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The Contributions of Herbert Robbins to
Mathematical Statistics

Tze Leung Lai apd David Siegmund

Herbert Robbins was born on January 12, 1915, in
New Castle, Pennsylvania. In 1931 he entered Har-
vard College at the age of 16. Although his interests
until then had been predominantly literary, he found
himself increasingly attracted to mathematics under
the influence of Marston Morse, who during many
long conversations conveyed a vivid sense of the in-
tellectual challenge of creative work in that field
(cf. Page, 1984, p. 7). He received the A.B. summa
cum laude in 1935, and the Ph.D. in 1938, also from
Harvard. His thesis, in the field of combinatorial
topology and written under the supervision of Hassler
Whitney, was published in 1941 [3]. (Numbers in
brackets refer to Robbins’ bibliography at the end of
this article.)

After graduation, Robbins worked for a year at the
Institute for Advanced Study at Princeton as Marston
Morse’s assistant. He then spent the next three years
at New York University as instructor in mathematics.
He became nationally known in 1941 as the coauthor,
with Richard Courant, of the classic What Is Mathe-
matics? [4]. This important book has influenced gen-
erations of mathematics students here and abroad in
many editions and translations. To date more than
100,000 copies have been sold.

In 1941 Robbins enlisted in the Navy. He was
demobilized four years later as a lieutenant com-
mander. His interest in probability theory and math-
ematical statistics began during the war and was itself
something of a chance phenomenon, which arose from
overhearing a conversation between two senior naval
officers concerning the effect of random scatter on
bomb impacts (cf. Page, 1984, pp. 8-10). Because of
his lack of appropriate security clearance, he was
prevented from pursuing this problem during the war.

> Nevertheless, his work on the naval officers’ problem
led to the fundamental papers [7] and [10] in the field
of geometric probability.

In 1946 Harold Hotelling was setting up a depart-
ment of mathematical statistics at the University of
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North Carolina at Chapel Hill. Having read [7] and
[10], and greatly impressed by Robbins’ mathematical
skills, Hotelling offered him the position of associate
professor to teach measure theory and probability to
the graduate students in the new department. Robbins
accepted the position and spent the next six years at
Chapel Hill. During this relatively short period Rob-
bins not only studied and developed an increasingly
deep interest in statistics, but he also made a number
of profound contributions to his new field: complete
convergence [12], compound decision theory [25], sto-
chastic approximation [26], and the sequential design
of experiments [28], to name a few.

After a Guggenheim Fellowship at the Institute for
Advanced Study during 1952-1953, Robbins moved
from Chapel Hill to Columbia University as professor
and chairman of the Department of Mathematical
Statistics. Since 1953, with the exception of the three
years 1965-1968 spent at Minnesota, Purdue, Berke-
ley, and Michigan, he has been at Columbia, where he
is Higgins Professor Emeritus of Mathematical Sta-
tistics. During this period he has published over 100
papers on a variety of topics in probability and statis-
tics. His most notable contributions include the crea-
tion of the empirical Bayes methodology, the theory
of power-one tests, and the development of sequential
methods for estimation, hypothesis testing, and com-
parative clinical trials.

Robbins was President of the Institute of Mathe-
matical Statistics in 1965-1966, Rietz Lecturer in
1963, Wald Lecturer in 1969, and Neyman Lecturer
in 1982. He is a member of the National Academy of
Sciences and the American Academy of Arts and
Sciences. He is widely regarded as one of the
world’s leading and most imaginative mathematical
statisticans.

Robbins has five children and two grandchildren.
Children by his first marriage to Mary Dimock are
Susannah and Marcia. Children by the second mar-
riage to Carol Hallett are Mark, David, and Emily. At
the age of 71 Robbins is still young in spirit, and is as
remarkably original and energetic as in the past. He
continues to be a prolific contributor to the statistical
literature, and much of his work continues to have a
profound impact in statistics and related fields. Some
of his most important contributions to mathematical
statistics are discussed below.
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Herbert Robbins

1. EMPIRICAL BAYES METHODOLOGY IN
ESTIMATION AND PREDICTION

Robbins’ pioneering paper [41] on empirical Bayes
methodology and his earlier paper [25] on the related
subject of compound decision theory were acclaimed
by Neyman (1962) as “two breakthroughs in the the-
ory of statistical decision making.”

Consider the simple problem of estimating a real
parameter § based on the observed datum X, the
probability density function of which p(x | ) depends
on 6. The Bayesian approach assumes the existence
of a prior distribution B for #; and the Bayes estimate
minimizing squared error loss

E[(X) — 0 = f E,[t(X) — 6]* dB(6)

is given by the posterior mean

(1) uX)=E@6|X)= f Op(X'| 0) dB(0)/f(X),

where f(x) = [ p(x|6) dB(f) denotes the marginal
density of X. The difficulty with implementing the
Bayesian approach is specification of the prior distri-
bution, about which it may be hard to obtain agree-
ment in practice.

