called its head
variable) by means of a sequence of applications and projections and thus its type
must be a “final” part of the type of the head variable. In contrast, types of improper
eliminators can be quite arbitrary.

Suffixes and targets In the simply typed lambda-calculus, every type τ can be
written as τ = σ1 → · · · → σk → p, where p is a type variable, often called
the “target” of τ . Any application beginning with a variable of type τ must be of
a “suffix” type σi → · · · → σk → p, for some i , or just of type p. Another
simple observation is that an atomic type is inhabited in an environment 0 only if it
is a target of one of the types in 0.

In the presence of other connectives and quantifiers, this must be properly gen-
eralized. For every type τ , we define the set S(τ) of suffixes of τ as the least set
such that

1. τ ∈ S(τ);
2. if α → β ∈ S(τ), then β ∈ S(τ);
3. if α ∧ β ∈ S(τ), then α, β ∈ S(τ);
4. if ∀p α ∈ S(τ), then α[p := β] ∈ S(τ), for all types β.

Clearly, we have the following lemma.

Lemma 2.2 If ϕ ∈ S(ψ), then S(ϕ) ⊆ S(ψ).

The next lemma states a direct characterization of suffixes.

Lemma 2.3

1. S(⊥) = {⊥} and S(p) = {p} .
2. S(α → β) = {α → β} ∪ S(β) .

460 Morten H. Sørensen and Paweł Urzyczyn

3. S(α ∧ β) = {α ∧ β} ∪ S(α) ∪ S(β) .
4. S(α ∨ β) = {α ∨ β} .
5. S(∀p α) = {∀p α} ∪

⋃
{S(α[p := β]) | β is a type} .

6. S(∃p α) = {∃p α} .

Proof In each part, the inclusion from left to right is shown by induction with re-
spect to the definition of S. The opposite direction follows from Lemma 2.2. �

For every τ we also define the set T (τ) of targets of τ . Targets of a type are always
atoms, that is, propositional variables or ⊥. The symbol A below stands for the
(infinite) set of all atoms.

1. T (⊥) = {⊥} and T (p) = {p}, for a type variable.
2. T (α → β) = T (β).
3. T (α ♦ β) = T (α) ∪ T (β), for ♦ ∈ {∧,∨} .

4. T (∀p α) =

{
A, if p ∈ T (α);
T (α), otherwise.

5. T (∃p α) =

{
A, if T (α) = A;
T (α)− {p}, otherwise.

Note that if T (τ) 6= A then T (τ) ⊆ FV(τ) ∪ {⊥}; in particular, T (τ) is finite.
The correctness of the above definition of T (τ) (invariance with respect to alpha-
conversion) follows from the next lemma, which, strictly speaking, should itself be
part of the definition.

Lemma 2.4

T (α[p := σ]) =

{
(T (α)− {p}) ∪ T (σ), if p ∈ T (α) 6= A;
T (α), otherwise. (*)

In particular, if q is a target of α[p := σ] , then either p or q is a target of α.

Proof Induction with respect to α. The nonobvious cases are when α begins with
a quantifier. Let α = ∀q β, where we can assume p 6= q 6∈ FV(σ). From the
induction hypothesis we know, in particular, that T (β[p := σ]) = A if and only if
either T (β) = A or T (σ) = A (with p ∈ T (β)). In these cases we have A at both
sides of the equation (*).

The same happens when q ∈ T (β), so we are left with two cases to consider. One
is when p, q 6∈ T (β) 6= A, and then we have T (β) on both sides of (*). The other
case is when T (σ) 6= A, and p ∈ T (β), but q 6∈ T (β); in particular, T (β) 6= A.
We know that q 6∈ FV(σ), and this implies q 6∈ T (σ) (as otherwise T (σ) = A).
Therefore, q 6∈ T (β[p := σ]), and, by definition, T (α[p := σ]) = T (β[p := σ])
and T (α) = T (β). Hence the equation (*) follows immediately from the induction
hypothesis.

Now let α = ∃q β. As in the previous case, we have A on both sides of
(*) when either T (β) = A or T (σ) = A, with p ∈ T (β). So assume that
T (β[p := σ]), T (β) 6= A, whence T (α[p := σ]) = T (β[p := σ]) − {q} and
T (α) = T (β)− {q} by definition. If p 6∈ T (β), then T (β[p := σ]) = T (β) and (*)
follows easily. If p ∈ T (β), then T (σ) 6= A, and it remains to verify the equation

((T (β)− {p}) ∪ T (σ))− {q} = ((T (β)− {q})− {p}) ∪ T (σ),

using the fact that q 6∈ FV(σ) ⊇ T (σ). �

Syntactic Embedding of Predicate Logic 461

Lemma 2.5 If α ∈ S(ψ), then T (α) ⊆ T (ψ). In particular, S(ψ) ∩ A ⊆ T (ψ).

Proof We say that ψ ′ is an instance of ψ when ψ ′
= ψ[Ep := Eβ] for some variables

Ep 6∈ T (ψ) and some types Eβ. Note that by Lemma 2.4 we then have T (ψ ′) = T (ψ).
By induction with respect to ψ we prove that if α ∈ S(ψ ′) for some instance ψ ′

of ψ then T (α) ⊆ T (ψ). Most cases are immediate; we consider the two quantifiers.
Letψ = ∀q σ . First note that an instanceψ ′ ofψ must be of the formψ ′

= ∀q σ ′,
where σ ′ is an instance of σ . This is because Ep 6∈ T (ψ) implies Ep 6∈ T (σ). Let
α ∈ S(ψ ′). If α = ψ ′, then T (α) = T (ψ) as already observed, so we can assume
α ∈ S(σ ′

[q := β]). If q 6∈ T (σ), then σ ′
[q := β] is an instance of σ and by

the induction hypothesis we have T (α) ⊆ T (σ) = T (ψ). But if q ∈ T (σ), then
T (ψ) = A, so the conclusion is immediate.

If ψ = ∃q σ and α ∈ S(ψ ′), then α = ψ ′ and again we have T (α) = T (ψ). �

If 0 is an environment, then T (0) is the union of T (σ) for all σ declared in 0.

Lemma 2.6

1. If 0, x : τ ` P : σ , and P is a proper eliminator beginning with x, then
σ ∈ S(τ).

2. If 0 ` a, where a is an atom, then either a ∈ T (0), or ⊥ ∈ T (0) and
0 ` ⊥.

Proof (1) Easy induction with respect to P .

