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MUSIELAK–ORLICZ HARDY SPACES ASSOCIATED
WITH DIVERGENCE FORM ELLIPTIC OPERATORS

WITHOUT WEIGHT ASSUMPTIONS

TRI DUNG TRAN

Abstract. Let L be a divergence form elliptic operator with complex

bounded measurable coefficients, let ω be a positive Musielak–Orlicz function

on (0,∞) of uniformly strictly critical lower-type pω ∈ (0,1], and let ρ(x, t) =

t−1/ω−1(x, t−1) for x ∈ Rn, t ∈ (0,∞). In this paper, we study the Musielak–

Orlicz Hardy space Hω,L(R
n) and its dual space BMOρ,L∗(Rn), where L∗

denotes the adjoint operator of L in L2(Rn). The ρ-Carleson measure char-

acterization and the John–Nirenberg inequality for the space BMOρ,L(R
n) are

also established. Finally, as applications, we show that the Riesz transform
∇L−1/2 and the Littlewood–Paley g-function gL map Hω,L(R

n) continuously

into L(ω).

§1. Introduction

The introduction and study of classical real-variable Hardy and BMO

spaces on the Euclidean space Rn began in the 1960s with an initial article

of Stein and Weiss [32]. Later, this theory was developed systematically by

Fefferman and Stein [18] and studied extensively in [13] and [31] as well by

many others. Since then these classes of functions have played an important

role in a number of analyses, such as modern harmonic analysis and partial

differential equations. It is now well known that there are various equivalent

characterizations of functions in the classical Hardy space. For instance,

the Hardy space H1(Rn) can be viewed as the set of functions f ∈ L1(Rn)

such that the Riesz transform ∇(Δ)−1/2f belongs to L1(Rn). We also have

alternative characterizations of H1(Rn) via the atomic decomposition or by

the square function and the nontangential maximal function associated to

the Poisson semigroup generated by the Laplacian. Basically, this standard
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theory of Hardy spaces is intimately connected with properties of harmonic

functions and of the Laplacian.

Nevertheless, it is a fact that there are some situations in which the clas-

sical Hardy spaces are not applicable. For example, one considers a general

elliptic operator in divergence form with complex bounded coefficients. Let

A be an (n× n)-matrix with entries {aj,k}nj,k=1 ⊂ L∞(Rn,C) satisfying the

ellipticity conditions; namely, there exist constants 0< λA ≤ ΛA <∞ such

that for all ξ, ζ ∈Cn,

(1.1) λA|ξ|2 ≤Re〈Aξ, ξ〉 and
∣∣〈Aξ, ζ〉

∣∣≤ ΛA|ξ||ζ|.

Then the second-order divergence form operator is given by

(1.2) Lf ≡−div(A∇f),

interpreted in the weak sense via a sesquilinear form.

It is shown that the Riesz transform ∇L−1/2 is bounded on L2(Rn) but

not bounded from H1(Rn) to L1(Rn) (for more details, see [22]). The need

for research of new Hardy spaces other than the Hardy space H1(Rn) thus

naturally arises.

In recent years, function spaces, especially Hardy spaces and BMO spaces

associated with different operators, have inspired great interest (see, e.g.,

[2], [4], [5], [15], [17], [16], [20], [22], [35], and references therein). In partic-

ular, Auscher, Duong, and McIntosh in [2] first introduced the Hardy space

H1
L(R

n) associated with an operator L whose heat kernel satisfies a point-

wise Poisson-type upper bound by means of a corresponding variant of the

Lusin area function, and they also established its molecular characterization.

Later, Duong and Yan in [17] and [16] introduced its dual space BMOL(R
n)

and established the dual relation between H1
L(R

n) and BMOL(R
n). Yan in

[35] further generalized these results to the Hardy spaces Hp
L(R

n) with cer-

tain p≤ 1 and their dual spaces. Also, Auscher and Russ in [5] studied the

Hardy space H1
L on strongly Lipschitz domains associated with a divergence

form elliptic operator L whose heat kernels have the Gaussian upper bounds

and regularity. Very recently, Auscher, McIntosh, and Russ in [4] treated

the Hardy space Hp with p ∈ [1,∞] associated to the Hodge Laplacian on

a Riemannian manifold with doubling measure. Meanwhile, Hofmann and

Mayboroda in [22] further studied the Hardy space H1
L(R

n) and its dual

space adapted to a second-order divergence form elliptic operator L on Rn

with bounded complex coefficients, and these operators may not have the
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pointwise heat kernel bounds. Then Hofmann, Lu, D. Mitrea, M. Mitrea,

and Yan in [20] introduced the new Hardy spaces Hp
L, 1≤ p <∞, on a met-

ric space X associated to a nonnegative self-adjoint operator L satisfying

Davies–Gaffney estimates. The motivation for investigating Hardy spaces,

for example, is that boundedness in Hardy spaces can be interpolated with

an L2-boundedness to obtain other Lp-boundednesses. For this particular

application, the atomic decomposition of Hardy spaces is very convenient

and, as pointed out in some recent works, the set of atoms is even sufficient,

so we do not have to study boundedness on the whole Hardy space (which

may be difficult to prove; see, e.g., [8] and [10]).

On the other hand, as generalizations of Hardy spacesHp(Rn), the Orlicz–

Hardy spaces on Rn and their dual spaces have received considerable atten-

tion as well. In particular, Strömberg [33] and Janson [23] introduced gener-

alized Hardy spaces Hω(R
n), via replacing the norm ‖·‖Lp(Rn) by the Orlicz-

norm ‖ · ‖L(ω) in the definition of Hp(Rn), where ω is an Orlicz function on

[0,∞) satisfying some control conditions. Viviani [34] further characterized

these spaces Hω on spaces of homogeneous type via atoms. The dual spaces

of these spaces were also studied in [33], [23], [34], and [19]. Very recently,

Orlicz–Hardy spaces associated with certain operators have been investi-

gated by a number of mathematicians (see, e.g., [26], [24], [25], [29], and ref-

erences therein). In particular, Jiang and Yang [24], [25] introduced the new

Orlicz–Hardy spaces associated to divergence form elliptic operators and to

nonnegative self-adjoint operators holding Davies–Gaffney estimates. Mean-

while, Liang, D. Yang, and S. Yang in [29] presented some applications of

Orlicz–Hardy spaces associated with operators satisfying Poisson estimates.

Motivated by all of the above-mentioned facts, in the following we wish

to allow generalized Orlicz–Hardy spaces related to generalized Orlicz func-

tions. In this setting, the Orlicz function ω(t) is replaced by a function

ϕ(x, t), called the Musielak–Orlicz function (see [30], [14]), that may vary

in the spatial variables and possesses some control conditions. We then intro-

duce a new class of Hardy spaces Hϕ,L, called Hardy spaces of Musielak–

Orlicz type associated to the operator L, and their dual spaces.

Before coming to the main content of this article, we first recall some

notation and known facts on second-order divergence form elliptic operators

on Rn defined by (1.2).

Following [22], set

pL ≡ inf
{
p≥ 1 : sup

t>0
‖e−tL‖Lp(Rn)→Lp(Rn) <∞

}
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and

p̃L ≡ sup
{
p≤∞ : sup

t>0
‖e−tL‖Lp(Rn)→Lp(Rn) <∞

}
.

It was proved by Auscher in [1] that if n = 1,2, then pL = 1 and p̃L =∞,

and that if n ≥ 3, then pL < 2n/(n + 2) and p̃L > 2n/(n − 2). One could

detail other situations: for example, if the matrix A is real-valued, then the

heat kernel has Gaussian bounds and so pL = 1 and p̃L = ∞, due to [6,

Theorem 4] or to the case of a higher-order operator (see [2, Section 7.2]).

For all f ∈ L2(Rn) and x ∈Rn, define the Lusin area function by

(1.3) SLf(x)≡
(∫ ∫

Γ(x)

∣∣t2Le−t2Lf(y)
∣∣2dy dt
tn+1

)1/2
,

where and in what follows, Γ(x)≡ {(y, t) ∈Rn × (0,∞) : |x− y|< t}.
This article is organized as follows.

In Section 2, we recall some notions and known results concerning oper-

ators associated with L, and we present some basic assumptions on the

Musielak–Orlicz function ω considered here. Under these restrictions, the

Musielak–Orlicz Hardy space Hω,L(R
n) behaves more closely like the clas-

sical Hardy space.

In Section 3, we introduce the tent spaces Tω(R
n+1
+ ) associated to ω

and we establish its atomic characterization (see Theorem 3.1 below). By

the proof of Theorem 3.1, we observe that if a function f ∈ Tω(R
n+1
+ ) ∩

T p
2 (R

n+1
+ ), p ∈ (0,∞), then there exists an atomic decomposition of F which

converges in both Tω(R
n+1
+ ) and T p

2 (R
n+1
+ ) (see Proposition 3.1 below). As a

consequence, we show that if f ∈ Tω(R
n+1
+ )∩T 2

2 (R
n+1
+ ), then there exists an

atomic decomposition of f which converges in both Tω(R
n+1
+ ) and T p

2 (R
n+1
+ )

for all p ∈ [1,2] (see Corollary 3.1 below). These convergences play a signif-

icant role throughout this paper.

In Section 4, we first introduce theMusielak–Orlicz Hardy spaceHω,L(R
n),

and then prove that the operator πL,M , which is introduced in [16] and

initially defined on f ∈ L2(Rn+1
+ ) with compact support by

(1.4) πL,Mf ≡CM

∫ ∞

0
(t2L)M+1e−t2Lf(·, t)dt

t
,

where M ∈N and where

CM

∫ ∞

0
t2(M+2)e−2t2 dt

t
= 1,
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maps the tent space T p
2 (R

n+1
+ ) continuously into Lp(Rn) for p ∈ (pL, p̃L)

and Tω(R
n+1
+ ) continuously into Hω,L(R

n) (see Proposition 4.1 below). As

a result, we obtain a molecular decomposition for elements in Hω,L(R
n) ∩

L2(Rn) which converges in Lp(Rn) for p ∈ (pL,2] (see Proposition 4.2 below).

Due to this molecular decomposition of Hω,L(R
n), we further obtain the

duality between Hω,L(R
n) and BMOρ,L∗(Rn) (see Theorem 4.1 below). The

rest of Section 4 is devoted to establishing the ρ-Carleson measure charac-

terization (see Theorem 4.2 below) and the John–Nirenberg inequality (see

Theorem 4.3 below) for the space BMOρ,L(R
n).

In Section 5, as an application, we give some sufficient conditions which

guarantee the boundedness of linear or nonnegative sublinear operators from

Hω,L(R
n) to L(ω). In particular, we show that the Riesz transform ∇L−1/2

and the Littlewood–Paley g-function gL map Hω,L(R
n) continuously into

L(ω) (see Theorem 5.1 below).