In many applications, however, one is faced evith n
structurally similar problems of estimating 6; from X;
(i=1,2, .-, n), where X; has probability density
function p(x | 6;) and the 6; can be assumed to have the
distribution B (cf. Neyman, 1962; Cover, 1968; Copas,
1972; Carter and Rolph, 1974; Efron and Morris, 1977;
Hoadley, 1981; Rubin, 1980; Morris, 1983). As a con-
crete example suppose that the ith automobile driver
in a certain sample is observed to have X; accidents
in a given year. Assuming that X; has a Poisson
distribution

(2) p(x]|6;) = exp(—0,)0;/x!,

we want to estimate the “accident-proneness” param-
eter 0; for each of the n drivers. If the distribution B
of accident proneness in the population of drivers were
known, the Bayes estimate of 6; is the t(X;) given by
(1), which in the present case reduces to

(3) tx) = (x + 1) f(x + 1)/ f(x).

When B is unknown, Robbins’ idea is first to estimate
f(x) on the basis of the n observations Xj, - - -, X, and
then to use this estimate as a substitute for the un-
known f in (3), leading to an empirical Bayes estimate
of the form ¢(x; X, - - -, X,). One such estimate which
he proposed is

(4) t(xa Xla ) Xn) = (x + l)Nx+1/Nxa

where N, denotes the number of X, ---, X, values
that are equal to x (cf. [41]). He also showed that the
average squared error of estimation in using (4) is
asymptotically (as n — o) the same as that using the
optimal Bayes estimate (3) (cf. [41], [59]).

The same ideas are applicable to the so-called “com-
pound decision problems,” in which the 6; are regarded
as unknown constants rather than as an unobservable
random sample from a distribution B, and the overall
loss function is the sum of the loss functions of the
individual problems (cf. [25], [39], [52]). Robbins’
asymptotically subminimax solutions of compound
testing problems [25] and Stein’s (1956) estimator of

x=0,1,---,

. a multivariate normal mean are pioneering landmarks

in compound decision theory.

It is worth noting the paradoxical feature of both
empirical Bayes and compound decision methods that
data “unrelated” to the parameter 6;, namely the X
for j # i, are used to form the estimate of 6;.

Following the pioneering paper [41], Robbins made
a number of major advances in the empirical Bayes
methodology in [58], [59], [103], [115], [117], [118],
[123], [124], [133]. In particular, in [103], [115], and
[124] he extended the empirical Bayes methodology
to prediction problems. Suppose in the above example
that one is interested in predicting the total number
So of accidents in a future year incurred by those N,
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drivers who were accident-free in the observed year.
Clearly 0 (“future same as past”) will be an under-
estimate of S, since the good record of the no
drivers was partly due to luck. On the other hand,
No(X. xN,/N) will be an overestimate of Sy, since
these N, accident-free drivers were in no sense a
random sample of all the N = Y N, drivers in the
group, and should ‘therefore perform better than the
group average Y, xNN,/N. Under the Poisson model (2)
for each driver, Robbins [103] showed that a natural
empirical Bayes predictor is the number N, of drivers
who had exactly one accident during the observed
year. More generally, using (4), he showed that
(x + 1)N,, is a good predictor of the total number S,
of accidents in a future year incurred by those N,
drivers who had x accidents in the observed year. He
also obtained the asymptotic distribution of this pre-
dictor for the construction of significance tests and
prediction intervals.

2. STOCHASTIC APPROXIMATION AND
ADAPTIVE DESIGN

In 1951, Robbins and his student, Sutton Monro,
founded the subject of stochastic approximation with
the publication of their celebrated paper [26]. Con-
sider the problem of finding the root 6 (assumed
unique) of an equation g(x) = 0. In the classical
Newton-Raphson method, for example, we start with
some value x, and if at stage n our estimate of the
root is x,, we define the next approximation by

(5) Xn+1

Suppose that g is unknown and that at the level x we
observe the output ¥ = g(x) + ¢, where ¢ represents
some random error with mean 0 and variance 2> 0.
Suppose that in analogy with (4) we use the recursion

(6) Xn+1 = Xn — yn/ﬂy

where 8 = g’(6) is momentarily assumed known, and
Yy = g(x,) + &, is the observed output at the design
level x,,. By (6), the convergence of x, to # would entail
the convergence of ¢, to 0, which does not hold for
typical models of random noise (e.g., independent and
. identically distributed e,). .