(2) Induction with respect to the size of a normal proof M of a. Since a is an
atom, the term M cannot be an introduction, and if it is a proper eliminator then
part (1) applies together with Lemma 2.5. By a similar argument, if M = ε(P) then
0 ` P : ⊥ and ⊥ ∈ T (0). Now let M = case Pα∨β of [x]N or [y]R. By the
induction hypothesis for N (respectively, R) we have either a or ⊥ in T (0) ∪ T (α)
(respectively, T (0) ∪ T (β)). But T (α), T (β) ⊆ T (0), by Lemma 2.5, because
α∨β ∈ S(0). Thus either a or ⊥ is in T (0). If it is a, then we are done. If, however,
a 6∈ T (0), then the induction hypothesis yields 0, α ` ⊥ as well as 0, β ` ⊥,
whence 0 ` ⊥. The case M = let P be [p, x] in N is treated similarly. �

It follows from the above lemma that if ⊥ 6∈ T (0), then 0 6` ⊥; that is, 0 is
consistent. Lemmas 2.5 and 2.6 together imply that if 0 ` P : σ , with proper P ,
then T (σ) ⊆ T (0), that is, that proper eliminators do not produce new targets.

Lemma 2.7 If q,⊥ 6∈ T (0) and 0, ϕ → q ` q, then 0, ϕ → q ` ϕ.

Proof Consider the shortest normal proof of q . It must be an eliminator, and if it is
proper, then by Lemma 2.6(1) it must be of the form yM , where y is the assumption
of type ϕ → q . Then of course M proves ϕ.

An improper eliminator beginning with ε is excluded by the consistency
of 0, ϕ → q. If the proof is of the form case Pα∨β of [x]Q or [y]R then
we have 0, ϕ → q, α ` Q : q and 0, ϕ → q, β ` R : q. By Lemmas 2.5 and 2.6,
types α and β do not introduce new targets, so we still have q,⊥ 6∈ T (0, α) and
q,⊥ 6∈ T (0, β), and we can apply the induction hypothesis to R and Q. Therefore,
0, ϕ → q, α ` ϕ and 0, ϕ → q, β ` ϕ. Since 0, ϕ → q ` α ∨ β, we conclude that
0, ϕ → q ` ϕ.

462 Morten H. Sørensen and Paweł Urzyczyn

If the proof is of the form let P∃p τ be [p, x] in N , then we apply the induction
hypothesis to the proof 0, ϕ → q, τ ` N : q . We obtain 0, ϕ → q, τ ` ϕ and thus
also 0, ϕ → q ` ϕ, because 0, ϕ → q ` ∃p τ . �

Indirect targets and splits A suffix of a formula is weak when it is of the form
α ∨ β or ∃p α. A target of a weak suffix of σ is called an indirect target of σ . The
set of all indirect targets of σ is denoted by I (σ). It follows from Lemma 2.5 that
I (σ) ⊆ T (σ); that is, indirect targets are indeed targets. Of course, I (0) stands for
the union of all I (σ) where σ ∈ 0.

If 0 ` ∃ Ep (σ1 ∨ · · · ∨ σn), where Ep are fresh variables, 0, σi 0 ⊥, and
T (σi) ⊆ I (0) ∪ Ep, for each σi , then we say that the formula ∃ Ep (σ1 ∨ · · · ∨ σn) is
a split of 0. Formulas σi are called components of the split. For every consistent 0
there is a trivial split of the form ∃p p.

The Wajsberg/Ben-Yelles algorithm [14] for the simply typed lambda-calculus
uses the fact that a normal inhabitant must either be an abstraction (an introduction)
or an application (a proper eliminator). We have a weaker form of this property;
namely, a type is inhabited by an introduction or a proper eliminator in every com-
ponent of a certain split. More precisely, we have the following.

Proposition 2.8 Assume that 0 0 ⊥, and let 0 ` ζ , where ζ is any formula. There
exists a split ∃ Ep (σ1 ∨ · · · ∨ σn) of 0 such that, for every i , we have 0, σi ` Ni : ζ
with Ni being either an introduction or a proper eliminator.

Proof We proceed by induction with respect to the size of a normal inhabitant M
of ζ . If M is an introduction or a proper eliminator, then the thesis holds with a trivial
split. Since 0 is consistent, M is not of the form ε(P).

Assume that M = case P of [x]Q or [y]R, where P is a proper eliminator of
type α ∨ β. Then we have 0 ` α ∨ β and 0, x :α ` Q : ζ and 0, y :β ` R : ζ .

If 0, α ` ⊥ then we actually have 0 ` β; in particular, 0, β 0 ⊥. By the induc-
tion hypothesis, there is a split 0, β ` ∃ Ep (ρ1 ∨· · ·∨ρl) such that 0, β∧ρi ` Qi : ζ ,
for all i and no Qi is improper. Then the formula ∃ Ep ((β ∧ ρ1) ∨ · · · ∨ (β ∧ ρl)) is
the required split of 0 (note that T (β) ⊆ I (0), because P is proper, and its type is a
weak suffix).

The case 0, β ` ⊥ is analogous, so let us suppose that neither 0, α ` ⊥ nor
0, β ` ⊥. Then the induction hypothesis yields two splits 0, α ` ∃Er (τ1 ∨ · · · ∨ τk)
and 0, β ` ∃Eq (ρ1 ∨ · · · ∨ ρl) such that 0, α ∧ τi ` ζ and 0, β ∧ ρ j ` ζ
hold by either introductions or proper eliminators. Then we can use the split
∃Er Eq ((α ∧ τ1) ∨ · · · ∨ (α ∧ τk) ∨ (β ∧ ρ1) ∨ · · · ∨ (β ∧ ρl)).

Now let M = let P be [q, x] in N , where 0 ` P : ∃q.α. From the induction
hypothesis we have a split ∃ Ep (σ1 ∨ · · · ∨ σn) of 0, α such that 0, α ∧ σi ` Pi : ζ
with Pi proper eliminators or introductions. We obtain a new split of 0 of the form
∃q Ep ((α ∧ σ1) ∨ · · · ∨ (α ∧ σn)). �

3 Intermezzo

Before defining our translation, we play a little intermezzo to demonstrate the use
of Proposition 2.8. Corollaries 3.2 and 3.5 are not new, but the proofs we know are
semantical [12; 22].