It should be pointed out that very recently the authors in [36] have inves-

tigated the Musielak–Orlicz Hardy spaces associated with operators. How-

ever, the approach in [36], which is mainly initiated by the work of Ky

in [28], differs from our approach, which is strongly motivated by Hofmann

and Mayboroda [22] and Jiang and Yang [24]. For instance, Musielak–Orlicz

functions ω considered in [36] are growth functions that require that the

functions ω(·, t) belong to the uniform weight class A∞ and satisfy the uni-

formly reverse Hölder condition, whereas we do not make such assumptions

in our paper. Moreover, let X be a metric space with doubling measure;

then, under the assumptions for the Musielak–Orlicz function similar to

that in [36], the Musielak–Orlicz Hardy space, associated with a one-to-one

operator of type ω having a bounded H∞ functional calculus in L2(X ) and

satisfying the reinforced off-diagonal estimates, was studied in [12]. As a spe-

cial case of this setting, the Musielak–Orlicz Hardy space associated with

divergence form elliptic operators with complex bounded measurable coef-

ficients on Rn is also studied. However, the results in [12] and in this paper

are different because the assumptions for the Musielak–Orlicz function are

different, as indicated above.

It is believed that the results in this paper can be extended to the setting

when the underlying spaces are of homogeneous type and operators satisfy

bounded H∞ functional calculus and Davies–Gaffney estimates. This will

be studied in a future article.
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§2. Preliminaries

In this section, we recall some notions and notation on the divergence form

elliptic operator and on Musielak–Orlicz-type functions, and we introduce

some basic assumptions on these functions. We first highlight some con-

ventions. Throughout the current paper, L always denotes the second-order

divergence form operator as in (1.2). We denote by C a positive constant

which is independent of the main parameters, but which may vary from line

to line. The symbol X � Y means that there exists a positive constant C

such that X ≤CY .

2.1. Some notions on the divergence form elliptic operator L

In this section, we review some of the standard facts on the operator L

considered in these pages.

A family {St}t>0 of operators is said to satisfy the L2 off-diagonal esti-

mates, which are also called the Gaffney estimates (see [22]), if there exist

positive constants c,C, and β such that, for arbitrary closed sets E,F ⊂Rn,

‖Stf‖L2(F ) ≤Ce−(dist(E,F )2

ct
)β‖f‖L2(E)

for every t > 0 and every f ∈ L2(Rn) supported in E. In what follows, we

will need the following important results which were obtained in [1], [3],

[22], and [21].

Lemma 2.1 ([21, Lemma 2.3]). If two families of operators, {St}t>0 and

{Tt}t>0, satisfy Gaffney estimates, then so does {StTt}t>0. Moreover, there

exist positive constants c,C, and β such that, for arbitrary closed sets E,F ⊂
Rn,

‖SsTtf‖L2(F ) ≤Ce
−(dist(E,F )2

cmax{s,t} )
β

‖f‖L2(E)

for every s, t > 0 and every f ∈ L2(Rn) supported in E.

Lemma 2.2 ([3, Lemma 2.1], [21, Lemma 2.1]). The families

(2.1) {e−tL}t>0, {tLe−tL}t>0, {t1/2∇e−tL}t>0,

as well as

(2.2)
{
(I + tL)−1

}
t>0

,
{
t1/2∇(I + tL)−1

}
t>0

,

are bounded on L2(Rn) uniformly in t and satisfy the Gaffney estimates

with positive constants c,C depending on n,λA,ΛA as in (1.1) only. For the

operators in (2.1), β = 1, while in (2.2), β = 1/2.
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Lemma 2.3 ([1, Section 4], [22, Lemma 2.5]). There exist c,C ∈ (0,∞)

such that

(i) for every p and q with pL < p ≤ q < p̃L, the families {e−tL}t>0 and

{tLe−tL}t>0 satisfy Lp−Lq off-diagonal estimates; that is, for arbitrary

closed sets E,F ⊂Rn,

‖e−tLf‖Lq(F ) + ‖tLe−tLf‖Lq(F ) ≤Ct
n
2
( 1
q
− 1

p
)e−

dist(E,F )2

ct ‖f‖Lp(E)

for every t > 0 and every f ∈ Lp(Rn) supported in E, and thus the oper-

ators {e−tL}t>0 and {tLe−tL}t>0 are bounded from Lp(Rn) to Lq(Rn)

with the norm Ct
n
2
( 1
q
− 1

p
);

(ii) for every p ∈ (pL, p̃L), the family {(I + tL)−1}t>0 satisfies Lp −Lp off-

diagonal estimates; that is, for arbitrary closed sets E,F ⊂Rn,∥∥(I + tL)−1f
∥∥
Lq(F )

≤Ct
n
2
( 1
q
− 1

p
)e

−dist(E,F )

ct1/2 ‖f‖Lp(E)

for every t > 0 and every f ∈ Lp(Rn) supported in E.

Lemma 2.4 ([22, Lemma 2.6]). Let k ∈ N and p ∈ (pL, p̃L). Then the

operator given for any f ∈ Lp(Rn) and any x ∈Rn,

Sk
Lf(x)≡

(∫ ∫
Γ(x)

∣∣(t2L)ke−t2Lf(y)
∣∣2dy dt
tn+1

)1/2
,

is bounded on Lp(Rn).

2.2. Musielak–Orlicz-type functions

Let us first present some notions on Musielak–Orlicz-type functions.

A function ω : [0,∞) → [0,∞) is called an Orlicz function if it is non-

decreasing and if ω(0) = 0; ω(t) > 0, t > 0; limt→∞ω(t) = ∞. A function

ω :Rn × [0,∞)→ [0,∞) is called a Musielak–Orlicz function if the function

ω(x, ·) : [0,∞)→ [0,∞) is an Orlicz function for all x ∈Rn and the function

ω(·, t) is a measurable function for all t ∈ [0,∞).

Let ω be a Musielak–Orlicz function. The function ω is said to be of

uniformly upper-type p (resp., uniformly lower-type p) for certain p ∈ [0,∞)

if there exists a positive constant C such that for all x ∈Rn, all t≥ 1 (resp.,

t ∈ (0,1]) and all s ∈ (0,∞),

(2.3) ω(x, st)≤Ctpω(x, s).

If ω is of both uniformly upper-type p1 and lower-type p0, then ω is said to

be of type (p0, p1). A typical example of such ω is

ω(x, t) := f(x)g(t)
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for all x ∈ Rn and all t ∈ [0,∞), where f is a positive measurable function

on Rn and where g is an Orlicz function on [0,∞) of upper-type p1 and

lower-type p0. Another example of Musielak–Orlicz function ω of uniformly

upper-type p ∈ (0,1] is, for instance,

ω(x, t) =
tp

f(x) + [log(e+ t)]α
,

where α ∈ [0,2p(1 + log 2)] and f is a positive measurable function on Rn.

It is also interesting to observe that if

ω(x, t) =
tp

f(x) + g(t)
,

where f is a positive measurable function on Rn and where g is a decreas-

ing positive function on [0,∞), then ω is a Musielak–Orlicz function of

uniformly lower-type p.

Let

p+ω ≡ inf
{
p > 0 : there exists C > 0 such that (2.3)

holds for all x ∈Rn, t ∈ [1,∞), s ∈ (0,∞)
}
,

and let

p−ω ≡ sup
{
p > 0 : there exists C > 0 such that (2.3)

holds for all x ∈Rn, t ∈ (0,1], s ∈ (0,∞)
}
.

The function ω is said to be of strictly uniformly lower-type p if, for all

x ∈Rn, t ∈ (0,1), and s ∈ (0,∞), ω(x, st)≤ tpω(x, s) and if

pω ≡ sup
{
p > 0 : ω(x, st)≤ tpω(x, s) holds for all x ∈Rn,

s ∈ (0,∞) and t ∈ (0,1)
}
.

It is easy to see that pω ≤ p−ω ≤ p+ω for all ω. In what follows, pω, p
−
ω , and p+ω

are called the strictly critical lower-type index, the critical lower-type index,

and the critical upper-type index of ω, respectively.

Remark 2.1. We see that if pω is defined as above, then ω is also of

strictly uniformly lower-type pω. In other words, pω is attainable.

Throughout this article, we always assume that ω satisfies the following

assumptions.
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Assumption (A). Suppose that ω is a Musielak–Orlicz function which

is of uniformly upper-type 1 and for which pω ∈ (0,1]. In addition, for every

x ∈Rn, ω(x, ·) is continuous, strictly increasing on R+.

Note that if ω satisfies Assumption (A), then it has the following prop-

erties (see [28, Lemma 4.1] for its proof).

Lemma 2.5.

(i) The function ω is uniformly σ-quasi-subadditive on Rn× [0,∞); namely,

there exists a positive constant C such that for all (x, tj) ∈Rn × [0,∞)

with j ∈ Z+, ω(x,
∑∞

j=1 tj)≤C
∑∞

j=1ω(x, tj).

(ii) Let ω̃(x, t) :=
∫ t
0

ω(x,s)
s ds for all (x, t) ∈Rn × [0,∞). Then ω̃ is equiva-

lent to ω; moreover, ω̃ also satisfies Assumption (A).

Convention (B). From Assumption (A), it follows that 0< pω ≤ p−ω ≤
p+ω ≤ 1. In what follows, if (2.3) holds for p+ω with t ∈ [1,∞), then we choose

p̃ω ≡ p+ω ; otherwise p+ω < 1 and we choose p̃ω ∈ (p+ω ,1) to be close enough

to p+ω .

Let ω satisfy Assumption (A). A measurable function f on Rn is said to

be in the Lebesgue-type space L(ω) if∫
Rn

ω
(
x,

∣∣f(x)∣∣)dx <∞.

Moreover, for any f ∈ L(ω), define

‖f‖L(ω) ≡ inf
{
λ > 0 :

∫
Rn

ω
(
x,

|f(x)|
λ

)
dx≤ 1

}
.

The function ρ defined below plays an important role in this paper.

Definition 2.1. For each x ∈ Rn, we define the function ω−1(x, ·) and

ρ(x, ·) on R+ as follows:

(2.4) ω−1(x, t)≡ sup
{
s≥ 0 : ω(x, s)≤ t

}
and

(2.5) ρ(x, t)≡ t−1

ω−1(x, t−1)
.
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Then it is easy to see that ω−1(x, ·) is continuous, strictly increasing, and

that for every x ∈Rn,

ω−1
(
x,ω(x, t)

)
= t

and

ω
(
x,ω−1(x, t)

)
= t.

Moreover, the types of ω and ω−1 have the following relation.

Lemma 2.6. Let 0< p≤ q ≤ 1. If ω is of type (p, q), then ω−1 is of type

(q−1, p−1).

Proof. By symmetry, it suffices to show that if ω is of uniformly lower-

type p, then ω−1 is of uniformly upper-type p−1. Suppose that there exists

a constant C ≥ 1 such that for all x ∈Rn, s≥ 0, t≤ 1,

(2.6) ω(x, st)≤Ctpω(x, s).

Then for any x ∈Rn, s≥ 0, t≥ 1, and u≥ 0 such that ω(x,u)≤ st, it follows

from (2.6) that

ω
(
x,

u

t
1
p

)
≤ Cω(x,u)

t
≤Cs.

This implies that

u≤ t
1
pω−1(x,Cs),

and hence

(2.7) ω−1(x, st)≤ t
1
pω−1(x,Cs).

On the other hand, observe that

ω−1(x,Cs) = sup
{
λ≥ 0 :

ω(x,λ)

C
≤ s

}
and, by (2.6), for any λ≥ 0,

ω
(
x,

λ

C
2
p

)
≤ ω(x,λ)

C
;

then we deduce that

(2.8) ω−1(x,Cs)≤C
2
pω−1(x, s),

which together with (2.7) completes the proof of Lemma 2.6.

