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Discriminant Analysis and Clustering
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Abstract. The general objectives of this report are to provide a summary of
the state-of-the-art in discriminant analysis and clustering and to identify
key research and unsolved problems that need to be addressed in these two
areas. It was prepared under the auspices of the Committee on Applied and
Theoretical Statistics of the Board on Mathematical Sciences, National
Research Council by its Panel on Discriminant Analysis, Classification, and
Clustering. Both methodological and theoretical aspects are reviewed, and
a survey of available software and algorithms is provided.
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1. INTRODUCTION

An interest in “classification” permeates many sci-
entific studies and also arises in the contexts of many
applications. From speech and speaker recognition
problems in acoustics, to problems of numerical tax-
onomy in biology, and problems of classifying diseases
by symptoms in health sciences, as well as problems
of classifying artifacts in archaeology, or identifying
market segments in market research, the central in-
terest is in classifying “objects,” “subjects” or entities
of some kind. When the classification is based on
measurements of a set of characteristics or variables,
statistical techniques are available to aid the system-
atic process. The major concern of this report is with
such statistical methods.

Classification is an inherently multivariate prob-
lem. Whether the interest is in deciding admissions to
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college, diagnosing a patient’s illness for treatment
purposes or pattern recognition in specific applica-
tions, the most likely scenario is one in which the data
on hand pertain to many variables measured on each
entity and not one involving just a single variable.
This high-dimensional nature of classification pro-
vides an opportunity but also presents some diffi-
culties to the developer of appropriate statistical
methodology.

One can distinguish two broad categories of classi-
fication problems. In the first, one has data from
known or prespecifiable groups as well as observations
from entities whose group membership, in terms of
the known groups, is unknown initially and has to be
determined through the analysis of the data. For in-
stance, one may have several repeated utterances of
a specific word by different persons, and acoustic
parameters extracted from each utterance labeled by
the particular speaker would constitute the known
replicate representations (also called training sam-
ples). In such a situation, if some additional utterances
of the same word become available but one does not
know from which person these utterances arose, one
may need to make such an assignment statistically
(i.e., the so-called speaker recognition problem) where
the classification is with respect to the known speakers
(groups). In the pattern recognition literature (see,
e.g., Duda and Hart, 1973) this type of classification
problem is referred to as superuvised pattern recognition
or learning with a teacher. In statistical terminology it
falls under the heading of discriminant analysis.

On the other hand there are classification problems
where the groups are themselves unknown a priori
and the primary purpose of the data analysis is to
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determine the groupings from the data themselves so
that the entities within the same group are in some
sense more similar or homogeneous than those that
belong to different groups. Many problems of numer-
ical taxonomy, as well as market segments that are
determined on the basis of demographics and psycho-
graphic profiles of people, provide examples of this
second type of classification problem where the groups
are data-dependent and not prespecified. This type of
classification problem is referred to as unsupervised
pattern recognition or learning without a teacher, and
in statistical terminology falls under the heading of
cluster analysis.

Although discriminant analysis and cluster analysis
constitute a useful dichotomy of classification prob-
lems, there are of course many real-life problems that
combine the features of both situations. One might
have some preliminary or imprecise idea of the groups
from which the data arise but wish some verification
of the meaningfulness of the prespecified groups in
certain problems. Some combination of the tools from
the two types, or perhaps entirely different and as
yet unavailable tools, may be appropriate for these
situations.

The earlier-mentioned widespread prevalence of the
classification problem (in all of its guises) in many
fields, stimulated by the easy access to both numerical
and graphical computing facilities, has seen the de-
velopment of a plethora of new approaches and algo-
rithms for discriminant analysis and cluster analysis
in the last two decades. If one were to consider clas-
sification problems in three stages, viz. input, algo-
rithms and output, it would be fair to say that the vast
majority of the work has focused on the second of
these. It is clear, however, that careful thought about
what variables to use and how to characterize and/or
summarize them as inputs to methods of classification
are very important issues that would involve both
statistical and subject matter considerations in appli-
cations. Similarly, the most challenging aspect of most
analyses of data tends not to be the choice of a
particular method but interpretation of the output
and results of algorithms.

The three stages clearly interact with each other
and statistical issues and methods play central roles
in all three of them. To illustrate this point, the
importance of choosing the variables and/or features
to use initially for classification purposes has been
mentioned. Nevertheless, despite the care with which
this is done by a user, there may be a tendency to
include “too many” rather than “too few” variables
from the point of view of informativeness of the vari-
ables. (The opposite problem of using too few variables
sometimes occurs, too, giving rise to poor results.)
Sorting out the resultant redundancy among the vari-
ables and identifying those that have incremental

statistically useful information for classification pur-
poses are problems that can benefit from statistical
methods for variable selection. It is usual to consider
algorithms for variable selection as part of the process
of understanding and interpreting the results of an
initial application of a discriminant or cluster analysis
procedure.

The discriminant analysis situation has been a more
integral part of the historical development of multi-
variate statistics, although the cluster analysis case
received most of its impetus from fields such as psy-
chology and biology until relatively recently. In part,
the lack of statistical emphasis in cluster analysis may
be due to the greater inherent difficulty of the tech-
nical problems associated with it. Even a precise and
generally agreed upon definition of a cluster is hard
to come by. The data-dependent (presumably “ran-
dom”) nature of the clusters, the number of them and
their composition appear to cause fundamental diffi-
culties for formal statistical inference and distribution
theory. Except for ad hoc algorithms for carrying out
cluster analyses themselves, counterparts of many
other statistical methods that exist for the discrimi-
nant analysis case are by and large unavailable for the
cluster analysis situation.

The main dual purposes of this report are to take
stock of the current state of the art in both discrimi-
nant and cluster analysis and to identify important
problems that still need to be addressed in both do-
mains. In Section 2, the focus is on methodology while
in Section 3 theoretical aspects of the subject are
reported. The fourth section provides a survey of
available software and algorithms for both discrimi-
nant and cluster analysis. The final section contains
a brief summary of the current state of the art and
lists some problems that need more attention from
researchers.

Although some editorial efforts were expended at
putting in references to material across sections writ-
ten by different people, inevitably, there remain some
duplication of coverage and inconsistency of notation,
which we hope are not too distracting.

2. METHODS

2.1 Introduction

In this section, brief descriptions of the methods of
discriminant analysis and of cluster analysis are pro-
vided. The intention is not to provide details or deri-
vations, because those are available in a number of
books, but merely skeletal descriptions of the essential
steps in the statistical procedures and algorithms.

Section 2.2 is concerned with methods of discrimi-
nant analysis and includes classical two-group linear
discriminant analysis, classification into one of several
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populations, heterogeneous covariance matrices, clas-
sification by logistic regression, kernel and nearest
neighbor methods and classification trees. Section 2.3
pertains to methods of clustering and includes a gen-
eral discussion of algorithmic approaches.

2.2 Methods of Discriminant Analysis
' ‘

2.2.1 General Remarks

The disgriminant analysis situation is characterized
by the following: one has two types of multivariate
observations—the first, called training samples, are
those whose group identity (i.e., membership in a
specific one of say G given groups is known a priori),
and the second type, referred to as test samples, con-
sists of observations for which such a priori informa-
tion is not available and which have to be assigned to
one of the G groups.

The variables constituting the multivariate obser-
vations and the “groups” involved will depend on the
particular application. For instance, in anthropome-
try, the variables might be different measurements on
fossils and the groups might be a known taxonomy of
the fossils (e.g., different races or different stages of
evolution). In a medical application, the variables
could be the results of various clinical tests and the
groups could be collections of patients known to have
different diseases. In an acoustical application, the
variables might be the a set of acoustical parameters
extracted from the utterance of a specific word by an
individual whereas the groups are repeated utterances
of the same word by different individuals. In each of
these cases, there are observations whose group iden-
tity is known (the training samples) but there will also
be some observations whose classification is unkown
(e.g., a fossil whose race group is unknown, a patient
whose disease category is unknown or an utterance
whose source speaker is unknown).

Before discussion of the major numerically oriented
methods of discriminant analysis, mention should be
made of a number of developments in computer graph-
ics for representing multivariate data that are useful
informal aids for classification. Schematic graphical
displays of multivariate observations proposed by An-
derson (1957), Andrews (1972), Chernoff (1973b) and
Kleiner and Hartigan (1981) can be and have been
used for informal classification of objects. The essen-
tial idea is to represent either the individual training
samples or some typical value (e.g., the mean of a
group) via a schematic display, do the same for the
test samples and then by inspection of these displays
decide to assign a test sample to the group whose
training sample displays (or typical value display) look
“visually closest” to the display of the test case. In
practice, large numbers of observations or variables,

as well as poorly understood visual perception biases,
can limit the usefulness of these graphical techniques.

In thinking of the more numerically oriented meth-
ods of discriminant analysis, it is useful to distinguish
two stages of the analysis, although not all of the
available statistical methods either make such a dis-
tinction or are equally useful for the two stages. The
first stage, concerned solely with the training samples,
is to find a representation of these observations so as
to, in some sense, clearly separate the G groups. The
resulting representation, usually a spatial one, is often
called the discriminant space. Such a representation
when presented graphically has major descriptive and
diagnostic value in analyzing data.

The second stage of a discriminant analysis is con-
cerned with assigning the test samples (i.e., those
observations whose group identity is initially un-
known) to one of the G specified groups. At this stage,
the focus in on correct classification. Some measure of
correct classification, using the training samples and
not the test samples, is often used to evaluate the
performance of discriminant analysis methods (see
discussion below on evaluation). An important scien-
tific consideration, that is sometimes not emphasized
adequately in the statistics literature on discriminant
analysis, is that in the real world it may turn out that
an item whose classification is unknown may not
belong to any of the prespecified groups but indeed be
a member of an entirely different or hitherto unknown
group (see Rao, 1960, 1962; Andrews, 1972).

Statistical considerations in discriminant analysis
have to do with distributional assumptions concerning
the observations, measures of separation among the
groups, algorithms for carrying out both stages of the
discriminant analysis and the study of the properties
of proposed algorithms. Historically, Fisher (1936)
was the first to propose a procedure for the two-group
(G = 2) case based on maximizing the separation
between the groups in the spirit of analysis of variance.
This procedure is equivalent to the likelihood ratio
procedure that arises if one assumes multivariate nor-
mality (with a common covariance matrix) for the
observations from both groups. The initial extensions
of this were concerned with multiple groups and with
heterogeneous covariance matrices across groups, but
still retained the multivariate normal assumption.
These normality-based methods are the ones most
widely used in practice. Provided the measured vari-
ables are not constrained to take on only a few distinct
values, as in the case of binary variables, transforma-
tions of them might enhance their normality and
enable the more sensible use of the normality-based
procedures (see further discussion of transformations
below).

There are real situations involving variables, such
as binary or categorical ones, that are not sensibly
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transformed. Distribution-free and nonparametric
methods, which move away from the normality as-
sumption, have been developed relatively recently to
handle such data. See, e.g., Hand (1981, Chapter 5)
and Lachenbruch (1975, Chapter 4).

After developing a classification rule, the natural
next step is to evaluate its performance. When infor-
mation on the cost of misclassification is available,
then one might look at the expected (average) cost of
misclassification. However, such information is not
usually available, and an oft used criterion is just the
error rate itself (i.e., the proportion of items that are
misclassified).

A number of possible rates may be considered:

1. The optimum error rate—the rate which would
hold if all parameters are known.

2. The actual error rate—the rate which holds
for a classification rule under consideration
when it is used to classify all possible future
samples.

3. The apparent error rate—the rate we obtain
by resubstituting the training sample and
determining the misclassifications.

It is possible to evaluate the overall error rate or the
individual group rates. Both are of interest. The like-
lihood ratio procedure (e.g., see Sections 2.2.2 and
2.2.3) determines the rule so as to minimize the overall
rate for specified parametric distributions. However,
this may lead to a rule which has a high error rate in
one of the groups, and this may be unacceptable to
the user. In such cases, the “cutoff point” involved in
the rule can be altered to give a more balanced set of
error rates. This usually does not increase the overall
error rate greatly.

Many procedures that depend heavily upon the
assumption of normality have been proposed to esti-
mate the error rates. Consideration is given here to
estimators that may be used in any context. First, the
apparent error rate (or resubstitution estimator) sim-
ply classifies the training sample using the rule cal-
culated from it. The estimator is typically over
optimistic and can badly mislead the user if the sample
size is not much larger than the number of variables
in the rule. It is also hazardous if there is initial
misclassification in the training samples. However,
for those cases in which the number of initially cor-
rectly classified observations is sufficiently large, the
bias will be small. The second method of estimation
is called leave-one-out and is similar in spirit to the
jackknife. This procedure omits an observation, recal-
culates the classification rule from the remaining
observations, classifies the deleted observation, and
repeats these steps for each observation in turn.
Counting the errors of misclassification yields an
almost unbiased estimate of the error rate. Unfortu-

nately, the variables indicating misclassification are
correlated so that this estimate has a large variance.
In many cases, the mean square error of the leave-
one-out method is larger than that of the resubstitu-
tion estimator. The third procedure is the bootstrap
method (Efron, 1982). This seems to combine the
best features of the previous two estimators: it is
almost unbiased and it has a small variance. The major
drawbacks of the bootstrap are its expense and its
inability, even asymptotically, to deal with sufficiently
large biases. One must compute as many classification
rules as there are replicates. If the classification rule
is based on density estimation, this could become
prohibitively expensive. A fourth possibility, closely
analogous to the leave-one-out method, is cross-
validation. One splits the training sample into k parts,
uses all but one to develop the classification rule and
classifies the left out part. This process is repeated
k times, and error rates are averaged. Popular choices
of k are the sample size (the jackknife case) and two.
Provided enough data are available to carry it out, this
has the advantages of being nearly unbiased. However,
as for the jackknife, the mean square error may be
large.

In summary, the apparent error rate is optimisti-
cally biased and should be used with caution when the
sample sizes are small relative to the number of vari-
ables. The other methods mentioned can be useful
alternatives in this case. Otherwise, the apparent error
rate should be a satisfactory estimator. For a bibliog-
raphy on error rates, see Toussaint (1974).

In the sections that follow, specific methods of
discriminant analysis are outlined and for many
of them some discussion is provided of their
absolute/relative performances, including error rate
behaviors.