Lemma 3.1 If ` α → ∀p(p ∨ ¬p), and ∀ does not occur in α, then ` α ↔ ⊥.

Syntactic Embedding of Predicate Logic 463

Proof Assume the contrary. Then α 6` ⊥, and T (α) 6= A, because α has no oc-
currence of ∀. From α ` ∀p(p ∨ ¬p) it follows that α ` p ∨ ¬p for p not free
in α, in particular, for p 6∈ T (α). There is a split α ` ∃ Ep (σ1 ∨ · · · ∨ σn) with
α, σi ` Pi : p ∨ ¬p, where all Pi are either introductions or proper eliminators.
However, since p is not a target of α (and thus also not a target of σi), proper elimi-
nators are excluded, and we actually have either α, σi ` p or α, σi ` ¬p for each i .
Since p is not free in the environment we conclude that either α, σi ` ∀p p or
α, σi ` ∀p ¬p; in other words, α, σi ` ⊥, for all i . Therefore, α ` ⊥. �

Corollary 3.2 The universal quantifier is not definable from the other connectives
in the intuitionistic second-order propositional logic: there is no formula α without ∀

such that ` α ↔ ∀p(p ∨ ¬p).

Proof Immediate from Lemma 3.1, as ∀p(p ∨ ¬p) 0 ⊥. �

Remark 3.3 Let A stand for the so-called Pitt’s quantifier [11; 12]. It follows
immediately from Lemma 3.1 that Ap(p ∨¬p) is just ⊥. Note that the result of [11]
is often misunderstood. Pitt’s construction shows that a model of second-order logic
can be built over the propositional language. But the class of formulas satisfied in
this specific model is a proper extension of IPC2. Therefore, Pitt’s quantifier cannot
be taken as a definition of ∀ (even if we restrict attention to the fragment with open
instantiation.)

Lemma 3.4 If 0 ` ∃p β(p) and 0 contains no quantifiers, then 0 ` β(σ1) ∨

· · · ∨ β(σn), for some σ1, . . . , σn .

Proof Induction with respect to the length of a normal proof. The only interesting
case is 0 ` case Pγ∨δ of [x]Q or [y]R : ∃p β(p) where we apply induction to
Q and R obtaining 0, γ ` β(σ1) ∨ · · · ∨ β(σn) and 0, δ ` β(σn+1) ∨ · · · ∨ β(σm).
Clearly, 0 ` β(σ1) ∨ · · · ∨ β(σm). Other cases are left to the reader. �

Corollary 3.5 The existential quantifier is not definable from the propositional con-
nectives in the intuitionistic second-order propositional logic: there is no proposi-
tional formula α such that ` α ↔ ∃q((p → (¬q ∨ q)) → p).

Proof Write β(p, q) for (p → (¬q∨q)) → p, and assume that ` α ↔ ∃q β(p, q).
By Lemma 3.4, we have α ` β(p, σ1) ∨ · · · ∨ β(p, σn), for some σ1, . . . , σn . It
follows that we also have ∃q β(p, q) ` β(p, σ1) ∨ · · · ∨ β(p, σn), and even sim-
pler, β(p, q) ` β(p, σ1) ∨ · · · ∨ β(p, σn), where q does not occur in σi . Since
no suffix of β(p, q) is a disjunction, we easily observe that a normal proof of
β(p, σ1) ∨ · · · ∨ β(p, σn) must be an introduction. Thus one of the components
is provable; that is, we have β(p, q) ` β(p, σ), for some σ , not containing q .
Therefore,

(p → (¬q ∨ q)) → p, p → (¬σ ∨ σ) ` p.

By induction with respect to the length of a normal proof, we show that this cannot
happen. Of course, a normal proof of p cannot be an introduction. An improper
eliminator using ε is excluded because ⊥ is not a suffix. A case eliminator requires
a shorter proof of p (necessary to reach ¬σ ∨ σ) and is excluded by induction.
Consider the case of a proper eliminator. Then

(p → (¬q ∨ q)) → p, p → (¬σ ∨ σ), p ` ¬q ∨ q,

464 Morten H. Sørensen and Paweł Urzyczyn

and, therefore, also ¬σ ∨ σ, p ` ¬q ∨ q .
The environment ¬σ ∨ σ, p is consistent (otherwise, p ` ¬(¬σ ∨ σ),

whence p ` ⊥) so we can apply Proposition 2.8. Consider an appropriate split
¬σ ∨ σ, p ` ∃Eq(σ1 ∨ · · · ∨ σn). The proofs ¬σ ∨ σ, p, σi ` ¬q ∨ q cannot be
proper eliminators (q is not a target) so for each i we either have ¬σ∨σ, p, σi ` ¬q
or ¬σ ∨ σ, p, σi ` q. If the former case holds for all i , then we actually have
¬σ ∨ σ, p ` ¬q. But the environment ¬σ ∨ σ, p, q is consistent, by an argument
similar to the one above, so we must have ¬σ ∨ σ, p, σi ` q at least once. This,
however, contradicts Lemma 2.6(2). �

4 The Translation

Our source language is intuitionistic first-order logic over a signature consisting of
a finite number of binary predicate symbols P,Q, The restriction to binary pred-
icates is not essential and our coding can easily be adopted to arbitrary arities.

The target language is IPC2 of Section 2. As in [14], we assume that all individual
variables (written a, b, . . .) can be used as propositional variables (type variables) in
the target language. The plan is to systematically replace any atom P(a, b) in a given
first-order formula ϕ by a certain type P(a, b), to obtain a type ϕ such that ` ϕ is
equivalent to ` ϕ. The difficulty is to ensure that ϕ is not provable in an “ad hoc”
way. A most naïve attempt could be, for instance, to take P(a, b) = a → b → p, for
some p. The obvious confusion of P(a, b) being equivalent to P(b, a) can be easily
fixed, but here is a serious problem: the formula ∃b∀a P(a, b) is provable, because
the variable b can be instantiated by p. Our principal concern is to avoid such ad hoc
instantiations.