Assumption (C). Let ω satisfy Assumption (A). Moreover, suppose

that

(i) there exist positive constants C1, C2 such that for any x ∈ Rn, C1 ≤
ω(x,1)≤C2;
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(ii) there exists a positive constant C such that for any locally integrable

positive function f on Rn, for any ball B in Rn,

(2.9)
1

|B|

∫
B
ω
(
x, f(x)

)
dx≤C inf

x∈Rn
ω
(
x,

1

|B|

∫
B
f(x)dx

)
.

A typical example of a Musielak–Orlicz function ω that satisfies Assump-

tion (C) is ω(x, t) = h(x)ϕ(t) for all x ∈ Rn and t ∈ [0,∞), where h is a

positive measurable function on Rn so that there exist positive constants

C1, C2 such that, for any x ∈ Rn, C1 ≤ h(x) ≤ C2 and ϕ is a continuous,

increasing, and concave Orlicz function on [0,∞) with pϕ ∈ (0,1]. Besides,

there exist Musielak–Orlicz functions which are not of that form and that

satisfy Assumption (C), for instance, ω(x, t) = t
h(x)+[log(e+t)]α , where α ∈

[0,2(1 + log 2)] and where h is a positive measurable function on Rn such

that there exist positive constants C1, C2 for any x ∈Rn, C1 ≤ h(x)≤C2.

§3. Tent spaces associated to Musielak–Orlicz functions

In this section, we will deal with the tent spaces associated to Musielak–

Orlicz functions. Let us first recall some notions.

For any ν > 0 and x ∈Rn, let Rn+1
+ ≡Rn × (0,∞), and let

Γν(x)≡
{
(y, t) ∈Rn+1

+ : |x− y|< νt
}

denote the cone of aperture ν with vertex x ∈ Rn. For any closed set F

of Rn, denote by RνF the union of all cones with vertices in F , that is,

RνF ≡
⋃

x∈F Γν(x); and for any open set O in Rn, denote the tent over O

by Tν(O), which is defined as Tν(O)≡ [Rν(O
�)]�. Note that

Tν(O) =
{
(x, t) ∈Rn × (0,∞) : dist(x,O�)≥ νt

}
.

In what follows, we denote Γ1(x), R1(F ), and T1(O) simply by Γ(x), R(F ),

and Ô, respectively.

Let F be a closed subset of Rn, and let O ≡ F �. Assume that |O|<∞.

For any fixed γ ∈ (0,1), we say that x ∈ Rn has the global γ-density with

respect to F if
|B(x, r)∩ F |
|B(x, r)| ≥ γ

for all r > 0. Denote by F ∗ the set of all such x. Obviously, F ∗ is a closed

subset of F . Let O∗ ≡ (F ∗)�. Then it is easy to see that O ⊂O∗. In fact, we

have

O∗ =
{
x ∈Rn :M(χO)(x)> 1− γ

}
,
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where M denotes the Hardy–Littlewood maximal function on Rn. As a

result, by the weak type (1,1) of M, we have |O∗| ≤ C(γ)|O|, where C(γ)

denotes a positive constant depending on γ.

The proof of the following lemma is similar to that of [13, Lemma 2]; we

omit the details.

Lemma 3.1. Let ν, η ∈ (0,∞). Then there exist positive constants γ ∈
(0,1) and C(γ, ν, η) such that, for any closed subset F of Rn whose com-

plement has finite measure and any nonnegative measurable function H

on Rn+1
+ ,

∫ ∫
Rν(F ∗)

H(y, t)tn dy dt≤C(γ, ν, η)

∫
F

{∫ ∫
Γη(x)

H(y, t)dy dt
}
dx,

where F ∗ denotes the set of points in Rn with global γ-density with respect

to F .

Let ν ∈ (0,∞). For all measurable functions g on Rn+1
+ and all x ∈ Rn,

let

Aν(g)(x)≡
(∫ ∫

Γν(x)

∣∣g(y, t)∣∣2dy dt
tn+1

)1/2
,

and denote A1(g) simply by A(g).

Coifman, Meyer, and Stein in [13] introduced the tent space T p
2 (R

n+1
+ )

for p ∈ (0,∞), which is defined as the space of all measurable functions g

such that ‖g‖T p
2 (R

n+1
+ ) ≡ ‖A(g)‖Lp(Rn) <∞.

Now let ω satisfy Assumption (A). Then we define the tent space Tω(R
n+1
+ )

associated to the function ω as the space of measurable functions g on Rn+1
+

such that A(g) ∈ L(ω) with the norm defined by

‖g‖Tω(R
n+1
+ ) ≡

∥∥A(g)
∥∥
L(ω)

= inf
{
λ > 0 :

∫
Rn

ω
(
x,

A(g)(x)

λ

)
dx≤ 1

}
.

Let p ∈ (1,∞), let ω satisfy Assumption (C), and let ρ be the function

defined by (2.5). A function a on Rn+1
+ is called an (ω,p)-atom if

(i) there exists a ball B ⊂Rn such that suppa⊂ B̂;

(ii) ‖a‖T p
2 (R

n+1
+ ) ≤ |B|

1
p
−1

infx∈B [ρ(x, |B|)]−1.

Furthermore, if a is an (ω,p)-atom for all p ∈ (1,∞), we then call a an

(ω,∞)-atom.
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Remark 3.1.

(i) It is not difficult to verify that for a function ω satisfying Assumption

(C), there exist positive constants K1, K2 such that for any x ∈ Rn,

K1 ≤ ω−1(x,1)≤K2, and hence infx∈B [ρ(x, |B|)]−1 is strictly positive.

(ii) In addition, for all (ω,p)-atoms a, we have ‖a‖Tω(R
n+1
+ ) � 1.

We are now ready to obtain the atomic characterization of the tent space

Tω(R
n+1
+ ).

Theorem 3.1. Let ω satisfy Assumption (C). Then for any f ∈ Tω(R
n+1
+ ),

there exist (ω,∞)-atoms {aj}∞j=1 and numbers {λj}∞j=1 ⊂ C such that for

almost every (x, t) ∈Rn+1
+ ,

(3.1) f(x, t) =
∞∑
j=1

λjaj(x, t).

Moreover, there exists a positive constant C such that for all f ∈ Tω(R
n+1
+ ),

Λ
(
{λjaj}j

)
≡ inf

{
λ > 0 :

∞∑
j=1

|Bj | inf
x∈Rn

ω
(
x,

|λj |
λ|Bj | supx∈Bj

ρ(x, |Bj |)
)
≤ 1

}
(3.2)

≤ C‖f‖Tω(R
n+1
+ ),

where B̂j appears as the support of aj .

Proof. We prove this theorem by exploiting some ideas found in [13, proof

of Theorem 1] and [24, Theorem 3.1]. Let f ∈ Tω(R
n+1
+ ). For any k ∈ Z, let

Ok ≡ {x ∈Rn :A(f)(x)> 2k} and Fk ≡ (Ok)
�. Since f ∈ Tω(R

n+1
+ ), for each

k, Ok is an open set and |Ok|<∞.

Since ω is of uniformly upper-type 1 and 1 � ω(x,1), by Lemma 3.1, for

k ∈ Z and k ≤ 0, we have∫ ∫
R(F ∗

k )

∣∣f(y, t)∣∣2dy dt
t

�
∫
Fk

∫ ∫
Γ(x)

∣∣f(y, t)∣∣2dy dt
tn+1

dx

�
∫
Fk

A(f)(x)2 dx�
∫
Fk

ω
(
x,A(f)(x)

)
dx→ 0

as k →−∞, which implies that f = 0 almost everywhere in
⋂

k∈ZR(F ∗
k ),

and hence, suppf ⊂ {
⋃

k∈Z Ô
∗
k ∪E}, where E ⊂Rn+1

+ and
∫∫

E
dxdt
t = 0.
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Thus, for each k, by applying the Whitney decomposition to the set O∗
k,

we obtain a set Ik of indices and a family {Qk,j}j∈Ik of disjoint cubes such

that

(i)
⋃

j∈Ik Qk,j =O∗
k, and if i �= j, then Qk,j ∩Qk,i = ∅; and

(ii)
√
n�(Qk,j)≤ dist(Qk,j , (O

∗
k)

�)≤ 4
√
n�(Qk,j), where �(Qk,j) denotes the

side length of Qk,j .

Next, for each j ∈ Ik, we choose a ball Bk,j with the same center as Qk,j

and with radius 11
2

√
n-times �(Qk,j). Let Ak,j ≡ B̂k,j∩(Qk,j×(0,∞))∩(Ô∗

k \
Ô∗

k+1), let

ak,j ≡ 2−k|Bk,j |−1 inf
x∈Bk,j

[
ρ
(
x, |Bk,j |

)]−1
fχAk,j

,

and let λk,j ≡ 2k|Bk,j | supx∈Bk,j
[ρ(x, |Bk,j |)]. Note that {(Qk,j × (0,∞)) ∩

(Ô∗
k \ Ô∗

k+1)} ⊂ B̂k,j . By this, we conclude that f =
∑

k∈Z
∑

j∈Ik λk,jak,j
almost everywhere.

Let us show that for each k ∈ Z and each j ∈ Ik, ak,j is an (ω,∞)-

atom supported in B̂k,j . Let p ∈ (1,∞), q ≡ p′ be the conjugate index of

p, that is, 1
q + 1

p = 1, and let h ∈ T q
2 (R

n+1
+ ) with ‖h‖T q

2 (R
n+1
+ ) ≤ 1. Since

Ak,j ⊂ (Ô∗
k+1)

� = R(F ∗
k+1), by Lemma 3.1 and the Hölder inequality, we

have ∣∣〈ak,j , h〉∣∣ ≤
∫ ∫

R
n+1
+

∣∣(ak,jχAk,j
)(y, t)h(y, t)

∣∣dy dt
t

�
∫
Fk+1

∫ ∫
Γ(x)

∣∣ak,j(y, t)h(y, t)∣∣dy dt
tn+1

dx

�
∫
(Ok+1)�

A(ak,j)(x)A(h)(x)dx

� 2−k|Bk,j |−1 inf
x∈Bk,j

[
ρ
(
x, |Bk,j |

)]−1

×
(∫

Bk,j∩O�
k+1

[
A(f)(x)

]p
dx

) 1
p ‖h‖T q

2 (R
n+1
+ )

� |Bk,j |
1
p
−1

inf
x∈Bk,j

[
ρ
(
x, |Bk,j |

)]−1
,

which implies that ak,j is an (ω,p)-atom supported in B̂k,j for all p ∈ (1,∞),

and hence, an (ω,∞)-atom.
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On the other hand, for any λ > 0, by Lemma 2.5 we further obtain∑
k∈Z

∑
j∈Ik

|Bk,j | inf
x∈Rn

ω
(
x,

|λk,j |
λ|Bk,j | supx∈Bk,j

ρ(x, |Bk,j |)
)

�
∑
k∈Z

∑
j∈Ik

|Qk,j | inf
x∈Rn

ω
(
x,

2k

λ

)

�
∑
k∈Z

|O∗
k| inf

x∈Rn
ω
(
x,

2k

λ

)
�

∑
k∈Z

|Ok| inf
x∈Rn

ω
(
x,

2k

λ

)
(3.3)

�
∑
k∈Z

∫
Ok

inf
x∈Rn

ω
(
x,

2k

λ

)
dx�

∫
Rn

∑
k<log2[A(f)(x)]

inf
x∈Rn

ω
(
x,

2k

λ

)
dx

�
∫
Rn

∑
k<log2[A(f)(x)]

∫ 2k+1

2k
inf

x∈Rn
ω
(
x,

t

λ

)dt
t
dx

�
∫
Rn

∫ 2A(f)(x)
λ

0
ω(x, t)

dt

t
dx�

∫
Rn

ω
(
x,

A(f)(x)

λ

)
dx,

which implies that (3.2) holds, and hence, completes the proof of Theo-

rem 3.1.