2.2.2 Classical Two-group Linear Discriminant
Analysis

The most widely used rule for classifying an obser-
vation x into one of two populations, II, or II,, is that
which classifies x into II, if

1) v=EY-x?)S(x - (AEY+x?) =c

or into II, otherwise. Here ¥ and %® denote the
vector means of two independent samples (the train-
ing samples) of sizes n, and n,, respectively, and S
denotes the pooled sample covariance matrix, ((s;-)),
where

2 n, (x(g) _ iﬁg’)(xf‘?i _ jﬁf{))

sy = Z 2 lo

g=1 a=1

n, + ng, — 2 ’

X is a p component vector. The linear discriminant
function (LDF) (x¥ — x®)’S™'x was suggested
by Fisher (1936) who introduced it as that linear
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combination of the p variables which separates the
two (training) samples as much as possible. Specifi-
cally, for any linear combination, say d’ x, the squared
difference between the two sample means, divided by
the pooled estimate of the variance of that difference
is maximized by d = S™}(x® — x?). This property
of the LDF is a strong argument in favor of its use for
classiﬁcatllqn purposes for populations with a common
covarianceé matrix.

The cutoff point ¢ in (1) can be chosen in various
ways. Sometimes it is chosen so that the number
misclassified from the two training samples is as small
as possible. If the p variables used in the discrimina-
tion are normally distributed, and if their covariance
matrices are the same in the two populations, then a
frequently used cutoff point is

2 ¢ = In(7(2)/7(1)).

Here #(g) is some estimate of w(g), the a priori
probability that an individual to be classified comes
from II,. With this value of ¢, the classification rule is
a sample estimate of the rule that classifies into II, if

u= @ = p?) T x - (L) (L® + p?))
(3) w(2)

=In D)
and into II, otherwise; here u®, u® < are the popu-
lation counterparts of X, x?, S.

If the two populations have normal distributions
with equal covariance matrices, then (3) is the best
possible classification rule in the sense that the ex-
pected probability of misclassification is as small as
possible. That is, P = #(1)P(2]1) + «(2)P(1]2) is
minimized, where P(2]|1) is the probability of mis-
classifying an individual from II; and P(1]2) is the
probability of misclassifying an individual from II,.

Occasionally the 7 (g) are known,; e.g., in developing
a function to discriminate between carriers and non-
carriers of a genetically based disease, the prior prob-
ability that an individual is a carrier might be known.
Sometimes 7 (g) might be approximated well from
knowledge of the relative sizes of the two populations.
When little is known about the relative population
sizes, it is usual to set #(1) = #(2) = % so that
In(#(2) |#(1)) =c=0.

Another method determines the cutoff ¢ so that
P(2]1) = P(1]2); then an observation from II, is just
as likely to be misclassified as an observation from
II,. This method has the advantage that no knowledge
of the a priori probabilities is necessary. To accomplish
this the cutoff ¢ is determined so that

c—AaY2\ [ c+A%2
o o= o)

whose solution is ¢ = 0. Here ®(.) is the distribution
function of the univariate standard normal distribu-
tion and

A= (b = u®) (WD — p®)

is the Mahalanobis squared distance between the two
population means. This approach again suggests use
of (1) with ¢ = 0 in practice.

It was suggested by Wald (1944) that misclassifica-
tion cost rather than misclassification probability
should be used as a criterion in discrimination. If

C=x1)P2|1)C2]|1) + x(2)P(1]2)C(1]|2)

is the expected cost, with C(2| 1) the cost of misclas-
sifying an individual from II, into II, and similarly for
C(1]2), the rule that minimizes expected cost is to
assign x to I, if

u=@®—p®) 2= - (%)W" +u®))

(5) o In C1|2)x(2)
T ee|nr)”

In practice it is usually difficult to estimate the relative
costs. In some situations, however, when the ratio
w(2)/w(1) is known to be small, the cost ratio
C(1]2)/C(2]1) is clearly large, so that setting ¢ = 0
is not unreasonable.

If one wishes to select a cutoff point so that the
expected costs of misclassifying observations from
each of the two populations are approximately equal,
then in (1) ¢ is chosen so that

' c—D?%2\ _c+D?)2
(6) C(2|1)<I>(—-—-D )—C(1|2)<I>( D ),

where D? = (x® — x®)’S71(x? — £?), the Maha-
lanobis squared distance between the two sample
means.

Relation to Regression Analysis. It is possible to
obtain the coefficients of the LDF by using a regres-
sion program. A dummy variable y is introduced that
takes on the value n,/(n, + n,) for observations from
II, and —n,/(n; + ny) for observations from II,. If the
two data sets are then treated as a single sample of
size n, + n., the coefficients in the regression of y on
x are proportional to S™}(x¥ — x@). (See Anderson,
1958.)

Tests of Hypotheses. Under the normality assump-
tion and with equal covariance matrices, the hypoth-
esis that the p variates have no discriminatory power
can be stated as either Hy: A2 =0 or Hy: u® = u®.
This can be tested (Rao, 1965) with the statis-
tic (nino/(ny + ny))D?; this statistic is known as
Hotelling’s T2. When multiplied by (n, + n, —
p — 1)/p(n, + n, — 2), it has an F distribution with
degrees of freedom p, n, + n, — p — 1, and with
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noncentrality parameter (n,n./(n, + n,))A2 This F
test is the same as the F test that would be made in
the regression analysis with the dummy variable y to
test whether all the regression coefficients are zero.
The F test of whether a subset of the regression
coefficients are zero may be used to test whether that
subset of variables adds anything to the discrimina-
tion. See Rao (1952) for details.

For deciding between the hypotheses that x is from
II, or from II,, a Bayesian approach can be taken.
This approach compares a posteriori probabilities. In
particular, under the normality and equal covariance
matrix assumptions, one can easily estimate the
needed a posteriori probabilities P(Il,| x). These
probabilities are

_ w(1)exp(u)
) P x) = o Dexp(@)
and
P(I; | x) = s

7(2) + #(L)exp(u)’
and they can be estimated by

. _ m(1)exp(v)
(8) P(IL | x) = 7(2) + w(1)exp(v)
and
P, |x) = @)

7(2) + w(1)exp(v)

Advantages of the LDF. Clear advantages of this
discrimination method are simplicity and the availa-
bility of package programs. Further, the idea of re-
placing p variates—if they are in the same units—by
a linear index is sometimes easily accepted by the
statistical layman. Also, if the researcher’s aim is to
estimate a posteriori probabilities rather than to clas-
sify, these are particularly simple to obtain. If, as is
frequently the case, his purpose is to understand the
difference between II; and II, rather than to classify,
the sizes of the standardized coefficients in the LDF
may give him some clue. Also, projections of the
training samples onto the LDF can be studied graph-
ically. Indeed, Fisher’s (1936) original paper shows
histograms of such projections. The histograms are
not only visually useful for looking at the separation
between the two groups but also have diagnostic value
in checking the reasonableness of the assumptions of
normality and homoscedasticity.

These advantages have led to the widespread use of
the LDF. Without the assumptions of normality and
equal covariance matrices, the main justification for
its use is that it spreads the two sample means apart
as far as possible, scaled in a particular way, using a

linear combination of variables. Because the LDF is
often used with all types of nonnormality and with
unequal covariance matrices, its performance under
these departures becomes important.

To evaluate LDF performance, one might use as a
criterion the expected value of any of the following:

P=x(1)P(2|1)+=(2)P(1]2),

©) max[P(2|1), P(1]2)],
C==()PE2|1CE2|1)+=(2)P(1]|2)C(1]2),
max[P(2|1)C(2]|1), P(1]2)C(1]2)].

These are, respectively, the total error rate, the max-
imum group-specific error rate, the total cost and the
maximum of group-specific costs.

An estimate of any one of the four quantities in (9)
for any particular discriminant function might be
selected by a researcher for evaluating that particular
function. To evaluate the LDF method, however, one
must estimate the expected value over all possible
LDF’s (that is, over the distribution of %@, x®
and S).

Considerable work has been done on the robustness
of the LDF, much of it being in comparison with other
specific alternative methods. In general, the LDF is
thought to perform relatively well for moderate sample
sizes in comparison with other more complicated
methods. Its performance is often improved by the use
of transformations of the variables.

Variable Selection. Some of the strengths of the
LDF can also be a source of weakness. It has become
dangerously easy for the researcher to toss a large
number of variables into the computer and then on
the basis of coefficient size to make extremely doubtful
statements concerning the relative importance of the
different variables in discrimination.

It has been shown that when many variables are
included, the LDF may do extremely well in classifying
the observations in the two training samples, but
perform worse in classifying new observations than
an LDF based on fewer variables. Good practice there-
fore necessitates selecting a small number of variables
relative to the sizes of the two training salm;;)les. There
are as many possible ways of doing this as there are
in the corresponding regression problem. (In discrim-
ination there may be a greater tenden(‘:y,‘q;o”havg large
numbers of variables than in regression.)

Often several variables known by the researcher to
be highly correlated can be replaced by just one vari-
able. Sometimes the variables included are simply
those whose scaled between group squared distances,
D? = (" — £?)?/s;, are the largest. This often works
quite well, but it is not a foolproof method. Indeed,
even if the Mahalanobis squared distance between
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the two populations based on only the ith variable,
(" — u?)?/64, equals zero, it is possible that the ith
variable may increase the Mahalanobis squared dis-
tance considerably when it is used with some other
variables.

Often a stepwise discriminant program is used for
variable selection. In a forward selection program,
varia lles‘grg included one at a time; at each step the
next variable included is the one that increases the
sample Mahalanobis squared distance the most. In a
backward stgpwise procedure one begins with the en-
tire set and then at each step drops the variable that
decreases the Mahalanobis squared distance the least.

With a large number of variables, the stepwise pro-
cedures seem a sensible way to select, say 3 to 5
variables. One must always bear in mind, however,
that the set of variables selected may not be the best
possible set, even for the purpose of classifying the
original observations. For the purpose of identifying
which variables are important in discriminating be-
tween II, and II., a single run of a stepwise program
is particularly inadequate. If one believes that several
important variables have been found, they should be
dropped, and the stepwise procedure done without
them in order to see how well the other variables
discriminate.

Some simulation studies have indicated that with
many variables a combination of first using the
Mabhalanobis squared distance based on each single
variable to reduce the number of variables and then a
stepwise program is a reasonable plan (Farver and
Dunn, 1979).

As mentioned earlier, an F test can be used to test
whether a subset of the variables adds significantly to
the separation of the two groups (Rao, 1952). It is a
routine matter, in many problems, to compute signif-
icance levels for all possible subsets. These can be
plotted and studied informally as a guide to selecting
subsets for the discriminant analysis (McKay, 1978).

For further discussion of variable selection in dis-
criminant analysis see, e.g., Hand (1981, Chapter 6),
McKay and Campbell (1982a, b) and Seber (1984,
Section 6.10).

2.2.3 Classification into One of Several
Populations

When an observation x is to be classified into one
of G populations where G > 2, then the procedure that
minimizes the expected value of the probability of
misclassification is to classify x into II, if

m(g)pe(x) = w (k) pu(x)

(10)
forg=1,.-.,G, g#k,

where 7 (g) is the a priori probability that an obser-
vation belongs to the gth group and p,(x) is the

probability density function for the gth group. This is
the Bayes procedure.

For multivariate normal populations, this Bayes
rule becomes

foreachg=1, ..., G, classify into IT, if
ugk(x) — (“(k) _ “(g)))/z—l
- (x = () (u® + ')

w(8)

=>ln—=

w(k)’

(11)
g=17 "',G’ g#k

The sample-based estimate of the Bayes rule is to
classify x into II, if

Var(X) = (x® — i(g)) 'S7H(x — () (x® +x®))

(12) w(g)
zln'/r(k) , 8=1,-..,G, g#k.

Each of the v, provides the usual LDF for discrim-
inating between two groups, and thus to classify x one
may first decide between pairs of groups in the usual
way and finally decide among all G groups. The situ-
ation is somewhat analogous to a baseball league in
which each team plays every other team once to de-
termine the winner; the analogy breaks down, how-
ever, for in classification, one population always
emerges as winner.

In using (12) to approximate the Bayes solution,
it is necessary to know or estimate the w(g)’s, the
a priori probabilities. If one does not know the 7(g),
one may seek the minimax solution and choose the
cutoff points so that the expected probabilities (or
costs) of misclassification are all equal, no matter from
which population an observation is drawn. It has been
shown that the minimax solution is the same as the
Bayes solution for some set of w(1), - - -, #(G). There-
fore, one may use (12) and find c,, -- -, ¢ to replace
Inw(1), .-, In 7 (G) such that the estimated expected
costs are approximately equal based on the rule: clas-
sify into II, if

vgk(x)zcg_ck’ g=1’ "”G’ g;&k.

These constants can be determined by trial and error.

An alternate approach (Rao, 1948, 1952) to classi-
fying into one of several populations is a generaliza-
tion of Fisher’s original idea of choosing a linear
function with maximum squared distance between
means as compared with the variances.

The within-population covariance matrix is Z;
the covariance matrix of the G population means
is the “between population” covariance matrix B =
Y1 (u® — @)(u® — @)'/(G — 1), where g =
Y5, n'®/G. One seeks a such that ¥y = a’Ba/a’Za
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is a maximum. When G = 2, the solution is a =
N u® — u?). For general G, the extreme values of
v are obtained by using the eigenvectors, a;, - - -, a,
of the matrix =Z7'B.

There are no more than s = min(G — 1, p) nonzero
eigenvalues, vy; = vy, = - -+ = v,, of Z7!B. These have
eigenvectors a;, - - -, a; which are linearly independ-
ent. If one uses u; = a{x, -+, U, = al/x as the
discriminant functions, then the rule is to classify into
Hi if

13) 3 [ (x — u)F = min 3 [af (x — )P,

J=1 g j=1

Rule (13) involves knowledge of the population param-
eters. This rule is equivalent to (11) if the prior
probabilities are equal. The corresponding sample-
based rule substitutes the pooled within-groups esti-
mate of the covariance matrix, W, for 2, and

B=73 n(x®-2)E®-%/G-1)

T o

1

for B, where x = Y%, n,x®/nand n= Y2, n,. Then
the sample discriminant functions v; = &/ x are used
in place of the u; where @; is an eigenvector of W™'B,
j =1,...,s.

This method has certain advantages in reducing the
use of a large number of variates to a small number of
canonical variables. Although the sample v; are not
uncorrelated, as are the u/s, the sample estimates of
their covariances are zero, so that calculations are
greatly simplified. When not all the canonical vari-
ables are used in classification, the procedure using
(13) cannot be expected to be optimal, but its sample-
based counterpart may be better because the addi-
tional canonical variables may be mostly reflecting
noise. Indeed, in practice, only the first few canonical
variables are often used. When all the canonical vari-
ables are used, the procedure gives the same results as
the one using all the original variables.

Projections of the training samples onto the canon-
ical variables, especially the first few of them, can be
useful in much the same way as projections onto the
LDF in the two-groups case. Scatter plots of such
projections (see, e.g., Rao, 1952; Gnanadesikan, 1977)
can be studied for separations among the groups and
for evaluating the reasonableness of assumptions such
as the homogeneity of the group covariance matrices.