The solution might be to relativize all quantifiers in ϕ using a condition U such
that U(A) is inhabited only when A is an individual variable (i.e., U defines the
universe of individuals). We cannot do exactly this, but we can ensure a slightly
weaker property: a type A satisfying U(A) must behave (to a sufficient level) as an
individual variable (Lemma 4.3).

To define the translation we need some additional type variables:
1. Three variables: p,p1, and p2, for each binary relation symbol P;
2. And four more variables: •, ◦, O, and ?.

For an arbitrary type A we write A• for A → •. If P is a binary relation symbol, and
A, B are arbitrary types, then we define2

pAB = (A•
→ p1) → (B•

→ p2) → p;

p(A, B) = pAB ∨ ? .

For every type A, let U(A) be the conjunction of all types of the form

(A•
→ pi) → ◦ and A•

→ O,

where i = 1, 2. As mentioned, the intended meaning of U is to define the uni-
verse of individuals. First-order quantifiers are encoded as second-order quantifiers
relativized to U.

The idea of the above definition is to “hide” the type A inside U(A) deep enough
and to consider environments where U(a) is assumed for every individual variable a.
Then an “ad hoc” proof of U(A) can only be obtained for a type A which is “repre-
sented” (see below) by an individual variable.

Syntactic Embedding of Predicate Logic 465

For every first-order formula ϕ, we define a second-order propositional formula ϕ
as follows:

1. P(a, b) = p(a, b); that is, P(a, b) = ((a•
→ p1) → (b•

→ p2) → p) ∨ ? ;

2. ⊥ = ? ;

3. ϑ ♦ ψ = ϑ ♦ ψ , where ♦ ∈ {→,∧,∨};

4. ∀aψ = ∀a(U(a) → ψ);

5. ∃aψ = ∃a(U(a) ∧ ψ).
An individual variable a represents a type A in an environment 0 if and only if the
conditions

0, A•
` a•,

0, A•
→ pi ` a•

→ pi ,

hold for every relation symbol P and every i ∈ {1, 2}. Note that a variable represents
itself.

Lemma 4.1 Let us fix two atoms of the form pi , q j . Assume that no individual
variable nor any of the symbols •, ⊥, pi , q j is in T (0). If

0, A•
` a•,

0, A•
→ pi ` b•

→ q j ,

then a = b, p = q, and i = j .

Proof From 0, A•
` a• we obtain 0, a•

→ pi ` A•
→ pi . Therefore,

0, a•
→ pi ` b•

→ q j and thus 0, x : a•
→ pi , y : b•

` N : q j , for
some normal form N . Since q j ,⊥ 6∈ T (0), we must have q j = pi be-
cause of Lemma 2.6(2). Similarly, pi 6∈ T (0, b•), so by Lemma 2.7 we have
0, a•

→ pi , b•
` a•, that is, 0, a•

→ pi , b → •, a ` •. Applying again
Lemma 2.7, we conclude that 0, a•

→ pi , b → •, a ` b. The only individual
variable in T (0, a•

→ pi , b → •, a) is a, so it must be the case that a = b. �

Lemma 4.2 Assume that no individual variable and no variable of the form pi nor
any of the symbols •, ⊥ belongs to T (0). If a type A is represented in 0 by variables
a and b then a = b.

Proof Immediate from Lemma 4.1. �

Note that if 0 ⊆ 0′ and both the environments satisfy the assumptions of Lemma 4.2,
then the variable representing a type A in 0 and 0′ is the same.

Lemma 4.3 Assume that 0 is an environment such that
1. individual variables, variables of the form pi , types ⊥, and • do not belong

to T (0),
2. if ◦ ∈ T (ψ) or O ∈ T (ψ), for some ψ ∈ 0, then ψ = U(a), where a is an

individual variable.
Suppose that 0 ` U(A), for some type A. Then there is a unique individual vari-
able a representing A in 0. In addition, 0 must contain the assumption U(a).

Proof Since 0 ` U(A), we have 0 ` A•
→ O; that is, 0, A•

` O. By Proposi-
tion 2.8, there is a split ∃ Ep (σ1 ∨· · ·∨σn) of 0, A• such that 0, A•, σk ` Pk : O holds

466 Morten H. Sørensen and Paweł Urzyczyn

for every k with some proper eliminator Pk . But all targets of σk are in T (0, A•)∪ Ep
and, therefore, the only way in which O can be a target in 0, A•, σk is because some
U(a) is in 0. Since Pk is proper, we must have 0, A•, σk ` a• (Lemma 2.6(1)).

On the other hand, it follows from 0 ` U(A) that 0 ` (A•
→ pi) → ◦; that is,

0, A•
→ pi ` ◦. Again, we have a split ∃Eq (τ1 ∨ · · · ∨ τn) of 0, A•

→ pi satisfying
0, A•

→ pi , τ` ` P` : ◦ with proper P`. The variable ◦ may occur in 0 only as
target of some U(b), and we get 0, A•

→ pi , τ` ` b•
→ q j .

For any k and `, the environment 0, τ`, σk satisfies the assumptions of Lemma 4.1.
This is because, by the definition of split, all targets of τ` are indirect targets of
0, A•

→ pi , or are in Ep. Since pi 6∈ T (0) ∪ Ep, we have that pi is not a target of τ`.
For a similar reason, • is not a target in 0, τ`, σk .

From Lemma 4.1 we have that pi = q j and a = b (in particular, one a is good
for every k), and we actually get 0, A•

→ pi , τ` ` a•
→ pi , for all ` = 1, . . . , n.

Since τ` are components of a split, we conclude that 0, A•
→ pi ` a•

→ pi , and,
similarly, 0, A•

` a•. It follows that a represents A. Uniqueness is a consequence
of Lemma 4.2. �

We say that an environment 0 is simple when 0 consists of

1. formulas of the form U(a), where a is an individual variable;
2. formulas of the form ϕ[Ea := EA] (written ϕ(EA) for simplicity), where Ea are

individual variables and EA are arbitrary types called ad hoc types of 0.

Note that the parsing of a type of the form ϕ(EA) is unique in the following sense: if
we have ϕ(EA) = ψ(EB) and no free individual variable occurs twice in ϕ or ψ then EB
is a permutation of EA, and ϕ is identical to ψ modulo a renaming of variables. Note
also that, no matter what EA is, the targets of ϕ(EA) are only ?, and variables of the
form q, where Q is a relation symbol. Therefore, only ?,q, ◦, O may be targets in
a simple environment. It follows that simple environments satisfy the assumptions
of Lemma 4.3.