Remark 3.2. Let {λi
j}i,j ⊂C and {aij}i,j be (ω,p)-atoms for certain p ∈

(1,∞), where i= 1,2. If
∑

j λ
1
ja

1
j ,

∑
j λ

2
ja

2
j ∈ Tω(R

n+1
+ ), then by the fact that

ω is subadditive and of strictly uniformly lower-type pω, we have

[
Λ

(
{λi

ja
i
j}i,j

)]pω ≤
2∑

i=1

[
Λ

(
{λi

ja
i
j}j

)]pω .
Let p ∈ (0,1] and q ∈ (p,∞)∩ [1,∞). Recall that a function a on Rn+1

+ is

called a (p, q)-atom if

(i) there exists a ball B ⊂Rn such that suppa⊂ B̂;

(ii) ‖a‖T q
2 (R

n+1
+ ) ≤ |B|

1
q
− 1

p .

We have the following convergence result.

Proposition 3.1. Let ω satisfy Assumption (C), and let p ∈ (0,∞).

If f ∈ (Tω(R
n+1
+ ) ∩ T p

2 (R
n+1
+ )), then the decomposition (3.1) holds in both

Tω(R
n+1
+ ) and T p

2 (R
n+1
+ ).

Proof. The proof that (3.1) holds in T p
2 (R

n+1
+ ) is analogous to that of [24,

Theorem 3.1] and we omit the details. We only need to show that (3.1) holds
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in Tω(R
n+1
+ ). In fact, by the Hölder inequality, for each k ∈ Z and j ∈ Ik, we

have

1

|Bk,j |

∫
Rn

A(λk,jak,j)(x)dx≤ |λk,j |
|Bk,j |1/2

‖ak,j‖T 2
2 (R

n+1
+ )

≤ |λk,j |
|Bk,j | supx∈Bk,j

ρ(x, |Bk,j |)
.

From this together with the subadditive property of ω and A, it follows that∫
Rn

ω
(
x,A

(
f −

∑
|k|+|j|≤N

λk,jak,j

)
(x)

)
dx

≤
∑

|k|+|j|>N

∫
Rn

ω
(
x,A(λk,jak,j)(x)

)
dx(3.4)

�
∑

|k|+|j|>N

|Bk,j | inf
x∈Rn

ω
(
x,

|λk,j |
|Bk,j | supx∈Bk,j

ρ(x, |Bk,j |)
)
→ 0,

as N →∞, by (3.3). Now for any ε > 0, by the fact that ω is of uniformly

upper-type 1 and (3.4), there exists N0 ∈N such that when N >N0,∫
Rn

ω
(
x,

1

ε
A

[
f −

∑
|k|+|j|≤N

λk,jak,j

]
(x)

)
dx≤ 1,

which implies that when N > N0, ‖f −
∑

|k|+|j|≤N λk,jak,j‖Tω(R
n+1
+ ) ≤ ε.

Thus, (3.1) holds in Tω(R
n+1
+ ), which completes the proof of Proposition 3.1.

As a consequence of Proposition 3.1, we have the following corollary which

plays a significant role in this paper.

Corollary 3.1. Let ω satisfy Assumption (C). If f ∈ Tω(R
n+1
+ ) ∩

T 2
2 (R

n+1
+ ), then f ∈ T p

2 (R
n+1
+ ) for all p ∈ [1,2], and hence, the decomposition

(3.1) holds in T p
2 (R

n+1
+ ).

Proof. Observing that ω is of uniformly upper-type 1, we have∫
Rn

[
A(f)(x)

]p
dx≤

∫
{x∈Rn:A(f)(x)<1}

A(f)(x)dx

+

∫
{x∈Rn:A(f)(x)≥1}

[
A(f)(x)

]2
dx
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�
∫
{x∈Rn:A(f)(x)<1}

ω
(
x,A(f)(x)

)
dx+ ‖f‖2

T 2
2 (R

n+1
+ )

<∞,

which implies that f ∈ T p
2 (R

n+1
+ ). Then from Proposition 3.1, it follows that

the decomposition (3.1) holds in T p
2 (R

n+1
+ ), which completes the proof of

Corollary 3.1.

In what follows, let T c
ω(R

n+1
+ ) and T p,c

2 (Rn+1
+ ) denote the set of all func-

tions in Tω(R
n+1
+ ) and T p

2 (R
n+1
+ ) with compact supports, respectively, where

p ∈ (0,∞).

Lemma 3.2.

(i) For all p ∈ (0,∞), T p,c
2 (Rn+1

+ )⊂ T 2,c
2 (Rn+1

+ ). In particular, if p ∈ (0,2],

then T p,c
2 (Rn+1

+ ) coincides with T 2,c
2 (Rn+1

+ ).

(ii) Let ω satisfy Assumption (C). Then T c
ω(R

n+1
+ ) coincides with T 2,c

2 (Rn+1
+ ).

Proof. By [13, (1.3), p. 306], we have T p,c
2 (Rn+1

+ ) ⊂ T 2,c
2 (Rn+1

+ ) for all

p ∈ (0,∞). If p ∈ (0,2], then from the Hölder inequality, it is easy to follow

that T 2,c
2 (Rn+1

+ )⊂ T p,c
2 (Rn+1

+ ). Thus, (i) holds.

Let us prove (ii). To prove T c
ω(R

n+1
+ ) ⊂ T 2,c

2 (Rn+1
+ ), by (i), it suffices to

show that T c
ω(R

n+1
+ )⊂ T p,c

2 (Rn+1
+ ) for certain p ∈ (0,∞). Suppose that f ∈

T c
ω(R

n+1
+ ) and that suppf ⊂K, where K is a compact set in Rn+1

+ . Let B

be a ball in Rn such that K ⊂ B̂. Then suppA(f)⊂B. This, together with

the uniformly lower-type property of ω, yields that

∫
Rn

[
A(f)(x)

]pω dx=

∫
{x∈Rn:A(f)(x)<1}

[
A(f)(x)

]pω dx
+

∫
{x∈Rn:A(f)(x)≥1}

[
A(f)(x)

]pω dx
� |B|+

∫
Rn

ω
(
x,A(f)(x)

)
dx <∞.

That is, f ∈ T pω ,c
2 (Rn+1

+ )⊂ T 2,c
2 (Rn+1

+ ).

Conversely, let f ∈ T 1,c
2 (Rn+1

+ ) be supported in a compact set K in Rn+1
+ .

Then there exists a ball B such that K ⊂ B̂ and suppA(f) ⊂ B. This,

together with the uniformly upper-type property of ω, implies that
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Rn

ω
(
x,A(f)(x)

)
dx �

∫
{x∈Rn:A(f)(x)<1}

ω(x,1)dx

+

∫
{x∈Rn:A(f)(x)≥1}

A(f)(x)dx

� |B|+ ‖f‖T 1
2 (R

n+1
+ ) <∞,

from which it follows that f ∈ T c
ω(R

n+1
+ ), and hence, completes the proof of

Lemma 3.2.

§4. Musielak–Orlicz spaces and their dual spaces

In this section, we always suppose that the Musielak–Orlicz function ω

satisfies Assumption (C). We first introduce the Musielak–Orlicz Hardy

space associated to L via the Lusin area function and then establish its

duality. Let us begin with some notions and notation.

Let SL be the same as in (1.3). It follows from Lemma 2.4 that the

operator SL is bounded on Lp(Rn) for p ∈ (pL, p̃L). Hofmann and May-

boroda in [22] introduced the Hardy space H1
L(R

n) associated to L as

the completion of {f ∈ L2(Rn) : SLf ∈ L1(Rn)} with respect to the norm

‖f‖H1
L(R

n) ≡ ‖SLf‖L1(Rn).

Employing some ideas from [16], [22], and [24], we now introduce the

Musielak–Orlicz Hardy space Hω,L(R
n) associated to L and ω as follows.

Definition 4.1. Let ω satisfy Assumption (C). A function f ∈ L2(Rn)

is said to be in H̃ω,L(R
n) if SLf ∈ L(ω); moreover, define

‖f‖Hω,L(Rn) ≡ ‖SLf‖L(ω) = inf
{
λ > 0 :

∫
Rn

ω
(
x,

SLf(x)

λ

)
dx≤ 1

}
.

The Musielak–Orlicz Hardy space Hω,L(R
n) is defined to be the completion

of H̃ω,L(R
n) in the norm ‖ · ‖Hω,L(Rn).

In what follows, for a ball B ≡ B(xB, rB), we let U0(B) ≡ B, and for

j ∈N, Uj(B)≡B(xB,2
jrB) \B(xB,2

j−1rB).

Definition 4.2. Let q ∈ (pL, p̃L), let M ∈N, and let ε ∈ (0,∞). A func-

tion α ∈ Lq(Rn) is called an (ω, q,M, ε)-molecule adapted to B if there exists

a ball B such that

(i) ‖α‖Lq(Uj(B)) � 2−jε|2jB|
1
q
−1

infx∈B [ρ(x, |2jB|)]−1
, j ∈ Z+;
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(ii) for every k = 1, . . . ,M and j ∈ Z+, there holds∥∥(r−2
B L−1)kα

∥∥
Lq(Uj(B))

� 2−jε|2jB|
1
q
−1

inf
x∈B

[
ρ
(
x, |2jB|

)]−1
.

Finally, if α is an (ω, q,M, ε)-molecule for all q ∈ (pL, p̃L), then α is called

an (ω,∞,M, ε)-molecule.

Remark 4.1.

(i) Since ω is of strictly uniformly lower-type pω, we have for all f1, f2 ∈
Hω,L(R

n),

‖f1 + f2‖pωHω,L(Rn) ≤ ‖f1‖pωHω,L(Rn) + ‖f2‖pωHω,L(Rn).

In fact, if letting λ1 ≡ ‖f1‖pωHω,L(Rn) and λ2 ≡ ‖f2‖pωHω,L(Rn), by the sub-

additivity, the continuity, and the uniformly lower-type pω of ω, we

have∫
Rn

ω
(
x,

SL(f1 + f2)(x)

(λ1 + λ2)
1
pω

)
dx≤

2∑
i=1

∫
Rn

ω
(
x,

SL(fi)(x)

(λ1 + λ2)
1
pω

)
dx

≤
2∑

i=1

λi

λ1 + λ2

∫
Rn

ω
(
x,

SL(fi)(x)

λ
1
pω
i

)
dx≤ 1,

which implies that ‖f1 + f2‖Hω,L(Rn) ≤ (‖f1‖pωHω,L(Rn) + ‖f2‖pωHω,L(Rn))
1
pω ,

and hence, the desired conclusion.