Assuming that g(x) > 0 if x > 0 and g(x) < 0 if
x < 0, Robbins and Monro suggested using instead
of (6) the recursion

= Xp — g(xn)/g,(xn)‘

(7) Xp+1 = Xp — anyn,
where a, are positive constants such that
8) Yal< o and Y a, = .

Under certain assumptions on the random errors ¢,
they showed that x, converges to 6 in L,. Later, Blum
(1954) showed that x, also converges a.s. to 6, while

Chung (1954) and Sacks (1958) showed that an asymp-
totically optimal choice of a, is a, ~ 1/(ng), for which

9) n'%(x, — 6) 3 N(0, ¢%/82).

The recent joint papers [113], [114], [119] with Lai
provide asymptotically optimal - stochastic approxi-
mation schemes when these recursions are of the form

(10) Xn+1 = Xp — yn/(nbn)y

where b, is a strongly consistent estimate of §. It is
shown in [113] and [122] that such schemes not only
lead to asymptotically efficient estimates of 6 but also
make the cumulative “cost” of the observations at the
nth stage, defined as 82 X% (x; — 0)% to be of an
asymptotically minimal order o%log n. The signifi-
cance of this result in adaptive control applications is
discussed in [107] and [121].

To construct strongly consistent estimates b, of 3,
it is natural to try the method of least squares, thus
using

(11) b, =

»-M:

(xi - in)yl/é (xi - jn)zy

at least in the linear case where g(x) = 8(x — 0). This
leads to the question of strong consistency of least
squares estimates in regression models. Basic results
on strong consistency are established in [105], [110],
and [111] for the case where the design levels are
nonrandom, and in [119] for the case where the design
levels are sequentially determined random variables.
In particular, it is shown in [119] that in the linear
regression model y; = a + Bx; + ¢ with independ-
ent identically distributed errors ¢ such that
Ee; = 0, Ee? = 62, and such that x; is measurable with
respect to the o-field 7 ;_, generated by x;, ¢, - - -, €1,
a sufficient condition for the strong consistency of b,
is

n

12) > (x; — %,)?/log n — © a.s.
1

This condition is shown in [119] to be minimal in
some sense, and a counterexample showing inconsis-
tency of b, is constructed when (12) is only marginally
violated. The result was subsequently extended by
Lai and Wei (1982) to the multiple regression model
yi=0'®; + ¢;, where the ¥; are F;_,-measurable random
vectors. In analogy with (12), a sufficient condition
for the strong consistency of the least squares estimate
in the multiple regression model is shown by Lai and
Wei (1982) to be

(13) }\min<2 vp! > / log Amax<2 P! ) — o as.
1 1

where Apnin and Ap.x denote the minimum and maxi-
mum eigenvalues, respectively.
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Condition (12), however, cannot be satisfied by
adaptive stochastic approximation schemes (10) when
b, — B as. (cf. [113], [119]). The following sharper
result is developed in [119] and is used to establish
the strong consistency of b, in adaptive stochastic
approximation schemes (10): Suppose that the design
levels x, are #,_;-measurable and that there exist
constants 0 < v < % and 6 such that with proba-
bility 1
(a) x, — 0 =o0(n™"), and
(b) lim inf,_... 37 (x; — 8)*/log n > 0.

Then b, — § a.s. on the event

{limsup ¥ (% — 0)*/log n < oo} \
n 1

—>00

U {lim > (xi — 0)*/log n = 00}.
n—x 1

Another contribution of Robbins to stochastic ap-
proximation is his joint paper [87] with Siegmund.
The paper provides a convergence theorem (for non-
negative almost supermartingales) that can be easily
applied to establish the almost sure convergence of
stochastic approximation schemes and other recursive
stochastic algorithms. In addition, his joint paper [88]
with Goodman and Lewis proposes certain modifica-
tions of the Robbins-Monro method for quantal re-
sponse models.

The Robbins-Monro stochastic approximation
scheme can be readily modified to find the maximum
(or minimum) of a regression function, as was first
shown by Kiefer and Wolfowitz (1952). The scheme
and its multivariate extensions also play a basic role
in the subject of recursive estimation (cf. Sakrison,
1965; Nevel’son and Has’minksii, 1972; Fabian, 1978).
Stochastic approximation has become the prototype
of a broad class of control and optimization methods
in various branches of engineering (cf. Tsypkin, 1973;
Ljung, 1977; Kushner and Clark, 1978; Goodwin et al.,
1981).

