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problem for the zero-way and one-way eliminations of
heterogeneity. He does not discuss the problem of
optimal design. Spurrier (1988) presents a method of
finding asymptotic “optimal” designs for the one-way
elimination of heterogeneity problem based on a var-
iation of asymptotic relative efficiency.

It is interesting to note that at times one gets
different “optimal” designs for normal theory and
nonparametric analyses. This fact suggests that the
question of the normality assumption needs to be
addressed at the design stage. I feel that there is much
more research to be done in the nonparametric ap-
proach to these problems.

Comment

R. J. Owen

I would like to commend the authors for this broad
and valuable review of the literature on optimal de-
signs for comparing treatments with controls.

My first comments refer to the case where there is
more than one control. An important situation where
this happens is when an experimental treatment is
tested against a placebo, the current commercial prod-
uct and some of the competitors products. In such
cases, interest in the different controls may not be the
same and it would be useful to have results which take
account of this using suitable asymmetric design
criteria.

The second point 1 would like to make concerns the
use of prior information. Although those who do not
fully accept the Bayesian position often feel uncom-
fortable with using prior information in the analysis
of an experiment, they are less inhibited in its use in
choosing a design. Indeed experimenters readily ac-
cept that effort should be concentrated where the
uncertainty is greatest. The material outlined in Sec-
tion 7 therefore has potential appeal outside strictly
- Bayesian circles. In comparing treatments with con-
trols our experiment would often be part of a sequence
of several similar experiments. In such cases the in-
formation from previous experiments should influence
the current design.

When experiments are part of a sequence the choice
of design of a single experiment considered in isola-
tion, or even considered posterior to the preceding
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experiments, is no longer necessarily the appropriate
question. Rather it may be better to consider the global
design of the whole sequence of experiments. Of course
the potential information of one experiment influ-
ences the designs of the other experiments. This may
be illustrated in the context of continuous designs,
one control and one-way elimination of heterogeneity
as follows.

Assume the model formulation of Theorem 7.1 and
consider two distinct cases: (a) each treatment may
appear in each experiment and (b) different experi-
ments can only have the control in common.

In each case let the prior distribution for (8’, v’)
take the form stated in Section 7.1 immediately after
the error distribution. In case (a) assume that all
treatment contrasts with the control (6;, 65, --- 6,)
are exchangeable with respect to their a priori disper-
sion (as in Theorem 7.1). In case (b) this type of
exchangeability is also assumed, but now only for the
contrasts within an experiment whereas between ex-
periments a priori independence of the nonoverlap-
ping sets of treatment contrasts is assumed. This
formulation could be appropriate when each experi-
ment is believed to be dealing with a different type of
treatment. In both cases consider the criterion of
Bayes A-optimality for the sequence of experiments
considered as a whole.

In case (a) the overall optimal allocation is given by
Theorem 7.1 and its associated algorithm. This still
leaves some freedom of choice for individual experi-
ments and it is clear that each experiment may have
a design which is exchangeable with respect to the
noncontrol treatments. Moreover the first experiment,
when considered in isolation, may be taken to be
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optimal. However, subsequent experiments would not
in general be optimal either when considered in iso-
lation or when considered in the light of the infor-
mation from the preceding experiments.

In case (b) let D, denote the dispersion matrix of
the @’s in the kth experiment conditional on the data
of all the experiments. The overall design criterion is
therefore to minimize (for K experiments):

K
tr Dk.

k=1
First, imagine fixing the amount of control per block
in each experiment and consider optimization with
respect to allocation of the noncontrol treatments. It
follows that, in view of the form of the prior distribu-
tion, Theorem 7.1 applies to each experiment sepa-
rately and hence the exchangeable allocation of
noncontrol treatments is optimal in each experiment.
Let x. denote the ‘x’ of Theorem 7.1 in the kth

Rejoinder

A. S. Hedayat, Mike Jacroux and Dibyen Majumdar

We wish to thank the discussants for their re-
sponses. They have greatly enhanced the article by
their thoughtful comments and intriguing questions.
Some historical color has been added as well as some
new references. We shall briefly address some of the
issues which have been raised.

1. CHOICE OF CRITERIA

Several discussants, Bechhofer and Tamhane, Notz,
Spurrier and Giovagnoli and Verdinelli have raised
the question as to what is the most appropriate opti-
mality criterion to use for the problem being consid-
ered here. The alternative criteria suggested can be
readily divided into two categories. Bechhofer and
Tamhane, Notz and Spurrier suggest that usage of
criteria that select designs that maximize the confi-
dence coefficient or that in some sense minimize the
size of certain simultaneous confidence regions that
can be computed for the (t; — t,)’s. Giovagnoli and
Verdinelli considered some other criteria for point
estimates. Before looking at these alternative sugges-
tions, let us recall the optimality criteria we used.

We have followed the classical approach of Kiefer.
It is a semiparametric approach, in which we only
insist on structures for the first and the second mo-
ments of the random variables involved. As for the
first moment, we insist on a linear model, and as for

experiment and D,(x:) the value D, takes with this
optimal design so tr D,(x;) is now its preposterior risk.
Hence the overall design problem reduces to

K
min Y trD.(X).
X1, Xg k=1
This criterion would use less control in each experi-
ment than would be optimal in that experiment when
considered in isolation.

Note that if the experiments are performed sequen-
tially in time in either case (a) or case (b), then in
order to use all the currently available information
each experiment needs to be reanalyzed after each
subsequent experiment is performed. Observe too that,
in either case, missing blocks in some experiments are
permitted.

Finally I congratulate the authors on providing a
key reference in this important and active research
area.

the second moment we assume homoscedasticity. We
had in mind for the process of selecting a best design
the goal of estimating the (¢; — £,)’s with as much
precision as possible in the sense of having small
variances for the (f; — to)’s. Two of the standard
criteria used to accomplish this goal are to select
designs that minimize Y}, var(fi - fo) or minimize
the maximal variance of the (fi — t)’s. These criteria
are called the A- and the MV-optimality criteria,
respectively, and are the criteria upon which we
concentrated. So, with only the assumption of a
homoscedastic linear model, we are able to control
the size of the second moments of the (£; — t)’s in

-a simple yet meaningful way.

A reservation expressed by Bechhofer and Tamhane
and Giovagnoli and Verdinelli concerning usage of the
A- and MV-optimality criteria is that these criteria do
not take into account the correlations that generally
exist between the (fi — t,)’s. However, we note that
the A- and MV-optimality criteria are closely related
in the sense that they will usually select the same
design or at least designs that are combinatorially
close in structure as being optimal with the MV-
optimal designs typically being simpler to identify. It
should also be noted that under a given design d, if we
let V, denote thg covariance matrix of the (fi - fo)’s,
then Y!, var(t; — £) is equal_to the sum of the
eigenvalues of V. Clearly, these eigenvalues and their