(ii) From the theorem of completion of Yosida [37, p. 56], it follows

that H̃ω,L(R
n) is dense in Hω,L(R

n); namely, for any f ∈ Hω,L(R
n)

there exists a Cauchy sequence {fk}∞k=1 ⊂ H̃ω,L(R
n) such that

limk→∞ ‖fk−f‖Hω,L(Rn) = 0. Moreover, if {fk}∞k=1 is a Cauchy sequence

in H̃ω,L(R
n), then there uniquely exists f ∈ Hω,L(R

n) such that

limk→∞ ‖fk − f‖Hω,L(Rn) = 0.

4.1. Molecular decompositions of Hω,L(R
n)

In what follows, let L2
c(R

n+1
+ ) denote the set of all functions in L2(Rn+1

+ )

with compact supports.

Proposition 4.1. Let ω satisfy Assumption (C), let M ∈ N and M >
n
2 (

1
pω

− 1
2), and let πL,M be as in (1.4).

(i) The operator πL,M , initially defined on T p,c
2 (Rn+1

+ ), extends to a bounded

linear operator from T p
2 (R

n+1
+ ) to Lp(Rn), where p ∈ (pL, p̃L).



90 T. D. TRAN

(ii) The operator πL,M , initially defined on T c
ω(R

n+1
+ ), extends to a bounded

linear operator from Tω(R
n+1
+ ) to Hω,L(R

n).

Proof. Let k ∈N. By Lemma 2.4 and a duality argument, we know that

the operator Sk
L∗ is bounded on Lp(Rn) for p ∈ (pL∗ , p̃L∗), where 1

pL∗ + 1
p̃L

=

1 = 1
pL

+ 1
p̃L∗ . We refer the reader to [24, Proposition 4.1] for the proof of

(i) above.

Let us prove (ii). Assume that f ∈ T c
ω(R

n+1
+ ). By Theorem 3.1, we have

f =
∑∞

j=1 λjaj pointwise, where {λj}∞j=1 and {aj}∞j=1 are as in Theorem 3.1

and where Λ({λjaj}j) � ‖f‖Tω(R
n+1
+ ). From Lemma 3.2(ii), it then follows

that f ∈ T 2,c
2 (Rn+1

+ ), which together with (i) and Corollary 3.1 further

implies that

πL,M (f) =
∞∑
j=1

λjπL,M (aj)≡
∞∑
j=1

λjαj

in Lp(Rn) for p ∈ (pL,2].

On the other hand, notice that the operator SL is bounded on Lp(Rn),

which together with the subadditivity and the continuity of ω yields

(4.1)

∫
Rn

ω
(
x,SL

(
πL,M (f)

)
(x)

)
dx≤

∞∑
j=1

∫
Rn

ω
(
x, |λj |SL(αj)(x)

)
dx.

We next indicate that for any fixed ε ∈ (0,∞), αj = πL,M (aj) is a multiple

of an (ω,∞,M, ε)-molecule adapted to Bj for each j.

Indeed, this is the case provided that a is an (ω,∞)-atom supported

in the ball B ≡B(xB, rB) and that q ∈ (pL, p̃L). Since for q ∈ (pL,2), each

(ω,2,M, ε)-molecule is also an (ω, q,M, ε)-molecule, to prove the above claim

it suffices to show that α≡ πL,M (a) is a multiple of an (ω, q,M, ε)-molecule

adapted to B with q ∈ [2, p̃L).

By (i), for i= 0,1,2, we have

‖α‖Lq(Ui(B)) =
∥∥πL,M (a)

∥∥
Lq(Ui(B))

� ‖a‖T q
2 (R

n+1
+ )

� |B|
1
q
−1 inf

x∈B

[
ρ
(
x, |B|

)]−1
.

For i≥ 3, let q′ ∈ (1,2] be the conjugate number of q, and let h ∈ Lq′(Rn)

satisfy ‖h‖Lq′(Rn) ≤ 1 and supph ⊂ Ui(B). By the Hölder inequality and

Lemmas 2.1 and 2.3, we have
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∣∣〈πL,M (a), h
〉∣∣

�
∫ rB

0

∫
B

∣∣a(x, t)(t2L∗)M+1e−t2L∗
(h)(x)

∣∣dxdt
t

�
∥∥A(a)

∥∥
Lq(Rn)

∥∥A(
χ
B̂
(t2L∗)M+1e−t2L∗

(h)
)∥∥

Lq′(Rn)

� ‖a‖T q
2 (R

n+1
+ )|B|

1
q′−

1
2

(∫
B̂

∣∣(t2L∗)M+1e−t2L∗
(h)(x, t)

∣∣2dxdt
t

) 1
2

(4.2)

� ‖a‖T q
2 (R

n+1
+ )|B|

1
q′−

1
2

×
(∫ rB

0

[
t
n( 1

2
− 1

q′ ) exp
{
−dist(B,Ui(B))2

ct2

}]2dt
t

) 1
2

� |B|− 1
2 inf
x∈B

[
ρ
(
x, |B|

)]−1
(∫ rB

0
t
n(1− 2

q′ )
[ t

2irB

]2(ε+ n
pω

−n
q
)dt

t

) 1
2

� 2−iε|2iB|
1
q
−1 inf

x∈B

[
ρ
(
x, |2iB|

)]−1
,

which implies that α satisfies Definition 4.2(i).

We now show that α also satisfies Definition 4.2(ii). Let k ∈ {1, . . . ,M}.
If i= 0,1,2, then let h be the same as in the estimate of (4.2); similarly to

the estimate of (4.1), we have∣∣〈(r−2
B L−1)kπL,M (a), h

〉∣∣
�

∫ rB

0

∫
B

( t

rB

)2k∣∣a(x, t)(t2L∗)M+1−ke−t2L∗
(h)(x)

∣∣dxdt
t

�
∥∥A(a)

∥∥
Lq(Rn)

∥∥SM+1−k
L∗ (h)

∥∥
Lq′(Rn)

� ‖a‖T q
2 (R

n+1
+ ) � |B|

1
q
−1 inf

x∈B

[
ρ
(
x, |B|

)]−1
,

which is the desired estimate, where we used the Hölder inequality and

Lemma 2.4 by noting that q′ ∈ (pL∗ ,2]. If i ≥ 3, an argument similar to

that used in the estimate of (4.2) also yields the desired estimate. Thus,

α = πL,M (a) is a multiple of an (ω, q,M, ε)-molecule adapted to B with

q ∈ [2, p̃L), and the claim is proved.

Let q ∈ (pL, p̃L), and let ε > n( 1
pω

− 1
p̃ω
), where p̃ω is as in Convention (B).

We now assert that for all (ω, q,M, ε)-molecules α adapted to the ball B ≡
B(xB, rB) and λ ∈C,

(4.3)

∫
Rn

ω
(
x, |λ|SL(α)(x)

)
dx� |B| inf

x∈Rn
ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
.
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Once this is proved, then we deduce ‖α‖Hω,L(Rn) � 1, which together with

(4.1) further implies that for all f ∈ T c
ω(R

n+1
+ ),∫

Rn

ω
(
x,SL

(
πL,M (f)

)
(x)

)
dx�

∞∑
j=1

|Bj | inf
x∈Rn

ω
(
x,

|λj |
|Bj | supx∈Bj

ρ(x, |Bj |)
)
.

Thus, for all f ∈ T c
ω(R

n+1
+ ), we have∥∥πL,M (f)
∥∥
Hω,L(Rn)

� Λ
(
{λjaj}j

)
� ‖f‖Tω(R

n+1
+ ),

which if combined with a density argument implies (ii).

Now, let us prove assertion (4.3). Observe that if q > 2, then an (ω, q,M, ε)-

molecule is also an (ω,2,M, ε)-molecule. Thus, to prove assertion (4.3), it

suffices to show (4.3) for q ∈ (pL,2]. To this end, note that∫
Rn

ω
(
x, |λ|SL(α)(x)

)
dx

≤
∫
Rn

ω
(
x, |λ|SL

(
[I − e−r2BL]Mα

)
(x)

)
dx

+

∫
Rn

ω
(
x, |λ|SL

((
I − [I − e−r2BL]M

)
α
)
(x)

)
dx

�
∞∑
j=0

∫
Rn

ω
(
x, |λ|SL

(
[I − e−r2BL]M (αχUj(B))

)
(x)

)
dx

+

∞∑
j=0

sup
1≤k≤M

∫
Rn

ω
(
x, |λ|SL

{[ k

M
r2BLe

− k
M

r2BL
]M

×
(
χUj(B)(r

−2
B L−1)Mα

)}
(x)

)
dx

≡
∞∑
j=0

Hj +

∞∑
j=0

Ij .

For each j ≥ 0, let Bj ≡ 2jB. Then, by Assumption (C) and the Hölder

inequality, we obtain

Hj �
∞∑
k=0

∫
Uk(Bj)

ω
(
x, |λ|SL

(
[I − e−r2BL]M (αχUj(B))

)
(x)

)
dx

�
∞∑
k=0

∫
2kBj

ω
(
x, |λ|χUk(Bj)(x)SL

(
[I − e−r2BL]M (αχUj(B))

)
(x)

)
dx
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�
∞∑
k=0

|2kBj | inf
x∈Rn

ω
(
x,

|λ|
|2kBj |

∫
Uk(Bj)

SL

(
[I − e−r2BL]M (αχUj(B))

)
(x)dx

)

�
∞∑
k=0

|2kBj |

× inf
x∈Rn

ω
(
x,

|λ|
|2kBj |1/q

∥∥SL

(
[I − e−r2BL]M (αχUj(B))

)∥∥
Lq(Uk(Bj))

)
.

By the proof of [22, Lemma 4.2] (see [22, (4.22) and (4.27)]), we have for

k = 0,1,2,

∥∥SL

(
[I − e−r2BL]M (αχUj(B))

)∥∥
Lq(Uk(Bj))

� ‖α‖Lq(Uj(B)),

and for k ≥ 3,

∥∥SL

(
[I − e−r2BL]M (αχUj(B))

)∥∥2

Lq(Uk(Bj))

� k
( 1

2k+j

)4M+2(n
2
−n

q
)
‖α‖2Lq(Uj(B)),

which, together with Definition 4.2, 2Mpω > n(1− pω
2 ), and Assumption (C),

implies that

Hj � |Bj | inf
x∈Rn

ω
(
x,

|λ|2−jε

|Bj | supx∈Bj
ρ(x, |Bj |)

)

+

∞∑
k=3

|2kBj | inf
x∈Rn

ω
(
x,

|λ|
√
k2−(2M+n

2
−n

q
)(j+k)−jε

|2kBj |
1
q |Bj |1−

1
q supx∈Bj

ρ(x, |Bj |)

)

� 2−jpωε
{
1 +

∞∑
k=3

√
k2kn(1−

pω
q
)
2
−pω(2M+n

2
−n

q
)(j+k)

}

× |Bj | inf
x∈Rn

ω
(
x,

|λ|
|Bj | supx∈Bj

ρ(x, |Bj |)
)

� 2−jpωε|Bj | inf
x∈Rn

ω
(
x,

|λ|
|Bj | supx∈Bj

ρ(x, |Bj |)
)
.