3. TESTS OF POWER ONE AND RELATED
BOUNDARY CROSSING PROBABILITIES

In the series of papers [70]-[72], [77]-[83], [90]-
[92], and [95], Robbins, in collaboration first with
Darling and then with Siegmund, developed the theory
of power one tests and made significant methodologi-
cal advances in the treatment of related boundary
crossing probabilities.

Let X;, X,, - - - be independent, identically distrib-
uted observations the common density p(x|6) of
which depends on an unknown parameter §. Suppose
that we want to test the hypothesis Hy:0 < 6, versus
the alternative H, :0 > 6, with prescribed Type I error
probability a. Let U, (= U,(X,, - - -, X)) be a sequence

of statistics such that
(14) PjU,>0,forsomen=1}<a forall 6=,

and
(15) Pojllim U, = 0} =1 forall 6> 6,.

Consider the test which stops sampling at stage
N =inf{n = 1:U, > 6y} (inf @ = ),

and which rejects H, upon stopping. Then by (14), for
0 < 0y,

PyfReject Hy} = Py{N < 0} < a.
On the other hand, for 8 > 6,, it follows from (15) that
PyfReject Ho} = Py{N < oo} = 1.

Of course this procedure is not a statistical test in
the usual sense of that term, because under the null
hypothesis the statistican will usually continue to
collect data forever and never reach a decision. To see
that such a possibility is conceptually interesting,
imagine that a drug is licensed for use based on a
clinical trial indicating a positive treatment effect of
the drug, but some concern exists that it may have
deleterious side effects which will only become appar-
ent after much more extensive use. A number of
doctors agree to monitor the frequency of these side
effects. If this frequency is large, some action is re-
quired—preferably as soon as possible. If the fre-
quency of side effects is small, monitoring might con-
tinue indefinitely. Such a monitoring procedure might
be realized by a test of power one. In reality, even if
the null hypothesis is true, the procedure may still be
terminated after some time; but the fact that this
termination point need not be specified in advance
and might even to some extent be data-dependent
suggests fascinating theoretical and practical possibil-
ities.

The actual construction of power one tests satisfy-
ing the basic constraints (14) and (15) and making
E,(N) small in some sense whenever § > 6, involves
the development of a variety of techniques in the
analysis of boundary crossing probabilities. One par-
ticularly beautiful inequality developed in this context
is the following. Let p(x | ) = @(x — 0), where ¥ is the
standard normal density function (with distribution
function ®), and let S, = X; + ... + X,,. Then for
arbitrary positive m and a

Pof | Snl > [n(log(n/m) + a2]1/2

for some n = m} < 2[1 — ®(a) + a®P(a)l.

(16)

To prove (16) let #; C %, C - - - C ¥ be an increasing
sequence of o-fields, let P be a probability, and @ a o-
finite measure on % the restrictions to .#, of which,
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say P™ and Q™, are mutually absolutely continuous,
and let L, denote the likelihood ratio dQ™/dP’™. Then
for any stopping time T'=m

P{T < o} = P{T = m} + i dp®™

n=m+1 ¥ {T=n}

—PT=ml+ ¥ L7' dQ,

n=m+1 {T=n}

which yields the identity

(17) P{T <o} =P{T=m} + f L7 dQ.

{m<T<oo}

Let P = Py and

Q= J: P, do/(2x) "2,

A simple calculation gives
L, = n Y%exp(S%/2n).
Let
T = inf{n:n = m, | S,| = [n(log(n/m) + a?]"?

= inf{n: n=m,L,= m'l/zexp(-;- az)},

and observe that Q{T = «} = [ P,{T = } do/(2x)"?
= 0, so (17) specializes to

Po{T < @} = Po{| S| = am'’?}
(18)

+ f T 2exp(—S%/2T) dQ.
”'Sm|<aml/2l

From the definition Qf T it follows that
(19) T'%exp(—S%/2T) < m'%exp(—a?/2)

whenever T < o, Substitution of this inequality into
(18) and some simple calculation yield (16).

This method of mixtures of likelihood ratios has
been described in [82] and [83], where it is used to
obtain various inequalities like (16). The only source
of inequality in (16) comes from (19). Lai and Sieg-
~ mund (1977) have given the P,-limiting distribution,
as a and m — =, of the ratio of the two sides of (19),
from which they derive an asymptotic approximation
for the left-hand side of (16). Starting from a slight
variation of (18) they also give an approximation to
the significance level of a repeated significance test,
viz.

Po{| S,| = an'’? for some mo < n < m,}

amgl/2
~ 2[1 — ®(a)] + a¥(a) f o [v(x)/x] dx,

where v(x) = 2x7Zexp[-2 YT n~'®(—%xn'/?)]. For
further developments along these lines, see Siegmund
(1977), Woodroofe (1982, 1983), Lalley (1983), and
Siegmund (1985). An application of tests of power one
to the problem of sequentially detecting a change point
is given by Pollak (1985).