Notice also that a suffix (type of a proper eliminator) in a simple environment is
either of the form ϕ(EA) or of the form U(B) → ϕ(EA, B) or is a suffix of some U(a).
In particular, a variable of the form p cannot be a suffix.

An environment 0′ is a variant of 0 when every formula in 0′ is either a member
of 0 or a conjunction of formulas in 0.

Lemma 4.4 Let 1 = 0 ∪6, where

1. 0 is a variant of a simple environment;
2. 6 consists exclusively of types of the form qC D , where C and D are repre-

sented in 1 by individual variables.

Assume that 1 ` pAB , where A and B are represented in 1 by individual vari-
ables. Then there is pC D ∈ 6 such that A and C are represented in 1 by the same
individual variable, and similarly for B and D.

Proof We have 1, A•
→ p1, B•

→ p2 ` M : p, for some normal proof M , and
we proceed by induction with respect to the size of M . The term M must be an
eliminator, and we have the following cases.

Syntactic Embedding of Predicate Logic 467

Case 1 M is a proper eliminator. Since p may occur as a suffix only in 6, we have

1, A•
→ p1, B•

→ p2 ` C•
→ p1;

1, A•
→ p1, B•

→ p2 ` D•
→ p2,

for some C and D with pC D ∈ 6. Let a, c be the variables representing A,C in 1.
Then

1, A•
→ p1, B•

→ p2 ` c•
→ p1 and 1, A•, B•

→ p2 ` a•,

and, therefore, a = c, by Lemma 4.1. A similar argument applies to B and D.

Case 2 M = case P of [x]Q or [y]N , where P : τ ∨ σ . Then

0, σ,6, A•
→ p1, B•

→ p2 ` N : p.

Here N is a normal proof, shorter than M . Since ∨ does not occur in S(6), the proper
eliminator P must begin with a variable declared in 0. The type τ ∨ σ is therefore
a suffix of 0 (an instance of a formula), and we can assume that σ = ψ(EA), for
some ψ and EA. (It may happen that P is of type q(A, B) = qAB ∨ ?. In this case
we assume τ = qAB and σ = ? = ⊥.)

Thus the environment 0, x : σ is simple and we can apply the induction hypothesis
to N . It follows that pC D ∈ 6, where A and C (and also B and D) are represented
by the same variable in 1, σ . From the uniqueness we conclude that these types are
represented by the same variable in 1.

Case 3 M = let P be [a, x] in N . The head variable of the proper eliminator P
must be declared in 0, because an existential formula is a suffix of its type. Thus P
is of type ∃a ϕ(a, EA), where a is an individual variable, and we have

0, ϕ(a, EA),6, A•
→ p1, B•

→ p2 ` N : p,

where N is shorter than M . Again we apply induction.

Case 4 M = ε(P) is excluded, because ⊥ is not a target in the environment
0,6, A•

→ p1, B•
→ p2. �

For a first-order environment 6, we define

6 = {ϕ | ϕ ∈ 6} ∪ {U(a) | a ∈ FV(6)}.

Clearly, 6 is a simple environment.
Suppose that 0 is a simple environment such that 0 ` U(A), for every ad hoc

type A of 0. By Lemma 4.3, the ad hoc types are represented in 0 by individual
variables (and these variables occur free in 0). Thus, we can define the first-order
environment

|0| = {ϕ(Ea) | ϕ(EA) ∈ 0, for some EA, and variables Ea represent EA in 0}.

Of course, |6| = 6 for first-order 6. Note also that all free variables of |0| occur
free in 0.

Let 0′ be a variant of a simple environment 0 such that 0 ` U(A) for every ad
hoc type A of 0. We say that a union of the form 1 = 0′

∪6 is a good environment
(and we write 1 ≈ 0 ⊕6), when every type in 6 is of the form qAB , with

1. 1 ` U(A) and 1 ` U(B);
2. |0| ` Q(a, b), for a, b representing A, B in 1.

468 Morten H. Sørensen and Paweł Urzyczyn

Targets of a good environment are only of the form ?,q, ◦, O, quite like in a simple
environment.

Lemma 4.5 If 1 ≈ 0 ⊕ 6 is a good environment, and 1 ` P : σ , for a proper
eliminator P, then either σ ∈ 1 or one of the following cases holds:

1. σ = ϕ(EA) and 1 ` U(A), for each A ∈ EA;
2. σ = U(B) → ϕ(EA, B), where 1 ` U(A), for each A ∈ EA, and P = P ′ B,

for some P ′;
3. σ = σ1 ∧ σ2, where σ1, σ2 ∈ 0;
4. σ ∈ S(U(a)), for some individual variable a;
5. σ ∈ S(pAB), for some pAB ∈ 6.

Proof Induction with respect to the length of P . �

Here is our main lemma.

Lemma 4.6 If1 ≈ 0⊕6 is good and1 ` ϕ(EA), with1 ` U(A) for each A ∈ EA,
then |0| ` ϕ(Ea), in first-order logic, where Ea represent EA in 1.

Proof We prove a slightly more general statement, consisting of three claims
(where M is assumed normal, the variables Ea represent EA, and 1 ` U(A) for all A
in EA):

(a) If 1 ` M : ϕ(EA), then |0| ` ϕ(Ea).
(b) If1 ` M : U(a) → ϕ(a, EA), where a is not free in1, then |0| ` ∀aϕ(a, Ea).
(c) If 1 ` M : U(A) ∧ ϕ(A, EA), then |0| ` ϕ(a, Ea), where a represents A.

We proceed by induction with respect to M by inspecting the various forms M may
have. In each case we consider the relevant claims among (a)–(c).

Case 1 M is an abstraction. The relevant subcases are (a) and (b). If M in
part (a) is an abstraction of type ϕ(EA), then ϕ(EA) = ψ(EA) → ϑ(EA) and we have
M = λx :ψ(EA).N , where N is such that1, x :ψ(EA) ` N : ϑ(EA). The environment
1, x :ψ(EA) is good, because 0 ` U(A) holds for each A ∈ EA. From the induction
hypothesis we obtain |0|, x :ψ(Ea) ` ϑ(Ea), whence also |0| ` ψ(Ea) → ϑ(Ea).