Note that since ε > n( 1
pω

− 1
p̃ω
) and ω−1 is of uniformly lower-type 1

p̃ω
by

Lemma 2.6, we further have
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∞∑
j=0

Hj �
∞∑
j=0

2−jpωε|Bj |
{ |B| supx∈B ρ(x, |B|)
|Bj | supx∈Bj

ρ(x, |Bj |)
}pω

× inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)

�
∞∑
j=0

2−jpωε|Bj |
{ |B|
|Bj |

} pω
p̃ω inf

x∈Rn
ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
(4.4)

�
∞∑
j=0

2−jpωε2jn(1−
pω
p̃ω

)|B| inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)

� |B| inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
.

Similarly, we have

∞∑
j=0

Ij � |B| inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
,

which completes the estimate of (4.3), and hence, the proof of Proposi-

tion 4.1.

Proposition 4.2. Let ω satisfy Assumption (C), let ε > n( 1
pω

− 1
p+ω

),

and let M > n
2 (

1
pω

− 1
2). If f ∈ Hω,L(R

n) ∩ L2(Rn), then f ∈ Lp(Rn) for

all p ∈ (pL,2] and there exist (ω,∞,M, ε)-molecules {αj}∞j=1 and numbers

{λj}∞j=1 ⊂C such that

(4.5) f =

∞∑
j=1

λjαj

in both Hω,L(R
n) and Lp(Rn) for all p ∈ (pL,2]. Moreover, there exists a pos-

itive constant C independent of f such that for all f ∈Hω,L(R
n)∩L2(Rn),

Λ
(
{λjαj}j

)
≡ inf

{
λ > 0 :

∞∑
j=1

|Bj | inf
x∈Rn

ω
(
x,

|λj |
λ|Bj | supx∈Bj

ρ(x, |Bj |)
)
≤ 1

}
(4.6)

≤ C‖f‖Hω,L(Rn),

where for each j, αj is adapted to the ball Bj .
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Proof. Let f ∈Hω,L(R
n)∩L2(Rn). For each N ∈N, define ON ≡ {(x, t) ∈

Rn+1
+ : |x|<N,1/N < t <N}. Then by the L2(Rn) functional calculi for L,

we have

f =CM

∫ ∞

0
(t2L)M+2e−2t2Lf

dt

t
= lim

N→∞
πL,M

(
χON

(t2Le−t2Lf)
)

in L2(Rn), where M ∈N, πL,M and CM are as in (1.4).

On the other hand, by Definition 4.1 and Lemma 2.4, we have

t2Le−t2Lf ∈ T 2
2 (R

n+1
+ ) ∩ Tω(R

n+1
+ ). An application of Corollary 3.1 shows

that t2Le−t2Lf ∈ T p
2 (R

n+1
+ ), which together with Proposition 4.1(i) implies

that {πL,M (χON
(t2Le−t2Lf))}N is a Cauchy sequence in Lp(Rn). Then by

taking subsequence, we have

f = lim
N→∞

πL,M
(
χON

(t2Le−t2Lf)
)

in Lp(Rn).

Now applying Theorem 3.1 and Proposition 3.1 to t2Le−t2Lf , we obtain

(ω,∞)-atoms {aj}∞j=1 and numbers {λj}∞j=1 ⊂ C such that t2Le−t2Lf =∑∞
j=1 λjaj in T p

2 (R
n+1
+ ) and Λ({λjaj}j) � ‖t2Le−t2Lf‖Tω(R

n+1
+ ), which, com-

bined with Proposition 4.1(i), further yield that

(4.7) f = πL,M (t2Le−t2Lf) =
∞∑
j=1

λjπL,M (aj)≡
∞∑
j=1

λjαj

in Lp(Rn) for p ∈ (pL,2]. By the proof of Proposition 4.1, we learn that αj

is a multiple of an (ω,∞,M, ε)-molecule for any ε > 0, and M ∈N and M >
n
2 (

1
pω

− 1
2). Note that Λ({λjαj}j) = Λ({λjaj}j). We therefore obtain (4.6).

To finish the proof of Proposition 4.2, it remains to show that (4.5) holds

in Hω,L(R
n). In fact, by Lemma 2.4, (3.3), (4.3), and (4.7) together with

the continuity and the subadditivity of ω, we have∫
Rn

ω
(
x,SL

(
f −

N∑
j=1

λjαj

)
(x)

)
dx

≤
∞∑

j=N+1

∫
Rn

ω
(
x,SL(λjαj)(x)

)
dx

�
∞∑

j=N+1

|Bj | inf
x∈Rn

ω
(
x,

|λj |
|Bj | supx∈Bj

|ρ(x, |Bj |)|
)
→ 0,
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as N → ∞. It should be pointed out that here, in the last inequality, to

use (4.3), we need to choose p̃ω as in Convention (C) such that ε > n( 1
pω

−
1
p̃ω
), which is guaranteed by the assumption ε > n( 1

pω
− 1

p+ω
). This, together

with an argument similar to the proof of Proposition 3.1, yields that f =∑∞
j=1 λjαj in Hω,L(R

n), which completes the proof of Proposition 4.2.

Corollary 4.1. Let ω satisfy Assumption (C), let ε > n( 1
pω

− 1
p+ω

), let

q ∈ (pL, p̃L), and let M > n
2 (

1
pω

− 1
2). Then for every f ∈ Hω,L(R

n), there

exist (ω, q,M, ε)-molecules {αj}∞j=1 and numbers {λj}∞j=1 ⊂C such that f =∑∞
j=1 λjαj in Hω,L(R

n). Furthermore, if letting Λ({λjαj}j) be as in (4.6),

then there exists a positive constant C independent of f such that

Λ({λjαj}j)≤C‖f‖Hω,L(Rn).

Proof. If f ∈Hω,L(R
n)∩L2(Rn), then it immediately follows from Propo-

sition 4.2 that all results hold.

Otherwise, there exist {fk}∞k=1 ⊂ (Hω,L(R
n) ∩ L2(Rn)) such that for all

k ∈N,

‖f − fk‖Hω,L(Rn) ≤ 2−k‖f‖Hω,L(Rn).

Set f0 ≡ 0. Then f =
∑∞

k=1(fk − fk−1) in Hω,L(R
n). By Proposition 4.2,

we know that for all k ∈ N, fk − fk−1 =
∑∞

j=1 λ
k
jα

k
j in Hω,L(R

n) and

Λ({λk
ja

k
j }j) � ‖fk−fk−1‖Hω,L(Rn), where for all j and k, αk

j is an (ω, q,M, ε)-

molecule. Thus, f =
∑∞

k,j=1 λ
k
jα

k
j in Hω,L(R

n), and it further follows from

Remark 3.2 that

[
Λ

(
{λk

jα
k
j }k,j

)]pω ≤
∞∑
k=1

[
Λ

(
{λk

ja
k
j }j

)]pω �
∞∑
k=1

‖fk − fk−1‖pωHω,L(Rn)

� ‖f‖pωHω,L(Rn),

which completes the proof of Corollary 4.1.

Let Hq,M,ε
ω,fin (Rn) denote the set of all finite combinations of (ω, q,M, ε)-

molecules. From Corollary 4.1, we immediately deduce the following density

result.

Corollary 4.2. Let ω satisfy Assumption (C), let ε > n( 1
pω

− 1
p+ω

), and

let M > n
2 (

1
pω

− 1
2). Then the space Hq,M,ε

ω,fin (Rn) is dense in the space

Hω,L(R
n).
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4.2. Dual spaces of Hω,L(R
n)

In this section, we study the dual space of the Musielak–Orlicz Hardy

space Hω,L(R
n). We begin with some notions.

Following [22], for ε > 0 and M ∈N, we introduce the space

MM,ε
ω (L)≡

{
μ ∈ L2(Rn) : ‖μ‖MM,ε

ω (L)
<∞

}
,

where

‖μ‖MM,ε
ω (L)

≡ sup
j≥0

{
2jε

∣∣B(0,2j)
∣∣1/2 sup

x∈B(0,2j)

ρ
(
x,

∣∣B(0,2j)
∣∣)

×
M∑
k=0

‖L−kμ‖L2(Uj(B(0,1)))

}
.

Note that if φ ∈MM,ε
ω (L) with norm 1, then φ is an (ω,2,M, ε)-molecule

adapted to B(0,1). Conversely, if α is an (ω,2,M, ε)-molecule adapted to a

certain ball, then α ∈MM,ε
ω (L).

Let At denote either (I + t2L)−1 or e−t2L, and let f ∈ (MM,ε
ω (L))∗, the

dual of MM,ε
ω (L). We claim that (I − A∗

t )
Mf ∈ L2

loc(R
n) in the sense of

distributions. In fact, for any ball B, if ψ ∈ L2(B), then it follows from the

Gaffney estimates via Lemmas 2.1 and 2.2 that (I −At)
Mψ ∈MM,ε

ω (L) for

all ε > 0 and any fixed t ∈ (0,∞). Thus,∣∣〈(I −A∗
t )

Mf,ψ
〉∣∣ ≡ ∣∣〈f, (I −At)

Mψ
〉∣∣

≤ C
(
t, rB,dist(B,0)

)
‖f‖

(MM,ε
ω (L))∗‖ψ‖L2(B),

which implies that (I −A∗
t )

Mf ∈ L2
loc(R

n) in the sense of distributions.

Finally, for any M ∈N, define

MM
ω,L∗(Rn)≡

⋂
ε>n( 1

pω
− 1

p+ω
)

(
MM,ε

ω (L)
)∗
.

Definition 4.3. Let q ∈ (pL, p̃L), let ω satisfy Assumption (C), and let

M > n
2 (

1
pω

− 1
2). A functional f ∈MM

ω,L(R
n) is said to be in BMOq,M

ρ,L (Rn)

if

‖f‖
BMOq,M

ρ,L (Rn)
≡ sup

B⊂Rn

1

supx∈B ρ(x, |B|)
[ 1

|B|

∫
B

∣∣(I − e−r2BL)Mf(x)
∣∣q dx] 1

q

<∞,

where the supremum is taken over all balls B in Rn.
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In what follows, when q = 2, we denote BMOq,M
ρ,L (Rn) simply by

BMOM
ρ,L(R

n). The proofs of Lemmas 4.1, 4.2, and 4.3 below are similar

to those of Lemmas 8.1 and 8.3 of [22] and Lemma 4.3 of [24], respectively,

and hence we skip them here.

Lemma 4.1. Let ω, q, and M be as in Definition 4.3. A functional f ∈
BMOq,M

ρ,L (Rn) if and only if f ∈MM
ω,L(R

n) and

sup
B⊂Rn

1

supx∈B ρ(x, |B|)
[ 1

|B|

∫
B

∣∣(I − (I + r2BL)
−1

)M
f(x)

∣∣q dx] 1
q
<∞.

Moreover, the quantity appearing on the left-hand side of the above formula

is equivalent to ‖f‖
BMOq,M

ρ,L (Rn)
.

Lemma 4.2. Let ω and M be as in Definition 4.3. Then there exists a

positive constant C such that, for all f ∈BMOM
ρ,L(R

n),

sup
B⊂Rn

1

supx∈B ρ(x, |B|)
[ 1

|B|

∫ ∫
B̂

∣∣(t2L)Me−t2Lf(x)
∣∣2dxdt

t

]1/2
≤C‖f‖BMOM

ρ,L(R
n).