2.2.4 Heterogeneous Covariance Matrices Case

The Quadratic Discriminant Function. Given two
populations with mean vectors and covariances mat-
rices, pg, 2z, & = 1, 2, and a priori probabilities (1)
and w(2) that an observation belongs to each of
them, the quadratic discriminant rule is to assign x

to II; if
X (23— 27)x — 2x" (230 — 27 m)
(14) + (0223w — w127 )
= In(|2:|/12:11) + 2 In(x(2)/x(1)),

and to II, otherwise. If the two populations are nor-
mally distributed, the quadratic discriminant rule is
the best discriminant rule, in the sense of minimizing
the expected probabilities of misclassification. It re-
duces to the LDF if 2, =2,.

The sample-based rule corresponding to (14) is that
X is assinged to II, if

x/(Sz' — S1H)x — 2x’/(S3'x, — Si'xy)
(15) + (%5S7'%, — %;S7'%,)
= In(|S:1/18:1) + 2 In(x(2)/7(1)).

Best Linear Discriminant Function. An attractive
simplicity of Fisher’s LDF is that it is a linear function
in the original variables. The preceding discussion,
however, established that when the covariance mat-
rices across groups are not the same, even under
normality assumptions, the optimal discriminant
function is no longer linear in the variables. Never-
theless, as an approximation, one may limit consid-
eration to linear functions and seek a “best LDF” for
two normally distributed populations whose covari-
ance matrices are unequal. The “best LDF” procedure
was developed independently by Riffenburgh and
Clunies-Ross (1960), Clunies-Ross and Riffenburgh
(1960), Anderson and Bahadur (1962) and Jennrich
(1962). It is the linear combination of measure-
ments that discriminates best between the two
populations.

The sample-based best linear rule is that an obser-
vation x is classified into II, if

x'b = x,b — t;b’S;b = X;b + b’ S;b,

or otherwise into Il,. Here X,, S,, g = 1, 2 are the
sample mean vector and covariance matrix in group g
and

b = (t:S; + £:S:) (X, — Xu), "

and ¢t; and t, are chosen to minimize the estimated
expected probabilities (or costs) of misclassification.
The quantities, ¢, and ¢., can be normalized so that
the minimization can be carried out with respect to a
single variable; see Anderson and Bahadur (1962).
Asymptotically, the best LDF must perform better
than Fisher’'s LDF if 2, # 2, and reduce to Fisher’s
if £, = Z,. However, under normality the quadratic
discriminant rule performs better asymptotically
than either the best LDF or the Fisher LDF rule
when =, # X,; under equality all three methods are



42 STATISTICAL SCIENCE

asymptotically the same. For small samples, however,
the quadratic discriminant function can behave ap-
preciably worse than the linear functions as has been
shown in simulation studies, see Marks and Dunn,
1974. This tendency increases as the two populations
are moved farther apart and is more pronounced when
more variables are used; as expected, it decreases as
the sa X ple sizes increase and as departures from
equalit{;‘r'l increase.

When gross inequality is present, the best LDF has
a certain advantage over the quadratic discriminant
function from the standpoint of ease in interpretation.
However, compared with either Fisher’s LDF or the
quadratic, it takes more computation time.

In Fisher’s LDF the coefficients remain the same if
one changes the a priori probabilities 7 (g); in the best
LDF these coefficients vary as one varies the 7 (g).
Thus the coefficients seem even less meaningful for
the best LDF.

Marks and Dunn (1974) find that with small depar-
tures from equality of covariance matrices the best
LDF performs quite well. For extremely large depar-
tures, it performs appreciably better than the usual
LDF, but usually in such cases the quadratic discrim-
inant function performs still better.

The quadratic discriminant function appears to per-
form poorly under non-normality. This is not surpris-
ing because the difference between the linear and
quadratic discriminant functions is most marked in
the tails of the distributions. When population means
coincide, the quadratic discriminant function comes
into its own; in this situation, the LDF becomes
useless.

2.2.5 Two-group Classification by Logistic
Regression

The logistic regression discriminant procedure in-
volves a (linear) discriminant function for use with
certain non-normal populations. Suggested by Corn-
field (1962), it was used by Truett, Cornfield and
Kannel (1967) in the Framingham study. Hand (1981,
Section 5.3.1) and Lachenbruch (1975, Chapter 6)
provide more detail and references than are provided
here.

In the logistic regression procedure, the data set is
considered to consist of a single sample of size n =
n, + n, from the combined population. For each
observation x;,j =1, ..., n = n, + n,, ay variable is
introduced. For the n, observations that are from II,,
y = 1; for the n, observations from II,, y = 0.

The variable y is a binary variable and the a priori
probability that y equals 1 is w(1). If the x variables
are normally distributed with equal covariance matrix
2 in both groups, the a posteriori probability that y

equals 1 is of the form (see (7))

w(1)exp u

Ply=11%) = 7(2) + w(l)exp u

(16)
exp(a + x’B)

T 14 exp(a + x’8)°

Equation (16) holds for a wider class of distributions
than the normal, and for any such distribution, one
may obtain a (linear) discriminant function, v = & +
x’f by estimating the parameters « and 8. One method
of estimating o and B8 is the maximum likelihood
method. With a sample of size n = n, + n, and
binomial parameter exp(a + x’8)/(1 + exp(a +
x’B)) the likelihood function is

m exp(a + x/8) )
1 + exp(a + x/8)

=1

17)

1 (o)
j=m+1 \l + exp(a + x/8)/’

assuming that the first n;, observations are from II,
and the remaining are from II,. The estimates & and
8 are chosen to maximize (17).

In practice, it is usual to have two samples rather
than a single sample from the combined population.
Then n, and n, are chosen by the researcher rather
than being random variables. In this case, the same
procedure is nevertheless used. After obtaining & and
8, the coefficients B are retained, but a constant to
replace a is chosen by considering the number of the
training samples misclassified by the discrimination
rule for various possible choices of the value of the
constant. The final choice of constant may be the one
that yields the lowest total number misclassified or
the one that minimizes the maximum proportion of
misclassified observations.

Selection of variates is a problem in this method as
in others. Package programs for stepwise logistic
regression are available. See Section 4.2.3 for details.

Strengths and Weaknesses. A disadvantage of the
logistic regression approach is that it involves more
extensive computations, a factor that becomes im-
portant when using stepwise procedures.

It is clear that under normality the logistic proce-
dure cannot be expected to classify as well as does the
LDF. Efron (1975), in comparing the asymptotic rel-
ative efficiency of the two procedures under normality,
found that when 7 (1) = n(2) = % (the case most
favorable to logistic regression) the asymptotic rela-
tive efficiency decreased from one at A = 0 to about
.3 at A = 3.5, where A is the Mahalanobis distance
between the two populations.
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2.2.6 Kernel and Nearest Neighbor Methods

These methods are based on nonparametric density
estimation algorithms that have been developed since
the early 1950s.

The kernel methods estimate densities based on the
sum of a set of functions

fx) = 3 k(x, x)/n,
j=1

where k must satisfy certain regularity conditions (see,
e.g., Cacoullos, 1966).

The direct use of these functions is not needed (see,
e.g., Silverman, 1986, Section 3.5). The Fast Fourier
Transform speeds the calculations greatly. An addi-
tional advantage is the apparent resistance to the
effect of outliers. Because a kernel must become small
far from a point, a single outlying point will not
contribute greatly to the estimate of the density of
points in the middle of the distribution. Thus, even if
the training sample is contaminated with outliers, the
resulting allocation rule should perform well. Various
types of kernels have been proposed, e.g., a multivar-
iate normal density with a diagonal covariance matrix.
Some of the most important kernels can be negative
for some values of their arguments. If the kernel
function is zero for distant points, outliers generally
have no influence on estimates of the density at the
majority of points. The nearest neighbor rule allocates
points on the basis of a “majority vote.” For equal
prior probabilities, the k closest points to the point
to be allocated are found and the unknown point
is classified in the group to which the majority of
these neighbors belong. This rule may be modified
easily to account for unequal prior probabilities. It
has been applied to continuous and discrete distri-
butions. The density estimates are consistent and
the error rates tend to the optimal ones. Another
class of rules is based on Fourier series esti-
mates of densities (see, e.g., Tarter and Kronmal,
1970).

The behavior of kernel estimates does not depend
on the form of the kernel as much as it does on the
smoothing parameter. This parameter determines the
weight given to a point and is related to the smooth-
ness of the estimated density function. Several solu-
tions have been proposed but none seems to be
generally accepted. Breiman, Meisel and Purcell
(1977) have considered variable kernel estimates. The
problems they address include selection of the smooth-
ing parameter and methods of smoothing the esti-
mates in regions of low density. They proposed a
smoothing parameter of the form

2k = (ardjp),

where d;,, is the distance from x; to its kth nearest
neighbor and a; is a constant specific to the value
of k.

An alternative approach to discrimination might be
to estimate the ratio of the densities nonparametri-
cally rather than the densities themselves. This is a
problem because with the kernels involved, one would
have the ratio of two sums of functions that may not
be smooth. Simple approximations to these sums may
merely lead us back to parametric densities.

2.2.7 Classification Trees

A rather different method of discriminant analysis is
to portray the problem in terms of a binary tree. The
tree provides a hierarchical-type of representation of
the data space that can be readily used as a basis for
classification by tracing down the appropriate
branches of the tree.

This line of development was started by Morgan
and Sonquist (1963) and Morgan and Messenger
(1973). It has been vigorously pursued and refined by
several people. Recent work is described in depth in
the book by Breiman, Friedman, Olshen and Stone
(1984). The earlier work is often referred to as AID
(for automatic interaction dectection) whereas the
contributions by Breiman, Friedman, Olshen and
Stone are known by the acronym, CART (for classi-
fication and regression trees). The primary differences
between AID and CART are in details of how the
binary trees are formed.

In its simplest form, the CART method produces a
tree that is based on individual variables. For example,
the split at the top of the tree might be determined
by the question, “Is x; < 6.2?”. This will determine a
left and right branch. The left branch corresponding
to x5 < 6.2 might then be divided according to the
question, “Is x; = 1.4?” and the right branch, for
which x; > 6.2, might be split according to the ques-
tion, “Is x; = 0?”. The methodology has three com-
ponents to it: the set of questions, rules for selecting
the best splits and a criterion for choosing the extent
of the tree. With the tree in place, each terminal node
of the tree can then be associated with ione of the
G groups.

More sophisticated questions can also be hpndled
by this approach, such as, “Is } a;x; < ¢?%or'“Is x €
A?”. The variables themselves can be categorical,
continuous or a mixture of both.

Many of the issues that arise in classical discrimi-
nant analysis show up in this procedure as well. These
include selection of variables, use of misclassification
costs and prior distributions, construction of classifi-
cation rules using training samples, estimation of error
rates, etc.
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Generally speaking, CART is a flexible procedure
that can result in very intuitive and easy-to-use clas-
sification rules. At the same time, there has not been
enough widespread use of these methods to know how
generally effective they are. Arriving at the best tree
structure is a nontrivial matter and the tree itself may
not be reliably determined. The descriptive value of
the LDF is lost in the sense that the tree is a higher-
level summary that is further removed from the raw
data. Moreover, the discriminant function approach
focuses more directly on spatial separations among
groups, as revealed in scatter plots of the discriminant
variables.

The current state of CART is perhaps best sum-
marized by its developers (Breiman, Friedman, Olshen
and Stone, 1984, page viii):

Binary trees give an interesting and often illu-
minating way of looking at data in classification
or regression problems. They should not be used
to the exclusion of other methods. We do not
claim they are always better. They do add a
flexible nonparametric tool to the data analyst’s
arsenal.

2.3 Methods of Cluster Analysis

2.3.1 General Remarks

Cluster analysis involves the search through data
for observations that are similar enough to each other
to be usefully identified as part of a common cluster.
This is a very intuitive and natural objective and one
that is easy to think about. For example, the galaxies
of stars in the universe can be described as clusters in
a three-dimensional setting.

However, to be even a bit more precise about what
is meant by a cluster can quickly get one bogged down
in controversy and details. In fact, there is no generally
accepted precise definition. Some would claim that
clusters correspond to real underlying groups or pop-
ulations and the challenge is to discover them. Others
tend to think of clusters in a much weaker structural
sense but still find the data-determined groups to be
useful. For now, it will suffice to take the rather
ambiguous attitude that clusters consist of observa-
tions that are close together and that the clusters
themselves are clearly separated. If each observation
is associated with one and only one cluster, then the
clusters constitute a partition of the data that can be
very useful for statistical purposes.

For instance, it is often possible to summarize a
large multivariate data set in terms of a “typical”
member of each cluster. This would be more meaning-
ful than only looking at a single “typical” member of
the entire data and much more concise than individual
descriptions of each observation.

Another use occurs when one is attempting to model
data in the presence of cluster structure. Better results
may be achieved by taking this structure into account
before attempting to estimate any of the relationships
that may be present.

Finding the partition into clusters is not as easy as
it may sound. Except in small problems, to “do it
right,” i.e., to consider all possible partitions of the
data into clusters, is computationally out of the ques-
tion. Consequently, numerous different algorithms
have evolved as compromise procedures for finding
clusters in a reasonably efficient way. Some authors
prefer to start with a model, e.g., a mixture model (see
Section 3.3.5), of clusters and then to find a practical
algorithm for extracting the clusters in the context of
that model. In the following discussion, such models
are not discussed at all.

The development of algorithms has, for the most
part, come out of applications-oriented disciplines
such as biology and psychology rather than statistics.
The explanation would appear to be that experts in
these fields have developed tailored methods to solve
their own problems because a general body of adequate
clustering methodology was lacking.

Mentioning a few examples of applications of clus-
tering methods may help to convey the types of prob-
lems they can contribute to:

Taxonomy. Clustering species of bees into
higher-level taxonomic groups (Michener and
Sokal, 1957).

Genetics. Studying genetic diversity within and
between populations of an endangered fish species
(Vrijenhoek, Douglas and Meffe, 1985).

Medicine. Developing clusters of patients
based on physiological variables (Siegel, Goldwyn
and Friedman, 1971).

Speech processing. Constructing a speaker-
independent word recognition system (Rabiner,
Levinson, Rosenberg and Wilpon, 1979).

Glaciology. Mapping the Antarctic and Arctic
regions in terms of clusters of types of sea ice and
fern (Rotman, Fisher and Staelin, 1981).

Archaeology. Grouping broaches from an Iron
Age site in Switzerland based on their attributes
(Hodson, Sneath and Doran, 1966).

Education. Dividing up a class of workers in
the telephone industry based on their common
training needs (Kettenring, Rogers, Smith and
Warner, 1976).