If M in (b) is an abstraction λx :U(a).N of type U(a) → ϕ(a, EA), then
0, x : U(a) ` N : ϕ(a, EA). We apply the induction hypothesis and obtain
|0| ` ϕ(a, Ea). Since a is not free in 1, it is also not free in |0|, and we con-
clude with |0| ` ∀a ϕ(a, Ea).

Case 2 M is a polymorphic abstraction. Then we are in part (a) and M is of the
form 3a N and has type ϕ(EA) = ∀a (U(a) → ψ(a, EA)). Apply part (b) of the
induction hypothesis to N .

Case 3 If M = [A, N], then only part (a) is relevant, with ϕ(EA) = ∃a (U(a)
∧ ψ(a, EA)) and we have 0 ` N : U(A) ∧ ψ(A, EA). We apply part (c) of the
induction hypothesis to N .

Case 4 M is a pair of the form 〈N1, N2〉. We consider parts (a) and (c). In part (a)
we have N1 : ϕ(EA) and N2 : ψ(EA), and applying induction to N1 and N2 we get
|0| ` ϕ(Ea) and |0| ` ψ(Ea). It follows that |0| ` ϕ(Ea) ∧ ψ(Ea). In part (c) the
pair 〈N1, N2〉 is of type U(A) ∧ ϕ(A, EA). We apply induction to N2 and obtain
|0| ` ϕ(a, Ea).

Syntactic Embedding of Predicate Logic 469

Case 5 M = ini (N). This can only happen in part (a), but we have three subcases.
The first subcase is when M is of type ϕ(EA) ∨ ψ(EA), and it follows easily from the
induction hypothesis. The second subcase is when 1 ` N : pAB and M = in1(N)
has type p(A, B) = pAB ∨ ?. It follows from Lemma 4.4 that there is an assumption
pC D in 6 such that the variables a, b representing A, B in 1 also represent C, D.
Therefore, |0| ` P(a, b). The third subcase is when 1 ` N : ?. Since ? = ⊥,
the induction hypothesis, part (a), applied to N , implies that |0| is inconsistent. In
particular, |0| ` P(a, b).

Now we assume that M is a proper eliminator.

Case 6 If M is a variable then the relevant parts are (a) and (c) and the claim is
obvious.

Case 7 The case of M being an application is only possible in part (a) and it splits
into two subcases. First we assume that M = P N , where 1 ` P : ψ(EB) → ϕ(EA).
Then 1 ` U(B) for B ∈ EB, by Lemma 4.5, and we can apply the induc-
tion hypothesis to both P and N . The other subcase is when M = P BW ,
where B is a type. Assume for simplicity that B ∈ EA, say EA = (B, EC). Then
1 ` P : ∀b (U(b) → ϕ(b, EC)) and 1 ` W : U(B). The induction hypothesis (b)
applies to Pa, for a fresh a, whence |0| ` ∀a ϕ(a, Ec) and thus also |0| ` ϕ(b, Ec),
for b representing B.

Case 8 The case of polymorphic application M = P B, where B is a type, is only
possible in part (b) and follows immediately from the induction hypothesis (a).

Case 9 If M is a projection, say M = P{2}, then by Lemma 4.5 we have
1 ` P : σ ∧ ϕ(EA), for some σ , and either ϕ(EA) is in 0 or the induction hypothesis
is applicable to P by Lemma 4.5.

There is no other possibility for M to be a proper eliminator, so we now assume
that M is improper.

Case 10 If M = case P of [x]Q or [y]R, then (regardless if we are in part (a),
(b), or (c)) we have two possibilities. One is that 1 ` P : ψ(EB) ∨ ϑ(EB). Then
by Lemma 4.5 we can apply induction to P , Q, and R. For instance, in part (a)
we then have |0| ` ψ(Eb) ∨ ϑ(Eb) and |0|, ψ(Eb) ` ϕ(Ea) and |0|, ϑ(Eb) ` ϕ(Ea), for
appropriate Eb, and therefore also |0| ` ϕ(Ea). The argument in parts (b) and (c) is
similar. The other possibility is that 1 ` P : pAB ∨ ?; that is, P is of type p(A, B).
By part (a) of the induction hypothesis, applied to P , we have |0| ` P(a, b) for
appropriate a, b, whence 1,pAB is good. Thus we can also apply (the appropriate
part of) the induction hypothesis to Q, obtaining the desired conclusion.

Case 11 Finally, let M = let P be [b, x] in N and let us consider part (a).
Then M is of type ϕ(EA) and 1 ` P : ∃b (U(b) ∧ ψ(b, EB)). We also have
1, x :U(b) ∧ ψ(b, EB) ` N : ϕ(EA). We apply induction to P and N and obtain
that |0| ` ∃bψ(b, Eb) and |0|, ψ(b, Eb) ` ϕ(Ea). That is, we have |0| ` ϕ(Ea). The
reasoning in parts (b) and (c) is similar.

The final remark is that M 6= ε(P), as ⊥ 6∈ T (1). �

Theorem 4.7 The translation is sound and complete in the following sense: For
any first-order 6 and ϕ, we have 6 ` ϕ if and only if 6 ` ϕ.

470 Morten H. Sørensen and Paweł Urzyczyn

Proof The “only if” part goes by a routine induction. (First show that ⊥ ` ϕ, for
all ϕ.) The “if” part is immediate from Lemma 4.6. �

Corollary 4.8 The ∀-free fragment of intuitionistic second-order propositional
logic is undecidable.

Proof We begin with the ∀-free fragment of classical first-order logic, which is of
course undecidable. Via Kolmogorov’s translation it reduces to the ∀-free fragment
of intuitionistic first-order logic. It remains to observe that our translation does not
introduce new universal quantifiers. �

5 Conclusion and Future Work

We have given a purely syntactic translation of first-order intuitionistic logic to
second-order intuitionistic propositional logic, thus reproving syntactically the result
of [7; 1]. It follows that second-order intuitionistic propositional logic is undecidable
and that the same holds for its ∀-free fragment. Note also that for the “only if” part
of Theorem 4.7 we only need to instantiate bound variables by variables. That is,
undecidability remains true under a strictly predicative regime.