Lemma 4.3. Let ω, ρ, and M be as in Definition 4.3, let q ∈ (pL∗ ,2], let

ε, ε1 > 0, and let M̃ >M + ε1 +
n
4 . Suppose that f ∈MM

ω,L∗(Rn) satisfies

(4.8)

∫
Rn

|(I − (I +L∗)−1)Mf(x)|q
1 + |x|n+ε1

dx <∞.

Then for every (ω, q′, M̃ , ε)-molecule α,

〈f,α〉= C̃M

∫ ∫
R
n+1
+

(t2L∗)Me−t2L∗
f(x)t2Le−t2Lα(x)

dxdt

t
,

where q′ ∈ [2,∞) satisfying 1
q +

1
q′ = 1 and C̃M is a positive constant satis-

fying

C̃M

∫ ∞

0
t2(M+1)e−2t2 dt

t
= 1.

From Lemma 4.1, it is easy to follow that all f ∈ BMOq,M
ρ,L (Rn) satisfy (4.8)

for all ε1 ∈ (0,∞), and hence, Lemma 4.3 holds for all f ∈BMOq,M
ρ,L (Rn).

Now, let us give the main results of this section.
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Theorem 4.1. Let ω satisfy Assumption (C), let ε > n( 1
pω

− 1
p+ω

), let

M > n
2 (

1
pω

− 1
2), and let M̃ >M + n

4 . In addition, assume that there exists

a positive constant K such that, for all balls B in Rn, for all x ∈Rn,

(4.9) |B|ω
[
x,K inf

x∈B
ω−1

(
x, |B|−1)] ≥ 1.

Then (Hω,L(R
n))∗, the dual space of Hω,L(R

n), coincides with BMOM
ρ,L∗(Rn)

in the following sense.

(i) Let g ∈ BMOM
ρ,L∗(Rn). Then the linear functional �, which is initially

defined on H2,M̃ ,ε
ω,fin (Rn) by

(4.10) �(f)≡ 〈g, f〉,

has a unique extension to Hω,L(R
n) with ‖�‖(Hω,L(Rn))∗ ≤ C ×

‖g‖BMOM
ρ,L∗ (Rn), where C is a positive constant independent of g.

(ii) Conversely, for any � ∈ (Hω,L(R
n))∗, then � ∈ BMOM

ρ,L∗(Rn), (4.10)

holds for all f ∈ H2,M,ε
ω,fin (Rn), and ‖�‖BMOM

ρ,L∗ (Rn) ≤ C‖�‖(Hω,L(Rn))∗ ,

where C is a positive constant independent of �.

Proof. Before coming to the proof of Theorem 4.1, we need the following

lemma.

Lemma 4.4. Let ω satisfy the assumptions of Theorem 4.1, and let

{λj}∞j=1 ⊂C and Λ({λjaj}j) be as in Theorem 3.1. Then we have

∞∑
j=1

|λj | ≤CΛ
(
{λjaj}j

)
≤C‖f‖Tω(R

n+1
+ ).

Proof of Lemma 4.4. Take any λ > 0 such that

(4.11)
∞∑
j=1

|Bj | inf
x∈Rn

ω
(
x,

|λj |
λ|Bj | supx∈Bj

ρ(x, |Bj |)
)
≤ 1.

If there is some λj such that Kλ< |λj |, then by (4.9), we see that, for any

x ∈Rn,

|Bj |ω
(
x,

|λj |
λ|Bj | supx∈Bj

ρ(x, |Bj |)
)
> |Bj |ω

[
x,K inf

x∈Bj

ω−1
(
x, |Bj |−1)] ≥ 1,
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which contradicts (4.11). Hence Kλ≥ |λj | for all λj . Since ω is of uniformly

upper-type 1, we deduce that

|Bj |ω
(
x,

|λj |
λ|Bj | supx∈Bj

ρ(x, |Bj |)
)
≥ |λi|

Kλ
|Bj |ω

[
x,K inf

x∈Bj

ω−1
(
x, |Bj |−1)]

≥ |λi|
Kλ

,

which, together with (4.11) and the definition of Λ({λjaj}j) in Theorem 3.1,

completes the proof of Lemma 4.4.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let g ∈ BMOM
ρ,L∗(Rn). For any f ∈H2,M̃ ,ε

ω,fin (Rn)⊂
Hω,L(R

n), we have f ∈ L2(Rn) and hence, t2Le−t2Lf ∈ (Tω(R
n+1
+ ) ∩

T 2
2 (R

n+1
+ )) by Lemma 2.4. By Theorem 3.1, there exist {λj}∞j=1 ⊂ C and

(ω,∞)-atoms {aj}∞j=1 supported in {B̂j}∞j=1 such that (3.2) holds. Note that

g satisfies (4.8) with q = 2 (by Lemma 4.1), which, together with Lemmas

4.2 and 4.3, the Hölder inequality, and Lemma 4.4(iii), yields

∣∣〈g, f〉∣∣ = ∣∣∣CM̃

∫ ∫
R
n+1
+

(t2L∗)Me−t2L∗
g(x)t2Le−t2Lf(x)

dxdt

t

∣∣∣
�

∞∑
j=1

|λj |
∫ ∫

R
n+1
+

∣∣(t2L∗)Me−t2L∗
g(x)aj(x, t)

∣∣dxdt
t

�
∞∑
j=1

|λj |‖aj‖T 2
2 (R

n+1
+ )

(∫ ∫
B̂j

∣∣(t2L∗)Me−t2L∗
g(x)

∣∣2dxdt
t

)1/2
(4.12)

�
∞∑
j=1

|λj |‖g‖BMOM
ρ,L∗ (Rn) � ‖t2Le−t2Lf‖Tω(R

n+1
+ )‖g‖BMOM

ρ,L∗ (Rn)

∼ ‖f‖Hω,L(Rn)‖g‖BMOM
ρ,L∗ (Rn).

Then by a density argument via Corollary 4.2, we obtain (i).

Conversely, let � ∈ (Hω,L(R
n))∗. For any (ω,2,M, ε)-molecule α, it follows

from 4.3 that ‖α‖Hω,L(Rn) � 1. Thus |�(α)| � ‖�‖(Hω,L(Rn))∗ , which implies

that � ∈MM
ω,L∗(Rn).

To finish the proof of (ii), we still need to show that � ∈BMOM
ρ,L∗(Rn). To

this end, for any ball B, let φ ∈ L2(B) with ‖φ‖L2(B) ≤ 1
|B|1/2 supx∈B ρ(x,|B|)
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and α̃≡ (I − [I + r2BL]
−1)Mφ. Then from Lemma 2.3, we deduce that, for

each j ∈ Z+ and each k = 0,1, . . . ,M ,

∥∥(r2BL)−kα̃
∥∥
L2(Uj(B))

=
∥∥(

I − [I + r2BL]
−1

)M−k
(I + r2BL)

−kφ
∥∥
L2(Uj(B))

� exp
{
−dist(B,Uj(B))

crB

}
‖φ‖L2(B)

� 2−2j(M+ε)2jn(
1
pω

− 1
2
) 1

|2jB| 12 supx∈B ρ(x, |2jB|)

� 2−2jε 1

|2jB| 12 supx∈B ρ(x, |2jB|)
,

where c is as in Lemma 2.3 and 2M > n( 1
pω

− 1
2). Thus α̃ is a multiple

of an (ω,2,M, ε)-molecule. Since (I − ([I + t2L]−1)∗)M� is well defined and

belongs to L2
loc(R

n) for any fixed t > 0, we have

∣∣〈(I − [
(I + r2BL)

−1
]∗)M

�,φ
〉∣∣ = ∣∣〈�, (I − [I + r2BL]

−1
)M

φ
〉∣∣

=
∣∣〈�, α̃〉∣∣ � ‖�‖(Hω,L(Rn))∗ ,

which further implies that

1

supx∈B ρ(x, |B|)
( 1

|B|

∫
B

∣∣(I − [
(I + r2BL)

−1
]∗)M

�(x)
∣∣2 dx)1/2

= sup
‖φ‖L2(B)≤1

∣∣∣〈�, (I − [I + r2BL]
−1

)M φ

|B|1/2 supx∈B ρ(x, |B|)

〉∣∣∣
� ‖�‖(Hω,L(Rn))∗ .

Thus, � ∈ BMOM
ρ,L∗(Rn) and ‖�‖BMOM

ρ,L∗ (Rn) � ‖�‖(Hω,L(Rn))∗ , which com-

pletes the proof of Theorem 4.1.

Remark 4.2. It follows from Theorem 4.1 that the spaces BMOM
ρ,L(R

n)

for all M > n
2 (

1
pω

− 1
2) coincide with equivalent norms. Thus, in what follows,

we denote BMOM
ρ,L(R

n) simply by BMOρ,L(R
n).

4.3. The Carleson measure and the John–Nirenberg inequality

In this section, we characterize the space BMOρ,L∗(Rn) via the ρ-Carleson

measure and establish the John–Nirenberg inequality for elements in

BMOρ,L∗(Rn), where L∗ denotes the conjugate operator of L in L2(Rn).
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We call a measure dμ on Rn+1
+ a ρ-Carleson measure if

‖dμ‖ρ ≡ sup
B⊂Rn

{ 1

|B|[supx∈B ρ(x, |B|)]2
∫ ∫

B̂
|dμ|

}1/2
<∞,

where the supremum is taken over all balls B of Rn and where B̂ denotes

the tent over B.

Theorem 4.2. Let ω satisfy Assumption (C), and let M > n
2 (

1
pω

− 1
2).

(i) If f ∈ BMOρ,L∗(Rn), then dμf is a ρ-Carleson measure and there

exists a positive constant C independent of f such that ‖dμf‖ρ ≤
C‖f‖2BMOρ,L∗ (Rn), where

(4.13) dμf ≡
∣∣(t2L∗)Me−t2L∗

f(x)
∣∣2dxdt

t
.

(ii) Conversely, if f ∈ MM
ω,L∗(Rn) satisfies (4.8) with certain q ∈ (pL∗ ,2]

and ε1 > 0, (4.9) holds, and dμf is a ρ-Carleson measure, then f ∈
BMOρ,L∗(Rn) and there exists a positive constant C independent of f

such that ‖f‖2BMOρ,L∗ (Rn) ≤C‖dμf‖ρ, where dμf is as in (4.13).

Proof. It follows from Lemma 4.2 that (i) holds.

To show (ii), let M̃ >M + ε1+
n
4 and ε > n( 1

pω
− 1

p+ω
). By Lemma 4.3, we

have

〈f, g〉= C̃M

∫ ∫
R
n+1
+

(t2L∗)Me−t2L∗
f(x)t2Le−t2Lg(x)

dxdt

t
,

where g is a finite combination of (ω, q′, M̃ , ε)-molecules and q′ = q
q−1 . Then

by (4.12), we obtain that∣∣〈f, g〉∣∣ � ‖dμf‖ρ‖g‖Hω,L(Rn).

Since Hq′,M̃ ,ε
ω,fin is dense in Hω,L(R

n), we then obtain f ∈ (Hω,L(R
n))∗,

which combined with Theorem 4.1 implies that f ∈ BMOρ,L∗(Rn) and

‖f‖BMOρ,L∗ (Rn) � ‖duf‖ρ. This finishes the proof of Theorem 4.2.