Business. Clustering corporations according to
their financial characteristics (Chen, Gnanadesi-
kan and Kettenring, 1974).

These examples are typical of many in the litera-
ture in that the clustering was done with the aid of
familiar numerical algorithms. These algorithms will
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be discussed in more detail in Section 2.3.2, but it is
worth pointing out here that they are the products of
the type of research on clustering methodology that
was going on in the late 1950s and 1960s. The algo-
rithms are pretty straightforward and easy to describe.
More recently there has been a very pronounced trend
toward more complex algorithms that attempt to
achieve better results through their sophistication and
exploitation of currently available computing power.
Another trend has been the development of dynamic
graphic display devices that can be very effective at
revealing characteristics of the data including clusters.

Somewhat ironically, given their early lack of in-
volvement, statisticians have recently been using
cluster analysis as a building block for other proce-
dures, especially in the area of regression diagnostics
(Landwehr, Pregibon and Shoemaker, 1984; Gray and
Ling, 1984).

2.3.2 Algorithms

Because detailed discussions of specific clustering
algorithms are readily available (see, e.g., Anderberg,
1973; Cormack, 1971; Everitt, 1980; Hartigan, 1975;
Seber, 1984, Chapter 7; Sneath and Sokal, 1973), the
focus here will be more on general approaches.

Clustering data is often convincingly useful even if
an unambiguously “correct” solution is lacking. The
same can be said about attempts to classify the exist-
ing clustering algorithms: they are not as clean-cut as
one might like but they do help to summarize the
types that are available.

Among the numerical algorithms whose primary
function is to reveal clusters, three general types can
be distinguished: hierarchical, partitioning and over-
lapping. Only the second of these is strictly compatible
with the loose definition of clustering used in the
previous section.

The hierarchical algorithms result in a tree-like
representation of the data, often called a dendrogram.
At the top of the tree each observation is represented
as a separate “cluster.” At intermediate levels obser-
vations are grouped into fewer “clusters” than at the
higher levels. At the bottom, all of the observations
are merged into one “cluster.” In some problems, the
entire tree structure may be of interest. In others, the
tree is just a convenient tool for obtaining a partition.
This is usually done by cutting the tree at a suitable
level which forces a particular partition.

Some hierarchical algorithms form the tree from
the bottom up in a divisive fashion, but most work
agglomeratively from the top down. Hartigan (1975,
page 12) attributes this to the difficulty in finding
effective splitting rules as well as the possible expense
involved in executing them. Nevertheless, aside from
their pragmatic advantage, the current emphasis on

the agglomerative approach may be overdone because
it may be possible to build more sophisticated algo-
rithms that are less sensitive to local idiosyncracies in
the data by working in the other direction.

A further distinction among the hierarchical algo-
rithms is in the type of data they require. Some operate
directly on pairwise measures of similarity or dissim-
ilarity between every pair of observations. This is
appealing from at least two points of view: first, the
initial data, which commonly take the form of n
observations on p variables, are not used by the
algorithm once the interpoint distances have been
determined; and, second, sometimes the raw form of
the data is a set of pairwise dissimilarities or “dis-
tances” between points and it is convenient to be able
to cluster points directly with these as input.

Perhaps the best known and most widely used of
the hierarchical algorithms are the single linkage
(nearest neighbor), complete linkage (farthest neigh-
bor) and average linkage methods. In the single link-
age approach, successive mergings are made according
to the rule that the two clusters to be joined are the
ones with the smallest interpoint distance between
them. The complete linkage procedure focuses on the
largest pairwise distances and joins those clusters that
have the smallest of these values. The average linkage
method operates similarly but on the average dis-
tances between members of pairs of clusters.

These three hierarchical methods have been singled
out not only because of their fairly widespread use but
also because they illustrate some of the trade-offs
among the algorithms. The single and complete link-
age methods have the attractive feature that the
topologies of the dendrograms are invariant under
monotone transformations of the distances. However,
the single linkage method is frequently shunned by
practitioners because of its propensity to produce long,
stringy clusters that are of little interest (see, e.g.,
Sneath and Sokal, 1973, page 223). The complete
linkage method has the opposite problem of being
“biased” in the direction of small compact clusters
(see, e.g., Sneath and Sokal, 1973, pages 222 and 223).
Other criticisms of complete linkage have been raised
by Hartigan (1981); see also Section 3.3.3. For more
discussion of the pros and cons of the single and
complete linkage methods, see Shepard and Arabie
(1979). The average linkage method is a compromise
between the extremes of the other two, but it does not
have their invariance feature.

The broad-based popularity of the hierarchical ap-
proach to clustering is illustrated by the fact that all
but two of the practical applications mentioned earlier
were based on some method of this type. Simplicity
and availability are probably the primary reasons
for their frequent use rather than performance or
optimality.
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The partitioning methods offer a class of alterna-
tives that are generally more flexible on the one hand
and more difficult to use on the other. In a typical
algorithm of this type, an initial specification of clus-
ter “centers” is made. Then observations are assigned
to the clusters according to their nearest cluster cen-
ters. Cluster “centers” are refined and observations
are rerlillldqiatedr. The procedure continues until some
type of stability is achieved. Among the details that
vary across the algorithms are the starting points, the
frequéncypin 'which updating of the cluster centers
occurs, the ﬂexibility to change the number of clusters
and the manner in which clusters are added or deleted.
Perhaps the best known of the partitioning procedures
is the k-means algorithm (see, e.g., Hartigan, 1975,
Chapter 4).

One can imagine situations where a standard hier-
archical or partitioning algorithm would be inappro-
priate for the data because of the need to allow for
overlapping clusters. Although easy to contemplate,
there has been relatively little work in this area.
Perhaps this is due more to the shortage of satisfactory
algorithms than to the potential for applications. Sev-
eral methods are mentioned by Seber (1984, pages 387
and 388). See also Arabie (1977), Arabie and Carroll
(1980) and Shepard and Arabie (1979).

This cursory discussion of clustering methods has,
to this point, concentrated on numerical algorithms
for identifying clusters. However, many practitioners
seem to rely on methods whose primary objective is
something else.

A common example is the use of principal compo-
nents analysis: the data are projected down into the
space of the first two or three principal components
and clusters are then identified by eye. Reliance on
the eyes may seem unscientific, but they do offer great
flexibility and efficiency in processing what they can
see. The more important issue is the appropriateness
of the projection. It offers, in some sense, the two- or
three-dimensional space of maximum variance in the
data, or it can be thought of as the two- or three-
dimensional plane of closest fit to the data configu-
ration. However, neither objective equates to cluster
seeking. In fact, it is easy to conjure up data for which
such a projection would be useless for “seeing”
clusters.

This illustrates the risks involved in relying on such
methods for extracting clusters. If cluster analysis is
a serious objective, then one is probably better off
using clustering methods—in spite of their limitations
and imperfections.

The static graphic displays mentioned in Section
2.2.1 could also be used for cluster detection by sub-
jective visual grouping of the pictorial representations
of the data. Without any clues as to the cluster struc-

ture, this can be hard when either the number of
variables or observations is large.

Sophisticated dynamic graphic systems that allow
one to see data from many different perspectives are
perhaps the best current hope for a genuine method-
ology breakthrough in multivariate data analysis gen-
erally and cluster analysis particularly. An easy-to-
use and accessible system that will systematically
traverse the data space along directions most likely to
reveal clustering is a realistic objective for the near
future. The directional guidance will come from nu-
merical intelligence gleaned from the data, the cluster
identification will come from human intelligence and
what is seen by eye, and the implementation will be
eased by the hardware and software tools now emerg-
ing for artificial intelligence. Many of the parts for
such a system are already in place or under vigorous
development (see, e.g., Asimov, 1985; Buja, Hurley
and McDonald, 1986; Donoho, Donoho and Gasko,
1985; Fisherkeller, Friedman and Tukey, 1974;
Friedman and Tukey, 1974; Huber, 1985).

2.3.3 Perspective

To place clustering methodology in perspective, it
may be helpful to dissect the main steps in the process
of using these methods and to comment on some of
the stumbling blocks. Three stages can be identified:
(i) the input stage where the data are adjusted as
needed into a form suitable for clustering, (ii) the
algorithm where a clustering method is applied to the
adjusted input data and (iii) the output stage where
the results of applying the algorithm are studied for
statistical sensibleness. Although the choice of algo-
rithm or algorithms is surely important, the other two
stages are at least as crucial for achieving sound
results.

The input stage involves the choice, transformation
and scaling of variables plus—for many algorithms—
commitment to a distance metric. It is obvious that
the analysis depends upon the selection of useful
variables in the first place. Coming up with an effec-
tive list is not always easy. For example, cultural and
personal biases may enter (Sokal, 1974). To be safe,
there is a temptation to throw in everything that
comes to mind, but that is also a trap. Extra variables
that do not reveal anything about the cluster structure
tend to dilute the analysis and cause the standard
algorithms to go astray. There are few statistical pro-
cedures to assist in variable selection for clustering;
see Fowlkes, Gnanadesikan and Kettenring (1987) for
one method.

One can also expect that the clustering results will
be very sensitive to transformations of the input vari-
ables. In archaeology, analyses are often based on
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trace elements and it is commonly argued that loga-
rithms of such variables should be employed. Such
transformations can, in effect, create, accentuate,
diminish or destroy clusters.

The scaling or weighting of variables needs careful
thought. In its simplest form, this may involve a
conscious scaling up of a variable in order to magnify
its impact relative to other variables. If these variables
are measured in the same units, then this rescaling is
relatively easy to rationalize.

Of more concern is how to equalize the roles of the
variables, especially when their measurement units
are not comparable, or, going further, to make the
results invariant to nonsingular linear transforma-
tions of the data. These are tricky problems that are
circular in the sense that one really needs to know
the cluster structure to begin to grapple with them
correctly.

A common solution to equalizing the roles is to
divide each variable by the square root of its total
variance. However, this form of equalization is artifi-
cial and can, e.g., inappropriately downplay a variable
that exhibits strong cluster structure. The only de-
fense for this approach is that it may be better than
doing nothing.

A more effective way to rescale the individual vari-
ables would be to utilize estimates of the within cluster
variability in place of the total variance. Statistics
based on the smallest absolute pairwise differences of
the data on a particular variable are natural to con-
sider for this purpose.

This line of thinking presumes that the within-
cluster variability is roughly comparable across clus-
ters. If this is true in a multivariate sense as well, then
pairwise differences in the vector observations can be
used in an iterative fashion to develop an estimate
W*, of the within-cluster variability without knowing
the clusters in advance (Art, Gnanadesikan and
Kettenring, 1982). Scaling the data by W*~Y/2 should
then render the clusters roughly spherical in shape
and hence amenable to detection by algorithms, like
the k-means one, that are particularly effective at
detecting such clusters.

More work is needed on effective ways of scaling
the data when the assumption of within-cluster ho-
mogeneity is inappropriate either in the univariate or
multivariate sense. In such cases, it may be necessary
to consider several possible scalings.

For algorithms taking distances or dissimilarities as
their inputs, one must consider, in addition to the
previously mentioned issues, the type of distance met-
ric that will most effectively reflect the kinds of dif-
ferences between observations that are important for
a particular problem. Two very popular types of dis-
tances are Manhattan, which is the sum of absolute

differences across variables for two observations, and
Euclidean, which is the square root of the sum of
squared differences. Many other types are discussed
in the standard cluster analysis books; see, e.g., Sneath
and Sokal (1973, Chapter 4).

An overview of algorithms has already been pro-
vided in Section 2.3.2. Each has limitations, but their
overall performance can be ameliorated by careful
choice of the inputs to them.

A temptation worth resisting is to take the output
of any clustering algorithm and to accept it without
scrutiny. Issues worth investigating include cluster
location, dispersion, orientation, separation, tightness
and stability. Elementary data analytic displays and
summary statistics can help address many of these.
Resampling and perturbation techniques are poten-
tially of use for checking on stability, but exactly what
should be done is not so clear.

Several ideas in this vein are mentioned in
Gnanadesikan, Kettenring and Landwehr (1977).
Some examples include:

Distances. Plot the distance of each object to
all the cluster centroids to check on the strength
of its association with a particular cluster.

Summary statistics. For any two clusters,
measure their separation on each variable accord-
ing to the p-value of the usual ¢ statistic to
find out which ones provide relatively more
discrimination.

Projections. Treating the clusters as fixed
groups, display them in the space of the first
few discriminant variables to assess separation,
tightness, orientation and dispersion; see also
Gnanadesikan, Kettenring and Landwehr (1982).

Sensitivity analysts. Check stability by adding
noise to the original data and comparing clusters
from the original and perturbed data sets.

There is a need for more ideas and more experimen-
tation on effective ways of analyzing the output of
clustering algorithms. This would include further de-
velopment of practical inferential tools for assessing
cluster validity. For further reading on statistical in-
ference in clustering, see, e.g., Bock (1983), Fowlkes
and Mallows (1983), Sneath and Sokal (1973, pages
284-287), as well as the discussion in Section} 3.3 of
this report. R

3. THEORY

3.1 Introduction

This section emphasizes certain theoretical statis-
tical aspects of the techniques of discriminant and
cluster analyses discussed in Chapter 2. Section 3.2
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pertains to discriminant analysis and includes a dis-
cussion of the performance of explicit discrimination
rules, the estimation of misclassification costs and
nonparametric techniques. Section 3.3 is concerned
with the theory of clustering algorithms and includes
a discussion of high density clusters, complete linkage,
single linkage, minimum spanning trees, mixture
modelﬁ{' inference about the number of clusters and
ultrametric and evolutionary distances.

3.2 Theorﬁtif:al Issues in Discriminant Analysis
;

3.2.1 Introduction

The questions and techniques which are addressed
in this chapter are quite simple to state, but are rich
in areas of application. Problems of computer-aided
diagnosis in medicine, military surveillance and
speech recognition, for example, can sometimes be
formulated in a common way. Observations are avail-
able from a source that belongs to a unique population
among a set of populations. For example, the obser-
vations might be gathered by radar as a plane flies
over a ship at sea. The ship is the source of the data.
It is assumed that the ship is one (the unique popu-
lation) of five ship types (the set of populations), and
the classification question is which one. Such data are
often termed “test” data or “test samples.” The set of
candidate populations is assumed to be finite. Indeed,
two is perhaps the most popular number. The values
of a set of features—that is, covariates, or “independ-
ent” variables such as the radar measurements on the
ship—are available for each unit to be classified, and
it is on the basis of these data that assignments are
made. In problems which are our focus here, some-
thing is assumed known about the conditional distri-
butions of features given population (or perhaps more
commonly “class”) membership. These distributions
are generally known or assumed to be known from
some previous experience—in which case the problem
of class assignment can be rather simple—or learned
from other data, a “learning” or “training” sample.
Prior probabilities of class membership and costs of
misclassifying candidate observations are implicit to
most schemes for “classification” or “discrimination.”
They will be made explicit in what follows. But before
that beginning of our more technical discussion, we
draw the principal distinction between the topic of
this section and the notion of “classification” which
is usually associated with clustering. Namely, here it
is assumed without question that the classes are well-
defined. Thus, what is discussed here applies to the
assignment of a cancer patient to one of several rec-
ognized stages of illness on the basis of some data,
and decidedly not to the question of how many stages
it makes sense to ascribe to the cancer itself. Solution
to the latter question, however fundamental to science
and technology, is a requisite preprocessing to the

tasks we confront here. Also, we will have little to say
regarding the fundamental question of feature selec-
tion, which has been so prominent a part of recent
literature on regression (see, e.g., Shibata, 1981). On
the other hand, the probability distribution of the data
within a given class will not be assumed to be known
in most of our discussion. In fact, it will be evident
that to do effective discrimination one need not know
these distributions—only one aspect of the rank or-
dering of certain linear combinations of their (gener-
alized) densities.