At present, the translation applies to function-free signatures, and the extension to
functions remains future work. Another unsettled issue is the exact delineation of the
border between decidable and undecidable fragments of ∀-free IPC2. From [18] we
know that the ∃,∧,¬-fragment is decidable. Decidability with ∀, ∃,∧,¬ was also
recently announced [17]. The proof of Corollary 4.8 uses ∃, →, ∨, and ∧; it remains
open whether all these four connectives are indeed necessary.

The syntactic proof was made possible by an analysis of normal forms in the ex-
tended version of system F, involving all the logical connectives and quantifiers. This
classification appears to be useful on its own, as demonstrated by the simple proofs
of nondefinability of ∃ from the propositional connectives, and the nondefinability
of ∀ from ∃.

Appendix: Reductions in IPC2

Beta-reductions:
1. (λx M)N ⇒ M[x := N];
2. (3p M)τ ⇒ M[p := τ];
3. 〈M1,M2〉{i} ⇒ Mi ;
4. case ini (M) of [x1]P1 or [x2]P2 ⇒ Pi [xi := M];
5. let [τ,M] be [p, x] in N ⇒ N [p := τ][x := M].

Commuting conversions for ε:
1. εψ (ε⊥(M)) ⇒ εψ (M);
2. εϕ→ψ (M)N ⇒ εψ (M);
3. ε∀p.σ (M)τ ⇒ εσ [p:=τ](M);
4. εϕ1∧ϕ2(M){i} ⇒ εϕi (M);
5. case εσ∨τ (M) of [u]Rρ or [v]Sρ ⇒ ερ(M);
6. let ε∃p.σ (M) be [p, x] in Nρ

⇒ ερ(M);
Commuting conversions for case:

1. εϕ(case M of [x]P or [y]Q) ⇒ case M of [x]εϕ(P) or [y]εϕ(Q);
2. (case M of [x]P or [y]Q)N ⇒ case M of [x]P N or [y]QN ;

Syntactic Embedding of Predicate Logic 471

3. (case M of [x]P or [y]Q)τ ⇒ case M of [x]Pτ or [y]Qτ ;
4. (case M of [x]P or [y]Q){i} ⇒ case M of [x]P{i} or [y]Q{i};
5. case (case M of [x]P or [y]Q) of [u]R or [v]S ⇒

case M of [x](case P of [u]R or [v]S)
or [y](case Q of [u]R or [v]S);

6. let (case M of [x]P or [y]Q) be [p, x] in N ⇒

case M of [x](let P be [p, x] in N)
or [y](let Q be [p, x] in N).

Commuting conversions for let:
1. εϕ(let M be [p, x] in N) ⇒ let M be [p, x] in εϕ(N);
2. (let M be [p, x] in N)P ⇒ let M be [p, x] in N P;
3. (let M be [p, x] in N)τ ⇒ let M be [p, x] in Nτ ;
4. (let M be [p, x] in N){i} ⇒ let M be [p, x] in N {i};
5. case (let M be [p, x] in N) of [x]P or [y]Q ⇒

let M be [p, x] in case N of [x]P or [y]Q;
6. let (let M be [p, x] in N) be [q, y] in P ⇒

let M be [p, x] in (let N be [q, y] in P).

Notes

1. Strictly speaking, we should write, for example, [τ,M]∃pσ instead of [τ,M], etc.

2. This differs from the coding used in [14, Ch. 11], where we had p(A, B) = pAB → ?.
This coding was appropriate for the restricted class of formulas used there, but does
not work in general. Consider, for instance, the unprovable entailment z : (P(a, b) →

Q(c, d)) → P(a, b) ` P(a, b). The translation of [14] yields the assertion z : (p(a, b) →

q(c, d)) → p(a, b) ` p(a, b), inhabited by the term λxpab . z(λup(a,b)λvqcd . ux)x .

References

[1] Arts, T., and W. Dekkers, “Embedding first order predicate logic in second order propo-
sitional logic,” Technical Report 93-02, Katholieke Universiteit Nijmegen, 1993. 457,
458, 470

[2] Fujita, K., and A. Schubert, “Existential type systems with no types in terms,”
pp. 112–26 in Typed Lambda Calculi and Applications, edited by P.-L. Curien, vol. 5608
of Lecture Notes in Computer Science, Springer, Berlin, 2009. Zbl pre05576323. 458

[3] Fujita, K., “Galois embedding from polymorphic types into existential types,”
pp. 194–208 in Typed Lambda Calculi and Applications, edited by P. Urzyczyn,
vol. 3461 of Lecture Notes in Computer Science, Springer, Berlin, 2005.
Zbl 1114.03009. MR 2188768. 458

[4] Gabbay, D. M., “On 2nd order intuitionistic propositional calculus with full compre-
hension,” Archiv für mathematische Logik und Grundlagenforschung, vol. 16 (1974),
pp. 177–86. Zbl 0289.02016. MR 0360222. 457

[5] Gabbay, D. M., Semantical Investigations in Heyting’s Intuitionistic Logic, vol. 148
of Synthese Library, D. Reidel Publishing Co., Dordrecht, 1981. Zbl 0453.03001.
MR 613144. 457

http://www.emis.de/cgi-bin/MATH-item?pre05576323
http://www.emis.de/cgi-bin/MATH-item?1114.03009
http://www.ams.org/mathscinet-getitem?mr=2188768
http://www.emis.de/cgi-bin/MATH-item?0289.02016
http://www.ams.org/mathscinet-getitem?mr=0360222
http://www.emis.de/cgi-bin/MATH-item?0453.03001
http://www.ams.org/mathscinet-getitem?mr=613144

472 Morten H. Sørensen and Paweł Urzyczyn

[6] de Groote, P., “On the strong normalisation of intuitionistic natural deduction with
permutation-conversions,” Information and Computation, vol. 178 (2002), pp. 441–64.
Zbl 1031.03071. MR 1946174. 458

[7] Löb, M. H., “Embedding first order predicate logic in fragments of intuitionistic
logic,” The Journal of Symbolic Logic, vol. 41 (1976), pp. 705–18. Zbl 0358.02012.
MR 0441680. 457, 458, 470

[8] Matthes, R., “Non-strictly positive fixed points for classical natural deduction,” Annals
of Pure and Applied Logic, vol. 133 (2005), pp. 205–30. Zbl 1066.03057. MR 2126159.
458