By the same arguments as in the proof of [24, Theorem 6.2], we obtain

the following result.

Theorem 4.3. Let ω satisfy Assumption (C), let (4.9) hold, and let M >
n
2 (

1
pω

− 1
2). Then the spaces BMOq,M

ρ,L∗(Rn) for all q ∈ (pL∗ , p̃L∗) coincide with

equivalent norms.
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It could be of interest to put forward the following comment: these kinds

of results are a well-known consequence of John–Nirenberg inequalities, as

explained in this section. Recently, such self-improving properties have been

studied in a very abstract setting (see [9], [27], [7], [11]). Moreover, in [9],

applications for functional spaces (Hardy spaces and Sobolev spaces) associ-

ated to the same (than here) second-order divergence operator are obtained.

In [9], [27], and [7], the main assumption to get this self-improving property

(the John–Nirenberg inequality) is related to the behavior of the “weight” ρ,

if it is doubling or increasing (with respect to the ball). They only consider

weights, which are “x”-independent. So the results obtained in the present

article are interesting since they deal with an “x”-dependent weight ρ. How-

ever, whether it is possible to compare Assumption (C) and (4.9) (required

in Theorem 4.3) with the doubling property required for an “x”-independent

weight is still an interesting question. We believe that they are in general

incomparable.

§5. Some applications

In this section, we establish the boundedness on Musielak–Orlicz Hardy

spaces of the Riesz transform and the Littlewood–Paley g-function associ-

ated with the operator L as in (1.2).

Recall that the Littlewood–Paley g-function gL is defined by setting, for

all f ∈ L2(Rn) and all x ∈Rn,

gLf(x)≡
(∫ ∞

0

∣∣t2Le−t2Lf(x)
∣∣2dt

t

)1/2
.

By [22, Proof of Theorem 3.4], we know that gL is bounded on L2(Rn).

Analogously to [22, Theorems 3.2, 3.4] and [24, Theorem 7.1], we have

the following result.

Theorem 5.1. Let ω satisfy Assumption (C), and let p ∈ (pL,2]. Suppose

that the nonnegative sublinear operator or linear operator T is bounded on

Lp(Rn) and that there exist C > 0, M ∈ N, and M > n
2 (

1
pω

− 1
2) such that,

for all closed sets E,F in Rn with dist(E,F ) > 0 and for all f ∈ Lp(Rn)

supported in E,

(5.1)
∥∥T (I − e−tL)Mf

∥∥
Lp(F )

≤C
( t

dist(E,F )2

)M
‖f‖Lp(E)
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and

(5.2)
∥∥T (tLe−tL)Mf

∥∥
Lp(F )

≤C
( t

dist(E,F )2

)M
‖f‖Lp(E)

for all t > 0. Then T extends to a bounded sublinear or linear operator

from Hω,L(R
n) to L(ω). In particular, the Riesz transform ∇L−1/2 and the

Littlewood–Paley g-function gL are bounded from Hω,L(R
n) to L(ω).

Proof. Before coming to the proof, we need the following useful result,

which is a slight variant of [24, Lemma 5.1] on the boundedness of linear or

nonnegative sublinear operators from Hω,L(R
n) to L(ω).

Lemma 5.1. Let q ∈ (pL,2], let ω satisfy Assumption (C), let M >
n
2 (

1
pω

− 1
2), and let ε > n( 1

pω
− 1

p+ω
). Suppose that T is a nonnegative sublinear

(resp., linear) operator which maps Lq(Rn) continuously into weak-Lq(Rn).

If there exists a positive constant C such that, for all (ω,∞,M, ε)-molecules

α adapted to balls B and for λ ∈C,

(5.3)

∫
Rn

ω
(
x,T (λα)(x)

)
dx≤C|B| inf

x∈Rn
ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
,

then T extends to a bounded sublinear (resp., linear) operator from Hω,L(R
n)

to L(ω); moreover, there exists a positive constant C̃ such that for all f ∈
Hω,L(R

n), we have ‖Tf‖L(ω) ≤ C̃‖f‖Hω,L(Rn).

Proof of Lemma 5.1. It follows from Proposition 4.2 that for every f ∈
Hω,L(R

n) ∩ L2(Rn), we have f ∈ Lq(Rn) with q ∈ (pL,2], and there exists

{λj}∞j=1 ⊂ C and (ω,∞,M, ε)-molecules {αj}∞j=1 such that f =
∑∞

j=1 λjαj

in both Hω,L(R
n) and Lq(Rn). Moreover, Λ({λjαj}j) � ‖f‖Hω,L(Rn). Thus

if T is linear, then it follows from the fact that T is of weak type (q, q) that

T (f) =
∑∞

j=1 T (λjαj) almost everywhere.

If T is a nonnegative sublinear operator, then

sup
t>0

t
1
q

∣∣∣{x ∈Rn :
∣∣∣T (f)(x)− T

( N∑
j=1

λjαj

)
(x)

∣∣∣> t
}∣∣∣

�
∥∥∥f −

N∑
j=1

λjαj

∥∥∥
Lq(Rn)

→ 0,



MUSIELAK–ORLICZ HARDY SPACES 105

as N →∞. Thus there exists a subsequence {Nk}k ⊂N such that

T
( Nk∑
j=1

λjαj

)
→ T (f)

almost everywhere, as k →∞, which together with the nonnegativity and

the sublinearity of T further implies that

T (f)−
∞∑
j=1

T (λjαj)

= T (f)− T
( Nk∑
j=1

λjαj

)
+ T

( Nk∑
j=1

λjαj

)
−

∞∑
j=1

T (λjαj)

≤ T (f)− T
( Nk∑
j=1

λjαj

)
.

By letting k → ∞, we see that T (f) ≤
∑∞

j=1 T (λjαj) almost everywhere.

Thus by the subadditivity and the continuity of ω and (5.3), we finally

obtain∫
Rn

ω
(
x,T (f)(x)

)
dx �

∞∑
j=1

∫
Rn

ω
(
x,T (λjαj)(x)

)
dx

�
∞∑
j=1

|Bj | inf
x∈Rn

ω
(
x,

|λj |
|Bj | supx∈Bj

ρ(x, |Bj |)
)
,

which implies that ‖T (f)‖L(ω) � Λ({λjαj}j) � ‖f‖Hω,L(Rn). This, combined

with the density of Hω,L(R
n) ∩ L2(Rn) in Hω,L(R

n), then completes the

proof of Lemma 5.1.

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. Let ε > n( 1
pω

− 1
p̃ω
), where p̃ω is as in Convention

(B). Since T is bounded on Lp(Rn), by Lemma 5.1, to show that T is

bounded from Hω,L(R
n) to L(ω) it suffices to show that, for all λ ∈ C and

for (ω,∞,M, ε)-molecules α adapted to balls B,

(5.4)

∫
Rn

ω
(
x,T (λα)(x)

)
dx� |B| inf

x∈Rn
ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
.
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To prove (5.4), we write∫
Rn

ω
(
x,T (λα)(x)

)
dx

≤
∫
Rn

ω
(
x, |λ|T

(
[I − e−r2BL]Mα

)
(x)

)
dx

+

∫
Rn

ω
(
x, |λ|T

((
I − [I − e−r2BL]M

)
α
)
(x)

)
dx

�
∞∑
j=0

∫
Rn

ω
(
x, |λ|T

(
[I − e−r2BL]M (αχUj(B))

)
(x)

)
dx

+
∞∑
j=0

sup
1≤k≤M

∫
Rn

ω
(
x, |λ|T

{[ k

M
r2BLe

− k
M

r2BL
]M

×
(
χUj(B)(r

−2
B L−1)Mα

)}
(x)

)
dx

≡
∞∑
j=0

Hj +

∞∑
j=0

Ij .

For each j ≥ 0, let Bj ≡ 2jB. By the Hölder inequality, we obtain

Hj �
∞∑
k=0

∫
Uk(Bj)

ω
(
x, |λ|T

(
[I − e−r2BL]M (αχUj(B))

)
(x)

)
dx

�
∞∑
k=0

∫
2kBj

ω
(
x, |λ|χUk(Bj)(x)T

(
[I − e−r2BL]M (αχUj(B))

)
(x)

)
dx

�
∞∑
k=0

|2kBj | inf
x∈Rn

ω
(
x,

|λ|
|2kBj |

∫
Uk(Bj)

T
(
[I − e−r2BL]M (αχUj(B))

)
(x)dx

)

�
∞∑
k=0

|2kBj | inf
x∈Rn

ω
(
x,

|λ|
|2kBj |1/p

∥∥T (
[I − e−r2BL]M (αχUj(B))

)∥∥
Lp(Uk(Bj))

)
.

By the Lp(Rn)-boundedness of T , Lemma 2.3, and (5.1), we have for k =

0,1,2, ∥∥T (
[I − e−r2BL]M (αχUj(B))

)∥∥
Lp(Uk(Bj))

� ‖α‖Lp(Uj(B)),

and that for k ≥ 3,∥∥T (
[I − e−r2BL]M (αχUj(B))

)∥∥
Lp(Uk(Bj))

�
( 1

2k+j

)2M
‖α‖2Lp(Uj(B)),
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which, together with Definition 4.2 and 2Mpω > n(1− pω
2 ), implies that

Hj � |Bj | inf
x∈Rn

ω
(
x,

|λ|2−jε

|Bj | supx∈Bj
ρ(x, |Bj |)

)

+

∞∑
k=3

|2kBj | inf
x∈Rn

ω
(
x,

|λ|2−(2M)(j+k)−jε

|2kBj |1/p|Bj |1−
1
p supx∈Bj

ρ(x, |Bj |)

)

� 2−jpωε
{
1 +

∞∑
k=3

2
kn(1− pω

p
)
2−2Mpω(j+k)

}
|Bj |

× inf
x∈Rn

ω
(
x,

|λ|
|Bj | supx∈Bj

ρ(x, |Bj |)
)

� 2−jpωε|Bj | inf
x∈Rn

ω
(
x,

|λ|
|Bj | supx∈Bj

ρ(x, |Bj |)
)
.

Since ω−1 is of uniformly lower-type 1
p̃ω

and ε > n( 1
pω

− 1
p̃ω
), we further have

∞∑
j=0

Hj �
∞∑
j=0

2−jpωε|Bj |
{ |B| supx∈B ρ(x, |B|)
|Bj | supx∈Bj

ρ(x, |Bj |)
}pω

× inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)

�
∞∑
j=0

2−jpωε|Bj |
{ |B|
|Bj |

} pω
p̃ω inf

x∈Rn
ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)

�
∞∑
j=0

2−jpωε2
jn(1− pω

p̃ω
)|B| inf

x∈Rn
ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)

� |B| inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
.

Similarly, we have

∞∑
j=0

Ij � |B| inf
x∈Rn

ω
(
x,

|λ|
|B| supx∈B ρ(x, |B|)

)
.

Thus, (5.4) holds, and hence, T is bounded from Hω,L(R
n) to L(ω).

It was proved in [22, Theorem 3.4] that operators gL and ∇L−1/2 satisfy

(5.1) and (5.2); thus gL and ∇L−1/2 are bounded from Hω,L(R
n) to L(ω),

which finishes the proof of Theorem 5.1.
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