The formulation of “discrimination” which follows
is adapted from the recent book by Breiman,
Friedman, Olshen and Stone (1984). Suppose that the
variable Y can assume any integer value between, say,
1 and J < o and that the value of Y is unknown; Y
represents “class.” [Note: In Section 2 the total num-
ber of classes or groups was denoted as G instead of
J.] But suppose that features X of Y are observed or
are otherwise available. On the basis of X we wish
to infer Y. Assume further that there are J densities
f(- | Y =j) with respect to some dominating measure
p on a space X which is the range of X. We use a dot
to indicate the argument of the conditional density f
and a vertical bar to denote “given” or “given that.”
Generally speaking, X can be taken to be Euclidean,
but it is the decided exception in practice for all
the f’s to be absolutely continuous (with respect to
Lebesgue measure) because discrete features are com-
mon in applications. We denote by #(j) = P(Y =j)
the “prior” probability that an observation whose class
membership is unknown is of class j. Although the use
of prior probabilities can be controversial in other
settings, it seems difficult to formulate discrimination
in a satisfactory way without them. Also, in the pres-
ent context they often have a compelling frequentistic
basis. Applications of the technologies under discus-
sion are often in the context of new data like those of
an existent and at least moderately well-understood
data base.

A more controversial aspect of our formulation is
the set of numbers C(i|j), the cost of classifying an
observation to class i given it is of class j. It is typically
convenient to take C(i|7) =0and C(i|j) > 0 for i #
j. Consider the problem of classifying a patient who
enters an emergency room with a complaint of chest
pain as to whether he has suffered a heart attack. The
patient who desires that the most extensive medical
resources be made available to him just in case he has
actually had a heart attack may have C’s that are very
different from those of the director of a coronary care
unit, who must make careful and responsible alloca-
tions of scarce, expensive resources. (See Breiman,
Friedman, Olshen and Stone, 1984, pages 176 and
177.)

A (nonrandomized, measurable) decision rule
d—such rules are all that we need consider in
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discrimination—arises from a partition of X into dis-
joint subsets. If X belongs to the jth of these, we
decide that Y = j, that is, d(X) = .

The expected cost of the rule d is

J

J
Aglvr(j)[g C@lj)P(X)=1| Y=j)]

(18)

J

J
=X r(j)[Z C(ilj)f (x| Y=j)u(dX)].
Jj=1 i=1 {d(X)=i}

A rule dp is called a “Bayes rule” if its cost is as
small as possible. All Bayes rules have the same ex-
pected cost. One concludes that if d (x) = i implies

J

X2 a(j)CE)fEIY =])

J
= ; T(J)CE 1) f(x]Y =J)

for all i/, then d is a Bayes rule. Specialize to the case
J = 2 to see that for u almost all x, dg(x) = 1 implies

[xIY=1 _=@C@|2)
f&IY=2 " =(DCEI)’

So obviously we “know” a Bayes rule if we know the
“densities” f(- | Y = 1) and f(- | Y = 2). This obser-
vation is precisely why discrimination or classification
as pursued here is a subject of serious inquiry. Imagine,
as is the case in many applications, that X is, say,
twenty-dimensional, and that we have available learn-
ing samples of, say, hundreds or even thousands of
observations from f(- | Y=1) and f (- | Y = 2), which
are not assumed to be of any particular functional
form. Think of the crudest partitioning of the axes of
X into two parts each; the resulting product partition
has a total of 2%° bins, or more than a million. Most
will have no members of the learning sample at all.
The estimation of the densities is thus hopeless. But
from (19) it is clear that we need not know the den-
sities exactly. We only need to know when their ratio
exceeds a specified constant. Fortunately, it is far
easier to know when that occurs than it is to know
the densities themselves.

One needs a benchmark from which to gauge the
performance of any classifier d; an obvious candidate
is the no data Bayes rule. Such a rule assigns every
observation to a class i for which

J

2 7(j)CGEI))

J=1

(19)

is minimized. In case of ties, the usual convention is
to take the smallest minimizing index.

We have discussed learning samples in casual terms,
but by so doing we obscure what can be a troubling
distinction in theoretical work and an important dif-
ference between prospective and retrospective studies.

In the case of the former, one generally assumes that
the learning sample is of the form (X;, Y;), - -+, Xy,
Yx), where the pairs are independent and independent
of (X, Y), and each (X;, Y;) is distributed as (X, Y);
N is assumed to be a nonrandom constant. In retro-
spective studies it often happens that an existing data
base is searched for preassigned numbers of pairs in
each of the J classes. Then the assumption of uncon-
ditional independence is not reasonable, and the basis
for choosing the prior probabilities may be somewhat
unclear. Yet it can be plausible to assume that Y, is
1, ..., J valued for each n = 1, 2, --- and that
conditioned on Y, =j, for n = 1, the random variables
X,, n =1 are independent. As Efron (1975, page 898)
indicates, in most practice the distinction between
unconditional and conditional independence is ig-
nored. He details how in normal linear discrimination
and in logistic regression—both to be discussed—one
can deal theoretically with the more difficult case of
conditional independence. In other contexts, theoret-
ical problems regarding the subtle issue at hand are
raised by Olshen in his discussion of Stone’s (1977)
landmark paper and by Stone in his reply (page 641)
to the discussants. See also Gordon and Olshen (1978),
and especially Chapter 12 of Breiman, Friedman,
Olshen and Stone (1984). For ease of exposition, in
what follows the point of view is that the observations
that make up the learning sample are independent
and identically distributed.

3.2.2 The Fisher Linear Discriminant and Some of
Its Children

As with much of what is worthwhile in statistics,
the starting point for a discussion of explicit rules for
discrimination is a result of Fisher (1936). The Fisher
linear discriminant and procedures to which it has led
have been remarkably useful in practice.

Suppose that J = 2 and that given Y; = j, X; ~
N,(u;, Z). That is, X has a p-dimensional normal
distribution with mean u; and covariance =. Then, if
2 is of full rank and prime denotes transpose, one
calculates that a Bayes rule

d(x) =1 if B+ 8'x>0,

where
= MI_]'). B ol
&_mﬁmmuﬁ
(20) — Y(uiZ ' — w2 '),

B = (ui—w3)Z7"
Otherwise d (x) = 2.
The coefficients 8’ in (20) have been described by
Truett, Cornfield and Kannel (1967) as “the amount

by which the logit of risk increases for unit increase
in the risk factor.” The logit of risk is the log odds



50 STATISTICAL SCIENCE

(given its features) that an observation of unknown
class actually is of class 1. There is no loss in assuming
that = is nonsingular, because singular cases can al-
ways be made nonsingular by an appropriate reduction
of dimension. In practice, u,, u; and = are seldom
assumed known and must be estimated from the
learning sample. IfN,=#{i<N:Y;=1}and N, =

{{t s N;¥; = 2}, then the method of maximum

hkeﬂioo glves
wol oy ox
“R T Nl i=N:Y;=1 "
1
i =5 Xl’
#e N2 isN§,=2
(21)

N 1
2== X, — i) (X — i)’
N {isN:Y,:l ( #1)( #1)

+ 2 Xi-m)&X- ﬁz)'};
i=N:Y;=2

if, in addition, 7 (1) and = (2) are unknown, then
7(1) = N;/N and «(2) = N,/N.

The maximum likelihood estimates can be substituted
for their corresponding parameters in (20). There
results one version of an estimated linear discrimi-
nant. This estimate of d and various stepwise versions
of it are widely used in practice, even when the con-
ditional distributions of X given Y not only do not
share a common covariance, but also when the distri-
butions are not normal at all. Robustness of the Fisher
linear discriminant has been noticed by many users
and studied by some. One reference on the subject is
Lachenbruch (1982).

Even though the most important issues involve
errors of classification, one may ask from a decision
theoretic point of view how the estimators defined by
(20) and (21) perform when the model is correct. Thus,
for some positive definite matrix Q, one might study
the “risk”

(22) E{(B —8)'Q(B — B) | m, w2, T},

and ask whether any other estimator does at least as
well riskwise as § for all u;, . and =, and better for
some values. The phenomenon, which leads to the
coordinates of a vector of estimated parameters being
pulled toward a prechosen value, with salutary
decision-theoretic implications, surfaces here provided
N, =2, N, =2 and N > p + 3. This idea figures in
what has come to be known as James-Stein estima-
tion. See Stein (1956) and James and Stein (1961).
Haff (1986) has shown that in this case the estimated
Fisher linear discriminant coefﬁments 8 can be im-
proved by improving the estimate 27! of 2. Basi-

cally, if one adds a multiple of Q which depends on
the trace of £7'Q to £ before inverting and substitut-
ing into (20), then the resulting estimate of 8 improves
upon B, at least in the sense given by (22).

Another departure from the substitution of max-
imum likelihood estimates into (20) is given by
“logistic regression.” (See Section 2.2.5.) Its starting
point is the observation that if the stated normal
model is correct, then

exp(B, + 81 X)
P(Y=1 = ,
(23) ( 1X) [1 + exp(B, + 81 X)]

P(Y=2|X)=1-P(Y=1|X).

To estimate (By, 8{), one can maximize the condi-
tional (binomial) likelihood based on (23). (This max-
imization must be done on a computer by numerical
maximization techniques (see Section 4.2.3), but is
relatively easy as such problems go because the like-
lihood is unimodal and logarithmically concave.)
These estimates can be substituted into (20). Of
course, if the original normal model is correct, this
estimated d must somehow be less efficient than that
based on (21), which utilizes the full likelihood func-
tion. However, the “logistic” likelihood function is
valid under more general assumptions of the exponen-
tial family than is the likelihood function which leads
to (21). Efron (1975) has investigated the efficiency of
logistic regression relative to estimated Fisher linear
discrimination when the normal model is correct and
found it to be “between one half and two thirds as
effective as normal discrimination for statistically in-
teresting values of the parameters.”

Yet another departure from the model with which
this section begins is this. Suppose that given Y; = j,
X; ~ N,(u;, Z;), where 2, may not equal =,. (See
also Section 2.2.4.) It is straightforward to compute a
Bayes rule, but several individuals have taken a dif-
ferent point of view. Suppose first that p = 1. Then in
an obvious notation and as Becker (1968) indicates,

Im = gl
01+¢72

is a useful measure of the separation of the two con-
ditional distributions. If p > 1, then because linear
functions of normal vectors are normal, one might
consider b’(u; — po) for various nonrandom vectors
b.If Y=j,b’X;~N(b’'u;,b’Z;b), and thus Becker’s
measure extends to

|b,(#1 — #2)]

5®) = 5 Zb)” + (b Z,0) "

a criterion actually studied earlier by Anderson and
Bahadur (1962). Suppose now that one chooses to
compute a linear function of X, say b{X, so that
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d(X) =1 if b{X = ¢, and otherwise d(X) = 2. If
the goal is to minimize P(d(X) # Y| Y) (that is, the
probability of a mistake), then pick b, to maximize
S(b) and

— (b622b0)1/2b6#1 + (b621b0)1/2b6ﬂ2
(b’ 3 by) + (b 3, b))

This fact follows from work of Anderson and Bahadur
(1962). Chernoff (1972, 1973a) indicates how to com-
pute by, and notes that the common probability of a
mistake is ®(—S(b,)). Of course, in order to imple-
ment the Anderson-Bahadur-Chernoff ideas in prac-
tice, one must estimate those parameters which are
not known.

In case J > 2, the slick appearance of the Fisher
linear discriminant Bayes rule disappears. Generali-
zations of logistic regression to this case have been
studied by many authors. Chapters 4 through 6 of the
book by McCullagh and Nelder (1983) are an excellent
recent summary. We choose not to provide details
here because the issues which arise pertain to model-
ing conditional distributions of X given Y, and the
main aspects are not discussed in the explicit context
of discrimination.

3.2.3 Estimating Misclassification Costs

When a decision rule d is estimated from a learning
sample, then it follows from Fubini’s theorem that the
expression (18) for the expected cost of d is really the
conditional expected cost given the learning sample.
The unconditional expected cost is the expectation of
(18) with respect to the distribution of the learning
sample: n independent copies of the joint distribution
of (X, Y). Of course, that distribution is assumed here
to be unknown, and we are left to estimate the uncon-
ditional expected cost from data. (See earlier discus-
sion in Section 2.2.1.) In the best of all worlds, we
have available a genuinely independent test sample,
taken to be independent of the learning sample, dis-
tributed as (X, Y), and large enough to permit reason-
able inferences. This happy situation occurred, for
example, with the work of Goldman, Weinberg,
Weisberg, Olshen, Cook, Sargent, Lamas, Dennis,
Deckelbam, Fineberg, Stiratelli and the Medical
Housestaffs at Yale-New Haven Hospital and
Brigham and Women’s Hospital (1982), but unfortu-
nately seems to be the exception rather than the rule
in practice. In the absence of such a test sample we
are left to estimate the misclassification cost associ-
ated with the prospective use of d from the learning
sample.