[9] Nakazawa, K., M. Tatsuta, Y. Kameyama, and H. Nakano, “Undecidability of type-
checking in domain-free typed lambda-calculi with existence,” pp. 478–92 in Computer
Science Logic. Proceedings of the 22nd International Workshop (CSL 2008, Bertinoro),
edited by M. Kaminski and S. Martini, vol. 5213 of Lecture Notes in Computer Science,
Springer, Berlin, 2008. Zbl 1156.03316. 458

[10] Nakazawa, K., and M. Tatsuta, “Strong normalization of classical natural deduction
with disjunctions,” Annals of Pure and Applied Logic, vol. 153 (2008), pp. 21–37.
Zbl 1141.03027. MR 2405205. 458

[11] Pitts, A. M., “On an interpretation of second-order quantification in first-order intuition-
istic propositional logic,” The Journal of Symbolic Logic, vol. 57 (1992), pp. 33–52.
Zbl 0763.03009. MR 1150924. 463

[12] Połacik, T., “Pitts’ quantifiers are not topological quantification,” Notre Dame Journal
of Formal Logic, vol. 39 (1998), pp. 531–44. Zbl 0966.03008. MR 1776225. 462, 463

[13] Sobolev, S. K., “On the intuitionistic propositional calculus with quantifiers,” Matem-
aticheskie Zametki, vol. 22, (1977), pp. 69–76. Zbl 0365.02013. MR 0457155. 457

[14] Sørensen, M. H., and P. Urzyczyn, Lectures on the Curry-Howard Isomorphism, vol. 149
of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 2006.
Zbl 1183.03004. 458, 462, 464, 471

[15] Statman, R., “Intuitionistic propositional logic is polynomial-space complete,” Theoret-
ical Computer Science, vol. 9 (1979), pp. 67–72. Zbl 0411.03049. MR 535124. 457

[16] Tatsuta, M., “Second-order permutative conversions with Prawitz’s strong validity,”
Progress in Informatics, vol. 2 (2005), pp. 41–56. 458

[17] Tatsuta, M., “Second-order system without implication nor disjunction,” Bulletin of
Symbolic Logic, vol. 15 (2009), pp. 262–3. 458, 470

[18] Tatsuta, M., K. Fujita, R. Hasegawa, and H. Nakano, “Inhabitation of existential types
is decidable in negation-product fragment,” Proceedings of Second International Work-
shop on Classical Logic and Computation (CLC2008, Reykjavik), 2008. 458, 470

[19] Tatsuta, M., “Simple saturated sets for disjunction and second-order existential quan-
tification,” pp. 366–80 in Typed Lambda Calculi and Applications, edited by S. Ronchi
Della Rocca, vol. 4583 of Lecture Notes in Computer Science, Springer, Berlin, 2007.
Zbl pre05527391. MR 2391793. 458

http://www.emis.de/cgi-bin/MATH-item?1031.03071
http://www.ams.org/mathscinet-getitem?mr=1946174
http://www.emis.de/cgi-bin/MATH-item?0358.02012
http://www.ams.org/mathscinet-getitem?mr=0441680
http://www.emis.de/cgi-bin/MATH-item?1066.03057
http://www.ams.org/mathscinet-getitem?mr=2126159
http://www.emis.de/cgi-bin/MATH-item?1156.03316
http://www.emis.de/cgi-bin/MATH-item?1141.03027
http://www.ams.org/mathscinet-getitem?mr=2405205
http://www.emis.de/cgi-bin/MATH-item?0763.03009
http://www.ams.org/mathscinet-getitem?mr=1150924
http://www.emis.de/cgi-bin/MATH-item?0966.03008
http://www.ams.org/mathscinet-getitem?mr=1776225
http://www.emis.de/cgi-bin/MATH-item?0365.02013
http://www.ams.org/mathscinet-getitem?mr=0457155
http://www.emis.de/cgi-bin/MATH-item?1183.03004
http://www.emis.de/cgi-bin/MATH-item?0411.03049
http://www.ams.org/mathscinet-getitem?mr=535124
http://www.emis.de/cgi-bin/MATH-item?pre05527391
http://www.ams.org/mathscinet-getitem?mr=2391793

Syntactic Embedding of Predicate Logic 473

[20] Urzyczyn, P., “Inhabitation in typed lambda-calculi (a syntactic approach),” pp. 373–89
in Typed Lambda Calculi and Applications (Nancy, 1997), edited by P. de Groote and
J. R. Hindley, vol. 1210 of Lecture Notes in Computer Science, Springer, Berlin, 1997.
Zbl 1063.03527. MR 1480482. 458

[21] Wojdyga, A., “Short proofs of strong normalization,” pp. 613–23 in Mathe-
matical Foundations of Computer Science 2008, edited by E. Ochmański and
J. Tyszkiewicz, vol. 5162 of Lecture Notes in Computer Science, Springer, Berlin, 2008.
Zbl 1173.03303. MR 2539405. 458

[22] Zdanowski, K., “On second order intuitionistic propositional logic without a universal
quantifier,” The Journal of Symbolic Logic, vol. 74 (2009), pp. 157–67. Zbl 1163.03010.
MR 2499424. 458, 462

Acknowledgments

Partly supported by the Polish Government Grant 3 T11C 002 27. The authors wish to
thank Ken-etsu Fujita and Konrad Zdanowski for their comments.

Formalit
Byenden 32
4660 Store Heddinge
DENMARK
mhs@formalit.dk

Institute of Informatics
University of Warsaw
Banacha 2
02-097 Warszawa
POLAND
urzy@mimuw.edu.pl

http://www.emis.de/cgi-bin/MATH-item?1063.03527
http://www.ams.org/mathscinet-getitem?mr=1480482
http://www.emis.de/cgi-bin/MATH-item?1173.03303
http://www.ams.org/mathscinet-getitem?mr=2539405
http://www.emis.de/cgi-bin/MATH-item?1163.03010
http://www.ams.org/mathscinet-getitem?mr=2499424
mailto:mhs@formalit.dk
mailto:urzy@mimuw.edu.pl

	1. Introduction
	2. Propositional Second-Order Logic
	Normal forms
	Suffixes and targets
	Indirect targets and splits

	3. Intermezzo
	4. The Translation
	5. Conclusion and Future Work
	Appendix: Reductions in IPC2
	Notes
	References
	Acknowledgments