Robbins’ idea in the sixties of terminating a test
only when there is enough evidence against the null
hypothesis was a characteristic example of his daring
originality. Neyman (1971) gave a discussion of this
revolutionary idea and described the theory of power
one tests as “a remarkable achievement likely to influ-
ence theoretical-statistical and also substantive re-
search in many domains of science.”

4. SEQUENTIAL EXPERIMENTATION AND
OPTIMAL STOPPING

The well known “multiarmed bandit problem” in
the statistics and engineering literature, which is pro-
totypical of a wide variety of adaptive control and
design problems, was first formulated and studied by
Robbins [28]. Let A, B denote two statistical popula-
tions with finite means u4, up. How should we draw a
sample x;, ---, x, from the two populations if our
objective is to achieve the greatest possible expected
value of the S, = x; + - - - + x,? Robbins [28] provided
a rule which is asymptotically optimal in the sense
that

nTES, — max(ua4, ug) as n — oo,

His recent papers [129], [131], and [132] with Lai
develop better rules that have the stronger property

n max(us, ug) — ES, ~ Coplogn as n— x,

where C, p is minimal over all allocation rules. The
method also works for k£ > 2 populations. In [42], he
formulated and studied the so-called “bandit prob-
lem with finite memory,” in which the decision at
every stage can depend on the information from no
more than m previous stages, and which has useful
applications in computer learning algorithms (cf.
Lakshmivarahan, 1981).

The papers [89], [96], and [97] provide important
advances in the related problem of treatment alloca-
tion in sequential clinical trials to test whether a new
treatment is better than a standard treatment. A key
observation in these papers is that for the stopping
and terminal decision rules under consideration, the
power function remains approximately the same over
a broad class of allocation rules. Adaptive rules that
substantially reduce the expected number of alloca-
tions of the inferior treatment as compared to pairwise
sampling are developed. These results are of great



CONTRIBUTIONS OF HERBERT ROBBINS 281

interest because of the ethical considerations in
clinical trials.

Anscombe (1963) proposed a decision-theoretic
model to determine the stopping rule of a comparative
clinical trial on paired data. The development of op-
timal stopping rules in Anscombe’s model remained
an important open problem for a long time. The papers
[116] and [126] provide a class of stopping rules
that have nearly optimal frequentist and Bayesian
properties.

The monograph [86] with Chow and Siegmund pre-
sents the general theory of optimal stopping. The
earlier papers [49], [55], [61], [62], [66], [67], and [85]
represent fundamental contributions to the subject.
Other major contributions to sequential analysis in-
clude sequential estimation [44], [64], [68], [73], [84],
[98], [99], sequential selection [74], [120], and the
theory of randomly stopped sums [15], [17], [56], [63],
[65].

Although this brief survey has concentrated on Rob-
bins’ research in mathematical statistics and closely
related aspects of probability theory, there should also
be some mention of his work of a purely probabilisitic
nature. In [12] with P. L. Hsu, he formulated the
notion of complete convergence. This work motivated
the classical paper of Erdés (1949), which in turn led
to a long sequence of papers, reaching its culmination
with Baum and Katz (1965). In the early 1950s Rob-
bins wrote a series of important papers [30]-[33] on
occupation times and ergodic behavior of random
walks. One well known contribution is the Kallianpur-
Robbins law for the occupation time of two-dimen-
sional Brownian motion [30]. Another is his contri-
bution together with T. E. Harris to the ergodic theory
of Markov chains having an invariant distribution of
infinite total mass [32].

Robbins’ outstanding and prodigious research in the
past 40 years has pushed the field of mathematical
statistics to new heights and in important new direc-
tions. He has played a seminal role in stimulating a
substantial proportion of current research in the field,
and has created a variety of new specialties for sub-
sequent generations of statisticians to explore. In ad-
dition to these accomplishments in research, he is also
a superb teacher and gifted lecturer. His lectures are,
like his papers, models of exposition that introduce
the audience, in the simplest possible context, to im-
portant and profound ideas at the forefront of research
in the field. He is widely admired by his colleagues
and students for his extraordinary depth and clarity,
his quick wit and lively humor, and above all, his
creative intellect and exceptional originality. A very
generous, warm, and caring person who is deeply
involved in humanitarian causes and who has invested
considerable time and effort to help refugee mathe-

maticians from Eastern Europe become settled in the
United States, he is held in high esteem and affection
by his friends and colleagues.
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