The starting point for the estimation of misclassi-

fication costs from the learning sample is the so-called
“resubstitution” estimate. If the prior probabilities are
assumed to be known and the learning sample is of

cardinality N, then the resubstitution estimate is

J

m(J) :
(24) El T=N.Y, =] iSN:EY':j Cd(X) 1))

If the n’s are not assumed to be known, then the
analogue to (24) is
1 N
(25) N 2 Cd(Xy)| Ye).
k=1

These resubstitution estimates may occasionally be of
practical value with some parametric procedures such
as the Fisher linear discriminant. However, they are
subject to enormous over optimistic biases for non-
parametric techniques such as those discussed in the
next section. One approach to overcoming the biases
is that of cross-validation. By m-fold cross-validation
(see Breiman, Friedman, Olshen and Stone, 1984) is
meant this. The learning sample is divided at random
into m disjoint subsets of approximately equal size.
Call them L, - - -, L,.. Successively, the data of L, are
deleted to yield L. The classifier d’ is computed
from those data in L’ according to the same algo-
rithm by which d was calculated from all of the data.
Then L, is used as a test sample. The process is
repeated for v =1, . . -, m and the results averaged. In
order to simplify the exposition we suppose in what
follows that (25) applies. Thus, the estimated cost of
misclassification is

le_m ©(X) Y.

m,-s mN—N i;(x,-,%,)eLv Cl (Xl)l Y.
The most widely advertised choice of m is N, the
“leave-one-out” method. However, N-fold repetitions
of computationally expensive procedures is not prac-
tical and seems not to be best for theoretical reasons
in some cases (see Efron, 1983, page 327).

The discussion thus far has been vague as to how
the L, are chosen. For example, one might think of
stratifying the sampling by class even in the present
context in which the 7’s are not assumed known. With
cross-validation stratified, each class is as nearly as
possible equally represented in each of the m L,. The
results on the effects of enforced stratification are
skimpy and specialized—see Breiman, Friedman,
Olshen and Stone (1984, pages 80, 179, 245-247) and
Olshen, Gilpin, Henning, Lewinter, Colling and Ross
(1985, Section 5)—but thus far what theory there is
suggests that stratification does not hurt, und typically
helps.

One popular approach to the estimation of misclas-
sification costs was termed the “bootstrap” by Efron
when he introduced it in 1979. His starting point is
the resubstitution estimate (25). To this he adds a
bias adjustment, which is arrived at as follows. Gen-
erate a random sample, a “bootstrap” sample, with
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replacement from the learning sample. Compute a
classifier d® from the bootstrap sample by the same
algorithm which produced d. Classify the learning
sample and the bootstrap sample by d 2, and compute
their misclassification costs. Because d? is tailored to
the bootstran sample, it typically will do better for the
bootstrap sample than for the learning sample. The
difference in these two misclassification costs is the
estiméted bias adjustment. If a superscripted asterisk
denotes membership in the bootstrap sample, then the
bias a“djusﬁm‘qnt can be written
1 Nl 1 N

(26) = ¥ C(d2(Xp)|Y) =% ¥ C@P(X¥)| YH).
N = Nz

Expression (26) can and should be computed from
independent bootstrap samples and averaged to obtain
an overall bias adjustment, which then is added to
(25) to give the final estimated misclassification cost
for d.

By way of comparison, the bootstrap technique
tends to be less variable in its estimation of misclas-
sification costs than is cross-validation. But it can
be more biased. For parametric procedures in which
resubstitution estimates are not so severely biased,
the bootstrap typically outperforms cross-validation,
as Efron’s work indicates (see Efron, 1983, and its
references). However, in utterly nonparametric sit-
uations, the bootstrap can badly underestimate mis-
classification costs (Breiman, Friedman, Olshen and
Stone, 1984, Section 11.7) and even be inconsistent.
The cited example—which amounts to a single nearest
neighbor rule applied to a problem where X and Y are
actually independent—and one way out of the severe
biases possible with the bootstrap rest on the same
simple observation for a starting point. That is, in any
given bootstrap sample, the expected number of ob-
servations (from among the N in the learning sample)
which actually appear is

N—1\" .
N(-—l-v—) = N1 —e™),

or approximately 63.2% of the learning sample.
Efron (1983) has several approaches to correcting
bootstrap biases, but none more intriguing or more
successful in his simulations than the “.632 esti-
mator.” The .632 estimate of misclassification cost is
a weighted average of the resubstitution estimate (25)
and the bootstrap estimate computed for those mem-
bers of the learning sample not occurring in the boot-
strap sample. The respective weights are .368 and .632.
Neither Efron’s (1983) work on this new estimate of
misclassification cost nor the results of Gong (1982)
are definitive; and, moreover, the .632 rule only partly
meets the criticism of Breiman, Friedman, Olshen and
Stone. Yet it still seems to merit further study.

3.2.4 Nonparametric Techniques

It is clear from Section 3.2.1 that any procedure by
which probability densities are estimated carries with
it a technique for discrimination. So, for example,
kernel and series expansion procedures for density
estimation imply corresponding procedures for the
problem at hand. At the same time, it is clear, too,
from Section 3.2.1 that for most problems of practical
interest the relevant densities cannot be estimated at
all well. Nonetheless, there are available a variety of
procedures which confront the discrimination problem
directly and are not tied to parametric assumptions.
In this section two approaches, nearest neighbors—of
which mention has been made—and recursive parti-
tioning, are discussed. These techniques are applicable
to the general regression problem as well. Not only
are discrimination and density estimation closely con-
nected, but also discrimination is closely related to
regression, and regression can be viewed as a special
instance of generalized density estimation. It is to
these connections that we now turn.

Consider a general (X, Y) pair with Y real-valued
and E(|Y]) < oo; if X is as before, then h(x) =
E(Y|X = x) is the regression of Y on X. It is a
particular case of this situation that Y has finite range
and assumes only the values 1, - - -, J. Then, with an
obvious indicator function notation, one may write

J
(27) Y= % jliv-.
j=1

The problem of discrimination can be viewed thus as
a special regression problem in which Y can be written
as in (27) and the estimate of h(x) is of the same
form, say

J

(28) Zl jI[f(X,learningsample)=j]-

j=
If we return to the general regression problem, then
we may think of u defined for measurable subsets B
of X by u(B) = E(YIxep;). The measure u is abso-
lutely continuous with respect to the distribution of
X, and in fact the regression function h(x) is the
density (Radon-Nikodym derivative) of u with respect
to that distribution.

There could hardly be a simpler approach to dis-
crimination than that of the single nearest neighbor
rule. Its motivation is that of the physician who ten-
tatively diagnoses his present patient as having the
same disease as what was known to be the correct
diagnosis for that past patient whose symptoms and
history most closely match those at hand. With this
motivation it may seem reasonable to the physician
to compare the present patient with a number of
previous patients who are also quite similar, although
not necessarily the “most” similar. Thus we are led
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to more general nearest neighbor type procedures.
In subsequent discussion, for convenience we take
C@i|j) = 1if i # j, 0 otherwise. Much of the pre-
sentation is based on the important paper of Stone
(1977).

Assume no particular functional form for the joint
distribution of X and Y. Then it follows from our
assumptions regarding C and the formulation of Sec-
tion 3.2.1 that 'a Bayes rule dp satisfies

ds(x)i if P(Y=1i|X)=P(Y=1"|X)

(29)
for all i’.

Denote its cost of misclassification by R. Motivated
by the informal discussion of the previous paragraph,
imagine estimating P(Y = i|X) from the learning
sample by

N
(30) 2 WNk(X; X17 M) XN)Ii(Yk)7
k=1

where the W’s are weights and I;(Y,) = 1if Y, = |,
and 0 if not. The estimated conditional probabilities
can then be plugged into (29) to estimate a Bayes rule.
The cited simple nearest neighbor rule is clearly of
this form, where

Wi = Wae(X) = WX Xy, -+, Xn) =11

for X; the set of covariates in the learning sample
which is “closest” to X. We can ask what happens as
N grows without bound to the expected cost of a Stone
type rule, i.e., a rule of the form (29), (30). In our
formulation, we suppose (with slight loss of generality)
that Wy, = 0, all N, k, and that Y4, Wy, = 1. Stone
indicates that the limiting expected cost of any such
classifier is at most

J
31 2 — — <
(31) R( = R> oR
no matter what be the joint distribution of (X, Y)
provided only that two conditions are satisfied:

foreach a>0

(32) N
> WXy x,-x)5a) = 0
k=1

in probability; and there is a D = 1 such that, for every
(measurable) nonnegative function f on X

(33) E(IE1 WNk(X)f(Xk)> = DE(f(X)).

If we take X formally to be Euclidean, then any
positive definite norm will do in (32), which is simply
a requirement that the classifier be asymptotically
“local.” Although (32) permits rules to do well in large
samples for general distributions of (X, Y), any clas-
sifier which satisfies it cannot be asymptotically effi-

cient in any reasonable sense relative to a Bayes rule
for a parametric problem.

Note that Wy(X) f(X,) has the same distribution
as Uni(X}) f (X), where

Uni(Xi) = WX X, -, X, -0+, Xi).

So the left-hand expectation in (33) can be written

N
E(f(X) b UNk(xk)>.

Therefore, (33) says that the random transformation
which takes f(X) to f(X) Y&, Uni(X) must be
bounded from the linear space of random variables
with finite expectation to itself. This kind of condition
resembles other necessary and sufficient conditions
for convergence in ergodic theory. Stone’s Theorem 1
puts it as both sufficient and in a certain sense nec-
essary for his consistency results. Indeed, for any
classifier constructed so that (32), (33) and

(34) max W (X) — 0 in probability as N — o
k

are satisfied, the limiting expected misclassification
cost is R itself. Of course, (34) entails that with arbi-
trarily large probability, no finite number of observa-
tions determine the rule.

An instance of the result which precedes and in-
cludes (31) was discovered by Cover and Hart (1967)
in the case of single nearest neighbor classifiers. Their
arguments apply to the situation where, with proba-
bility 1, nearest neighbors are uniquely defined. In
Stone’s work, any weight attached to kth nearest
neighbors is divided equally when there are ties. Also,
his notion of distance can involve a random scaling so
that certain coordinatewise affinely invariant rules
are covered. The first important theoretical work on
the consistency of nearest neighbor classifiers in the
presence of some regularity was by Fix and Hodges
(1951). They gave the K = K(N) nearest neighbors
equal weights, where K — o and K/N — 0.

In practice, nearest neighbor rules can be victimized
by missing data, and by noise coordinates which
should have been eliminated in the selection of co-
variates. Also, a criticism which might be made of
Stone’s (1977) work is that the weights are insuffi-
ciently adaptive because they ignore the Y’s of the
learning sample. An extension to the case where the
W’sdependon Yy, ..., Yyaswell as X;, -- -, Xy was
made by Gordon and Olshen (1980). The: were study-
ing tree-structured recursive partitioning rules, to
which we turn next.

Tree-structured rules are the subject of the recent
book by Breiman, Friedman, Olshen and Stone (1984).
(We assume that the reader is familiar with the basic
notion of a binary tree. A formal definition and details
are given in Section 10.1 while an informal approach
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that relates trees, partitions and classifiers can be
found in Sections 2.2 and 2.3 of this paper.) These
techniques deal in a salutary fashion with the three
mentioned shortcomings of nearest neighbor proce-
dures, and they have proven successful in practice.
The basic theme of recursive partitioning is based on
the learning sample, X. The range of X is successively
partitioned, or split, into “boxes” by a sequence of
lineatfI inequalities. (Unordered discrete covariates can
be handled, too.) The partitioning amounts to choos-
ing a{seqweyce of yes-no questions that can be an-
swered by knowing values of the features. A binary
decision tree is associated with the process of parti-
tioning, and the associated classifier d is constant on
the terminal nodes, which correspond to terminal
subsets of the partitioning; X corresponds to the root
node of any tree T. The partitioning of a node t € T
is according to some criterion which is designed to
produce daughter nodes more homogeneous as to class
content than their parents. More precisely, if for any
node s, P(s) = {#i = N:X; € s}/N, and i(s) is an
index of the “impurity” of the node s, then one may
state the rule for partitioning ¢:

Form left daughter node t; and right daughter
node ti so as to maximize

P(t)i(t) = [P(t.)i(ts) + P(ta)i(t)].
A popular index of impurity is the so-called Gini index

2 CELHpEIt)pGiTt),

where

#li=N:X;Esand Y; = [}
#li= N:X; € s} ’

p(l]s) =

and usually C(i|j) is taken to be 0 or 1 according to
whether i = j or not. A large tree is grown initially,
according to the cited splitting criterion or some other.
(There are built-in constraints to this initial tree
development which restrict the tendency of tree-struc-
tured methods to “sliver” nodes.) At each terminal
node a Bayes rule is estimated from the members of
the learning sample which belong to that node. Be-
cause the terminal nodes partition X, the process
completely specifies a classifier d.

For any tree T and any « = 0, a measure of the
merit of T is

R.(T) = Resub(T) + a|T|,

where Resub(T) is the resubstitution estimate of d’s
misclassification cost, and | T | is the number of ter-
minal nodes of T. Clearly, R, (T) involves a trade-off
of “bias” in its first term and “variance” in its second.
For each « the large initial tree mentioned in the last
paragraph has a subtree which is optimal in the sense

of being the smallest subtree which minimizes R,. As
a increases, there arises a finite, nested sequence of
optimally pruned subtrees. (To prune a tree at node ¢
is to delete the branch of the tree that has ¢ as its
“root node.”) The estimation of how well each will
perform if used prospectively is accomplished by cross-
validation; for some reason 10-fold cross-validation
has been used in a variety of applications. The opti-
mally pruned subtree for which the cross-validated
misclassification cost is smallest is an obvious candi-
date for prospective use. Arguments have been ad-
vanced and techniques developed for some further
pruning of this initially grown tree—see Breiman,
Friedman, Olshen and Stone (1984).

If the partitions of X are nested as N grows, then
the martingale convergence theorem bears upon the
consistency of recursive partitioning decision rules.
Regardless, available arguments all lean heavily on
the uniform convergence of empirical probabilities
of certain sets to their true probabilities. Thus, the
pioneering work of Vapnik and Chervonenkis (1971,
1974) bears upon the asymptotic properties of tree-
structured methods. Consistency in the sense de-
scribed for nearest neighbor rules has been established
for many recursive partitioning rules, and consistency
with probability 1 has been too. Always the diameter
of p is required to tend to 0, but also log N/N =
o(P(t)) is required. Finally, the sizes of nodes must
become “small” asymptotically. For details, see Chap-
ter 12 of Breiman, Friedman, Olshen and Stone (1984)
and the papers of Gordon and Olshen (1978, 1980,
1984).

There are new procedures which may prove to be
competitive with those that have been discussed. Both
projection pursuit classification and additive logistic
regression seem particularly promising. But, at this
writing, substantial track records are lacking and their
story will wait for another day.

3.3 Statistical Theory in Clustering

3.3.1 Introduction

Classification, placing sets of objects in similar
classes, is necessary for language and thought and is
the foundation of statistical data collection and of
probability judgements. You believe this toss of a coin
gives heads with probability ¥z because you classify it
with other remembered coin tosses, half giving heads
and half giving tails. You predict rain after thunder
because you classify the thunder with other thunders
followed by rain.

The statistician is pleased to inform the biologist
that his fossil shellfish divide distinctly into three
clusters evidenced by a trimodal distribution of the
measurements of number of whorls and relative di-
ameter of the innermost and outermost chambers of
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the shell. The biologist is not surprised because they
looked like three different species and he made those
measurements that he thought would best distinguish
them. Classification precedes measurement.

Statistical theory cannot provide a complete theory
of classification. We cannot say how similarities
should be judged, although we can give technical as-
sistance in constructing distances. See Section 2.3.3.
Different classifications are right for different pur-
poses, so we cannot say any one classification is best.
Statistical theory in clustering provides a testing
ground for various clustering methods—we discover
how well the methods work for various idealized forms
of data, and reject those methods that fail, at least for
application to similar types of real data.

One general model is that the data form a random
sample X;, X,, -+, X,, from some population with a
probability distribution P. A technique produces some
clusters in the sample. A theoretical model generates
some clusters in the population with the distribution
P. We evaluate the technique by asking how well the
sample clusters agree with the population clusters.

Perhaps you wish to classify the 50 United States
by their agricultural products, where the population is
the sample. Nevertheless, you might not want to use
a clustering technique, such as complete linkage (max-
imum diameter) clustering that produces clusters that
do not depend asymptotically on the distribution P.
Frequently, you have available a sample that cannot
be regarded as random. You collect all the specimens
available at the site, but you wish to form a taxonomy
of general utility. Some species will be represented
much more highly than others; if you treat the whole
as a random sample, the overrepresented species will
receive too much attention. In survey sampling theory,
much attention is paid to probability sampling, where
the probability that each individual in the population
enters the sample is known; perhaps this theory can
be adapted to clustering problems. We do not usually
know selection probabilities, but we might be able to
progress by assuming the selection probabilities are
the same within each cluster. For example, in the
normal mixture model we could estimate the normal
parameters for each component in the population, but
not the mixing proportions, because these would be
confounded with unknown selection probabilities.

3.3.2 High Density Clusters

A model suggested by clusters of stars is that
a cluster corresponds to a high density region in
p-dimensional space (Hartigan, 1975).

Let P be the population distribution, let x be a
typical point in p-dimensional Euclidean space, let f
be the density of P with respect to Lebesgue measure.
The population clusters are the maximal connected

subsets of the high density region {x|f(x) = ¢} for
each c. The family of population clusters forms a tree,
in that two clusters are disjoint, or one includes the
other. This model is thus suitable for examining hi-
erarchical techniques. Taking the density of P with
respect to Lebesgue measure rather than some other
measure ensures that the population clusters are the
same if a nonsingular linear transformation is per-
formed on the space.

For discrete data, we might assume that P is sup-
ported by the vertices of a cube in p-dimensional space,
and take f to be the density with respect to the uniform
distribution on the vertices. A set of vertices is con-
nected if any two vertices in the set may be connected
by a chain of cube edges between vertices in the set.
The same definition of high density clustering may
then be used.

Methods of density estimation produce clusters in
the sample, namely the high density clusters corre-
sponding to the estimate. This is to be expected be-
cause density estimates at a point depend on nearby
sample points, and the definition of “nearby” corre-
sponds to the similarity assessments in clustering
methods. (Probability rests on the similarity between
what we know and what we are guessing!) Conversely,
hierarchical clustering methods may be interpreted as
estimates of density contours, although the density
itself is only specified by the clustering up to a
monotone transformation.

3.3.3 Agglomerative Methods for High Density
Clusters

Agglomerative methods define a distance between
any two possible clusters, and the clusters are con-
structed by beginning with n singleton clusters, one
for each point, and successively joining the closest
pairs of clusters to form new clusters. These methods
are poor estimates of high density clusters.

Complete linkage, in which the distance between
clusters is the maximum distance between points in
the two clusters, is the worst of all standard methods
for high density clustering. If the distribution P is
carried by a compact set C on which the minimum
density is positive, I conjecture that the asymptotic
behavior of the complete linkage clustering depends
only on C, not on P. To be more precise, fix three
points X, y, z and, for a given sample size n, let the
closest sample points to them be x,, y., .. Then the
conjecture is that the probability that x, and y, are
clustered together, before x, and z, are, depends only
on Casn— oo,

Complete linkage remains a popular method be-
cause it gives nice evenly bifurcating trees for almost
all data sets—the real world, not so nice, does not
show through. If P is supported by disconnected sets,



3

56 STATISTICAL SCIENCE

then complete linkage will discover those sets, which
depend only on C, the supporting set. What upsets
complete linkage is the little fuzz of observations
between the high density regions.

Why does complete linkage fail? After we have
joined the small clusters together, all clusters have
roughly the same diameter (if the maximum diameter
of th plu'sthsl is d, no neighboring pair of clusters can
amalgamate to a cluster of diameter less than d, so at
least one of the pair must have diameter d/2 or larger,
assumingi,that‘ some pair of points in the two clusters
are negligibly close). Later decisions are made entirely
on the pairwise distances between clusters, which do
not depend on the number of points in the clusters;
thus at this stage information about the distribution
of points is already lost.

Average linkage defines distance between clusters
as the average distance between pairs of points in the
two clusters. It is known in the numerical taxonomy
literature as the unweighted pair group method. It
behaves somewhat better than complete linkage in
sensitivity to the population distribution because the
distance measure is affected by the number of points
in the clusters. If two neighboring clusters are formed
that cut across a high density region, the distance
between clusters will be smaller than usual because of
the many close pairs of points, and so these neighbor-
ing clusters will be quickly joined identifying the high
density region. See Figure 1, where the clusters (2, 3)
and 4 are joined before (2, 3) and 1 so that the high

Theoretical
population
1 2 3 .
Pt e e data
| e Y Y Joining until 4

clusters remain

Complete Associates 3 with
Linkage 1 before 4,
missing high
density cluster

Associates 3 with

Average
Linkage 2 but not with 1,
before 4.
High density
clustering intact.
Single
Linkage W

Fic. 1. Comparative behavior of complete, average and single

linkage.

Associates 3 with
4 before 1or 2.

density cluster (3, 4) is separated from the high density
cluster 1. The weighted pair group method, in which
distance between two clusters is just the average dis-
tance between component clusters (rather than
points), should be no better than complete linkage,
because after a small amount of joining the numbers
of points in the various clusters becomes irrelevant.

The centroid method measures distance between
clusters 1 and 2 by nin.p®(Xi, X2)/(n, + n.), where n;
is the number of points and X; the mean point in the
ith cluster and p is Euclidean distance. This ensures
that the two clusters are joined to least increase
the within cluster sum of squares; the method is the
hierarchical analogue of the k-means algorithm. The
resulting clusters are sensitive to the population dis-
tribution; the intermediate clusters (those obtained by
a moderate amount of joining) are smaller in diameter
in high density regions. Nevertheless these clusters
are not consistent for high density clusters—it is easy
to have the edge of a large cluster join with a neigh-
boring small cluster rather than with the other parts
of the large cluster.

3.3.4 Single Linkage, the Minimum Spanning Tree
and Percolation

Single linkage clustering measures the distance be-
tween clusters as the minimum distance between pairs
of points in the two clusters. Single linkage clustering
is consistent for high density clusters in one dimension
in the sense that two fixed disjoint population clusters
will eventually lie within some two disjoint sample
clusters with probability one. Only approximate con-
sistency holds in more than one dimension: let A and
B be two disjoint population clusters, and define the
distance between two sets C and D,
p(C, D) = sup inf p(x, y).
xeC yeD

If p(C, D) is small, every point of C has some point of
D close to it, so that D approximately includes C. As
n — oo, with probability one, there exist disjoint single
linkage clusters A, and B, such that p(4, A,) — 0,
p(B, B,) — 0 (Hartigan, 1981). The single linkage
clusters are straggly affairs whose contours by no
means approximate the population density contours,
but each of the two single linkage clusters has a
point near each point in the two population clusters
(Figure 2).

Single linkage clusters have a number of equivalent
characterizations that make single linkage attractive
for theoretical study. For example, divide the points
into two clusters so that the minimum distance be-
tween the two clusters is as large as possible, and
continue dividing the clusters obtained in the same
way. This produces single linkage clusters; the other
agglomerative methods have no simple (‘livisive
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A, and B, are disjoint sample clusters
approximating A and B.

FiG. 2. Single linkage’s approximate consistency.

characterization, and so it is to be expected that the
large clusters they produce have no known desirable
properties.

Replace each point by a sphere of radius d and
consider the maximal connected subsets of the union
of spheres, for all d. These are the single linkage
clusters. Clusters of this type are studied in percola-
tion theory (Broadbent and Hammersley, 1957;
Smythe and Wierman, 1978) and so asymptotic results
about single linkage clusters may be obtained from
percolation asymptotics.

The nearest neighbor density estimate is, in p
dimensions,

f[r(x) = C/inf oP(x, X;).

The high density clusters of f, are the maximal con-
nected subsets of unions of spheres of the previous
paragraph, the single linkage clusters. The nearest
neighbor density estimate is a poor estimate, not con-
sistent for the true density; it is remarkable that single
linkage clusters retain approximate consistency. Fol-
lowing Wishart (1969) and Ling (1973) we should use
high density clusters corresponding to some form of
kth nearest neighbor density estimation, where for
consistency k— o as n— o but k/n — 0. For example,
we define distance between clusters in a joining algo-
rithm by the kth smallest among distances between
pairs of points in the two clusters. This clustering
method is the analogue of kth nearest neighbor dis-
criminant procedures, in which a new point is allo-
cated to the class that appears most frequently in its
k nearest neighbors.

Another characterization of single linkage clusters
is through the ultrametric

p*(x,y) = inf

sup p(X;, Xi+1).
X=X,Xg- - Xp=y i

The ultrametric satisfies p*(x, y) < sup[p*(x, 2), p(y,
z)] and determines a family of clusters {x | p*(x, y) <
C} for various C, y, that turn out to be the single
linkage clusters.

Finally, the minimum spanning tree is the graph of
minimum total length connecting the sample points.
Gower and Ross (1969) show that single linkage clus-
ters are the connected sets obtained by successively
deleting, largest to smallest, the links of the minimum
spanning tree. Thus single linkage computation and
asymptotics are intimately related to minimum span-
ning tree computation and asymptotics.

3.3.5 Mixtures
The population density

f= pifi

itg-

13

is a mixture of components f; in proportions p,. This
may be viewed as a model for k clusters. The f; and p;
are unidentified without some further constraints.
The usual assumption is that each f; is a member of
the same parametric family, the multivariate normal
(e.g., Wolfe, 1970; Day, 1969; Dick and Bowden, 1973);
however, the mixture model may also be applied
to general sample spaces, not only to points in p-
dimensional Euclidean space. In discriminant analy-
sis, a random observation X is associated with a
classification I into one of k classes. Suppose that I
takes the value i with probability p;, and that X given
I = i has density f;. Then the marginal density of X is
just f = ¥ p:f.. In discriminant analysis we know X
and I; in clustering we know only X; thus the mixture
model for clustering corresponds to the marginal prob-
ability model for discriminant analysis. Lack of knowl-
edge of the classification variable makes the general
mixture model unidentifiable however; $o further con-
straints are needed for clustering.

Let p(i| x) = p:f:(x)/Y, p:f;(x) denote the posterior
probability that the observation x belongs to class i.
These posterior probabilities are useful in maximum
likelihood estimation for the model

f(x) = X pifi(x, 6;)

where the f; are known up to the parameter 8, taking
values in r-dimensional Euclidean space. Assume
the f; are differentiable with respect to 6;,. Then the
maximum likelihood estimates for p;, 6; based on
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observations X;, X,, - - -, X, satisfy

oL o d _
(i) El pGlX; )33,- log fi(X;, 6;) = 0,

n

@ p=3 2R

j=1 n
The eé’!ﬁiing‘éfony proceeds in alternating steps: given
p(i| X;), estimate 0; weighting the observations X; by
their probability of belonging to the ith component;
then given these estimates 0;, estimate p;andp(i | X;);
then repeat the first step.

Rao (1948) appears to have been the first to use
maximum likelihood for normal mixtures. See also
Day (1969), Wolfe (1970), Hosmer (1973) and Everitt
and Hand (1981). We can’t show that the alternating
procedure leads to the true maximum likelihood esti-
mates, or even that the likelihood increases after each
step, even in the simple case of normal mixtures in
one dimension. The standard maximum likelihood
regularity conditions do not hold in the normal case,
and the usual asymptotic consistency and distribution
results do not always hold.

For well-separated clusters, the posterior probabil-
ities p(i| X;) are all near 0 or 1, and the maximum
likelihood solution is approximated by dividing the
observations into & clusters, estimating 8; by maximum
likelihood separately within the clusters, and finding
that division into k clusters that maximizes the prod-
uct of the likelihoods. This procedure is the strict
maximum likelihood estimate for the model in which
the observations {X;} are supposed drawn from com-
ponents {I;}, and the components are regarded as
unknown parameters. The likelihood is

*y In) 01; 02’ tt ok]
=11 fl,(Xj, 01,)-

In practice we can rarely afford to search all partitions,
but we use an alternating step algorithm:

(i)" Given [;,

select 0; to maximize [] f:(X;, ;).
I=i

J

L[Xl’ f Xny Il; M

(i)’

Given 0;,

select I; to maximize f; (X}, 0 ).

Thus given the clusters we estimate 6; by maximum
likelihood, and given the 8; we specify cluster mem-
bership to make X; most likely. This is the alternating
method for mixture maximum likelihood when the
p(i]| X;) are all zero or one.

In the particular case when

fiX) = @2m) " exp[-"%(X — )" (X — w)],

the above algorithm has a simplified form known
in the clustering literature as k-means. (See, e.g.,
MacQueen, 1967; Hartigan, 1975). We select u; to be
the mean of the observations in the ith cluster, and
we allocate the observation X; to that cluster i that
minimizes the distance between X; and ;.

3.3.6 The Number of Clusters: Modes

In the high density clustering model, we associate a
family of clusters with each mode of the density f: f
has a mode at m if there is a neighborhood M of m
such that f(x) < f(m) for x € M, and f (x) < f (m) for
x in the boundary of M. There are disjoint high
density clusters only if f is multimodal. Thus we can
test for the presence of clusters by testing for multi-
modality.

For X one-dimensional, unimodal and bimodal den-
sities may be fit by maximum likelihood giving a
likelihood ratio test for bimodality, but it is difficult
to handle the large contributions to the likelihood
made by small intervals between neighboring obser-
vations. A better test is the dip test, which measures
the maximum difference between the empirical distri-
bution function, and the unimodal distribution func-
tion chosen to minimize that maximum difference.
The dip approaches zero for unimodal distributions,
and some non-zero value for multimodal distributions,
as the sample size increases. It is therefore consistent
for distinguishing unimodal from multimodal distri-
butions. It is argued in Hartigan and Hartigan (1985)
that the uniform is the appropriate null unimodal
distribution, because the dip is asymptotically sto-
chastically larger for the uniform than for other uni-
modal distributions; the asymptotic distribution of the
dip and some empirically determined distributions for
finite sample sizes are given in that paper.

The dip does not generalize simply to many dimen-
sions. The minimum spanning tree provides a kind of
ordering of the n sample points that may be used to
generate an analogue of the dip statistic: select a
particular sample point X, to be the mode or root, and
consider probability distributions P supported by the
links of the minimum spanning tree. Define P to be
unimodal if P has a density, with respect to the
uniform distribution on the tree, that is a nondecreas-
ing function of X as x moves toward the root. At each
point X on the tree define a distribution function value
F(x) to be the probability that a random point X
is such that x lies between X and x,. Let F, be
the empirical distribution function corresponding
to the empirical distribution which gives each sample
point probability 1/n. Define

d(F, F,) = sup| F.(x) — F(x) |,

D(Fny xO) = inf d(Fy Fn)y
F
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where F' is unimodal with mode x,,

DIP(F,) = inf D(F,, xo).

This procedure locates an optimal mode x, and states
how well the data fit the unimodal hypothesis,
DIP(F,). In the one-dimensional case the usual defi-
nition of dip gives the same value. The asymptotic
behavior of the multivariate version is unknown.

3.3.7 The Number of Clusters: Components

If the components of a multivariate normal mixture
are sufficiently well-separated, there will be one mode
for each component. In this case the number of clus-
ters is the number of components or the number of
modes, but in general the number of modes is fewer
than the number of components, so testing for the
presence of more than one component is less conserv-
ative than testing for the presence of more than one
mode.

Wolfe (1971) considers the likelihood ratio test for
say one component against two, but notes that the
regularity conditions which are usually required for
the log likelihood ratio to be proportional to a chi-
square are no fulfilled. See also Binder (1978) and
Hartigan (1977).

Consider the simplest case: X;, ---, X, sample
from N(0, 1) under the null hypothesis, and from
(1 — p)N(©, 1) + pN(u, 1) for some 0 < p < 1,
—o0 < u < oo under the alternative hypothesis. Let Z; =
exp(X;u — %u?) — 1. Then the likelihood is propor-
tional to L(p, n) = [[%: (1 + pZ;). Note that Z; has
mean 0 and variance e*’ — 1; if Z;(x) and Z:(u')
denote the Z-values computed for p and p’, then
cov(Z;(u), Zi(un")) = e — 1.

For each fixed u, log L(p, u) is a concave function
of p that has maximum value 0 if ¥ Z; < 0 but
maximum value approximately (3 Z;)*/2(¥ Z?) oth-
erwise. Thus asymptotically, L(x) = sup, log L(p, x)
is equal to zero with probability Y2, and to (x?)/2 with
probability Y. The (x%)/2 would be expected from
usual likelihood asymptotics.

If u and u’ are widely separated, Z; (1) and Z; (1)
are nearly uncorrelated, and so asymptotically L(u)
and L(u’) are nearly independent. Thus sup,L(u) is
greater than the maximum of k& nearly independent
L(n) for each k. Thus sup,L(x) is asymptotically
infinite.

The likelihood ratio test does not therefore follow
the usual asymptotics, and is not conservative: the
usual significance test will (with probability 1 asymp-
totically) reject the hypothesis of a single component
when only a single component is present. For each u,
sup, L (p, u) has asymptotically the same distribution,
and these distributions are nearly independent for
well-separated u; maximum likelihood computations

will therefore be difficult; we can expect to see local
maxima of sup,L(p, p) near every value of u.

If u has prior density normal with mean 0 and
variance 1, large values of u are inhibited and the
maximum posterior density will occur only with u
moderate. The corresponding ratio test may have bet-
ter asymptotic behavior than the likelihood ratio test.
More generally, if the mixture model has components
with means u;, uo, - - -, ur we might assume the u; to
be a priori a sample from a normal; this prevents the
artificially large separation of x’s that occurs in like-
lihood estimation and testing.

The behavior of the likelihood ratio statistic in the
k-means case has been examined in one dimension by
Hartigan (1978) and in higher dimensions by Pollard
(1982).

3.3.8 Ultrametric and Evolutionary Distances

Assume that there are N objects, and N(IN — 1)/2
distances between pairs of objects. From these dis-
tances we wish to form clusters of close objects. One
way to go about constructing the clusters is to require
that the distances satisfy certain properties in the
final clustering. For example, all distances within two
disjoint clusters must be smaller than all distances
between the clusters. Or, each pair of points in the
same cluster must be connected by a chain of points
such that neighboring points in the chain are closer
than some neighboring points in a chain connecting
points in different clusters. (This definition leads to
single linkage.) Another way is to suppose that the
clusters correspond to some ideal distance matrix, and
to attempt to approximate the given distance matrix
d with a best fitting cluster distance D. For example,
hierarchical clustering might correspond to an ultra-
metric D, a distance satisfying D(i, j) < sup[D(i, &),
D(j, k)] and we would find the ultrametric D closest
to d. See Hartigan (1967), Johnson (1967) and Jar-
dine, Jardine and Sibson (1967). Another plausible
definition, the evolutionary model from Fitch and
Margoliash (1967) is based on an evolutionary tree
generating the objects. The distance between any pair
of objects is the sum of links on the unique path
connecting them in the tree. If there exists an ancestor
in the tree such that all points are equidistant (in
sums of links) from the ancestor, then this evolution-
ary distance reduces to an ultrametric. Given the tree,
the best fitting evolutionary distance or ultrametric
can be fitted by regression methods; tlie hard part is
searching for the best tree.

Baker (1974) has considered probability models in
which an observed distance matrix d varies by some
amount from an ultrametric D, and has investigated
empirically how well the various hierarchical tech-
niques recover the true ultrametric D. The results are
opposite to those obtained using the high density
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model: complete linkage does well and single linkage
poorly.

Euclidean distances in p-dimensional space will
form an ultrametric distance matrix on at most
p + 1 points. For a density f, we can construct an
ultrametric by

D(x, y) = min max 1/f (u)
i bl C ueC

where C is any path connecting x and y. Thus x and
y are close if they can be connected by a path of high
density or éqlivalently if they lie together in a high
density cluster. In fitting such an ultrametric to ob-
jects in p-dimensional space we would use only the
small distances between objects to obtain an estimate
of the density f. Single linkage works only with the
small distances, whereas complete linkage depends on
the large distances. This may be the explanation for
Baker’s results favoring complete linkage, in that he
requires the fitted ultrametric to be close to the true
ultrametric when averaged over all distances, and the
large distances are neglected by single linkage. In
practice, the large distances deviate most from the
fitted ultrametric (however fitted) and it seems correct
to downweight their contribution. Theoretically, if we
wish to allow clusters of arbitrary shape and size, it
also seems impossible to give large distances much
weight. Perhaps we should fit an ultrametric D to
minimize

T wD)dG, j) — DG, j)F/Z w(D)

where w (D) is small or zero for D large. This moves
single linkage a little way toward average linkage.
More weight should be given to the large distances in
high dimensional spaces.

Let the objects 1, - - -, n be generated by an evolu-
tionary tree, beginning at some ancestor, O. For a
particular measurement X taking values X; on the
objects, assume that X changes in time ¢, t + At on a
particular link of the tree, by an amount that has
mean 0, variance ¢2At, and is uncorrelated with
changes in different intervals or links.

Then, letting EY denote the expected value of the
random variable Y,

E(X; — X;)? = 2¢°t;

where t;; is the time since i and j evolved from their
most recent ancestor, so E (X; — X;)?is an ultrametric!

If we had used different rates of evolution in the
different links of the tree, so that the changes in X
had variance o7 At for link i, then E(X; — X;)* would
be an evolutionary distance.

Suppose that X is normal, and there are p inde-
pendent samples of X, namely, X*, X2, ---, X?. (Here
the number of objects is fixed, and the measurements
are assumed sampled from an infinite population of

possible measurements; it will require careful stand-
ardization to achieve something like this in practice.)
Then

p
Y (X7 - X))~ 207t x5,
r=1

d(l, ]) ~ \/20’2tij X?,.
Let D(i,j) = ¥2¢°t;; p, an ultrametric. For large p,
d(,j) ~ DG, j)[1 + N(O, 2/p)].
This suggests fitting the ultrametric D by minimizing
2 [DG,j) - dG, j)F/D*G, j)
which downweights the large distances nicely, but
probably not enough. We have to take note also of the
high correlation between the large distances, arising
from the high fraction of their paths through the tree
that they have in common. We can compute these,

but the criterion to be minimized is then a complex
quadratic in D — d.

4. SOFTWARE AND ALGORITHM
IMPLEMENTATION

4.1 Introduction

This chapter provides a summary of available soft-
ware and algorithms for discriminant and cluster anal-
yses. Although it is intended to be up to date, the
current pace of statistical software evolution is such
that some of the more recent developments may be
inadvertently excluded. For instance, the new S sys-
tem (Becker, Chambers and Wilks, 1988) has facilities
for linear discriminant analysis and a variety of hier-
archical clustering methods, but is not discussed here.

The strengths and shortcomings of programs and
packages are described. Section 4.2 focuses on discrim-
inant analysis and Section 4.3 on cluster analysis. The
final section, 4.4, considers software needs.

4.2 Discriminant Analysis

4.2.1 Linear and Quadratic Discriminant Functions

Many packages are available for performing linear
discriminant analyses. Fewer are available for quad-
ratic discriminant analyses and only one (to our
knowledge) is available for performing density esti-
mate discriminant analysis. These are reviewed in the
section on packages. We have not attempted to cover
programs which are not widely available in the United
States. BMDP, GLIM, IMSL, Minitab, P-STAT,
SAS, SPSS-X and Statgraphics are now available in
versions for MS-DOS compatible microcomputers.
In addition, several statistical systems developed spe-
cifically for microcomputers have appeared on the
market: SYSTAT, CRISP, GAUSS and STATA are

examples.
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The linear discriminant function is well imple-
mented for most applications. The numerical tech-
niques are standard, the equations and algorithms
(inversion, solution of a set of linear equations) have
been tested thoroughly and accuracy is not a major
concern. Estimating errors in discriminant analysis is
generally done by reclassifying the training sample. If
the sample sizes are sufficiently large (say 3 to 5 times
the number of variables in each group), this method
is satisfactory and has an approximately binomial
distribution. One package offers the jackknife (or
leaving-one-out) method. This has a smaller bias than
the resubstitution method, but because of the corre-
lation among the pseudo-observations has a larger
variance. This method should only be used for small
samples when the danger of the optimistic bias of the
resubstitution method is substantial. Plots of the lin-
ear discriminant variables are available in most pack-
ages. Weighting of cases is possible in SAS and SPSS,
and it is not clear from the manuals whether it is
possible in BMDP and P-STAT. None of the packages
offer the option of proportional covariance matrices.
This intermediate step between the full quadratic
function and the linear function involves estimation
of only one additional parameter for each additional
group, rather than the full covariance matrix for the
added group, and may be a satisfactory compromise
in many cases.

4.2.2 Review of Packages

P-STAT. The P-STAT discriminant analysis pro-
cedure is similar to BMDP7M program. It is a back-
ward stepwise procedure and allows from 10 to 40
groups depending on the P-STAT size. No warning
on the sample size requirements for the many groups
case is given. This may lead some naive users astray.
Also, the assumption of common covariance is not
discussed. The resubstitution method is available for
estimating error rates. There are three types of runs:

1. Analyze and classify a data set.

2. Classify a known data set by using previously
generated functions. This can be used as a
validation method by holding out a fraction of
the data.

3. Classify an unknown data set.

Output data sets contain the original group, the
assigned group, the posterior probability the observa-
tion belongs to its original group and the posterior
probability it belongs to its highest probability group.

The program does not automatically step in the
batch mode but is stepwise when run interactively.

SPSS-X. The DISCRIMINANT procedure in
SPSS-X allows one to use a fixed set of variables or
to select variables in a forward manner. Removal of
variables is possible, but backward stepping does not

appear to be possible. Five criteria are possible to
select variables. Inclusion levels are available to force
variables into the discriminant function.

For the multiple groups problem, the canonical dis-
criminant functions are computed rather than the
likelihood ratio functions which minimize the total
(weighted) error rate.

Cases with missing values are excluded. It is possible
to select a subset of cases to analyze and then test
the performance of the rule on the remainder of the
cases.

Plots may be obtained which map the two-
dimensional space of canonical functions and show
the classification boundary, an all-groups plot which
plots each case or a separate-groups plot. A variety of
matrix operations are possible on the discriminant
coefficients.

BMDP7M. The BMDP7M stepwise discriminant
analysis program is the descendant of the oldest dis-
criminant analysis packaged program. It offers for-
ward and backward stepping, forcing levels for
inclusion or exclusion of variables, and two criteria
for variable entry. It is possible to specify prior prob-
abilities. For estimating error rates, the resubstitution
method and the jackknife method are available. Plots
of canonical variables are given either by group or for
any subset of groups. The error rates may be printed
at any set of steps in the variable selection process.
The size of the problem is a function of the number
of variables, groups and cases. It is not clear if there
is an upper limit on groups or variables. Quadratic
discrimination does not appear to be available.

SAS Procedures. SAS offers four discriminant
procedures: DISCRIM, NEIGHBOR, CANDISC and
STEPDISC. CANDISC performs a canonical discrim-
inant analysis and provides output for other SAS
procedures for plotting or printing. A number of sta-
tistics are available. The DISCRIM procedure com-
putes a linear or a quadratic discriminant function on
a fixed set of variables. Prior probabilities may be
specified. Classification may be done on the training
sample or on a test sample. Stratified analyses may
be performed by using a BY statement. The NEIGH-
BOR procedure performs a nearest neighbor discrim-
inant analysis. Either the single nearest neighbor or
the k-nearest neighbor rule may be used. Pripr and
posterior probabilities are printed and an error matrix
is given. The STEPDISC procedure performs a
stepwise discriminant analysis. It is s.milar to the
BMDP7M program. The Wilks’ lambda criterion is
used to determine which variable enters or is removed.

Other Packages. MINITAB (Ryan, Joiner and
Ryan, 1982) has no discriminant analysis procedure,
although it is possible to use a linear regression pro-
gram to obtain the discriminant coefficients. After
using the regression procedure, one could calculate
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the resubstitution estimator of error rates by the
MULTiply and ADD commands. Other packages
would be preferred for discriminant analysis.

IMSL has two subroutines for linear discriminant
analysis, ODFISH and ODNORM. In ODFISH, the
canonical discriminant functions are calculated. In
ODNORM, the multivariate normal discriminant
functioF,s are computed. These subroutines do not
print output; this becomes the user’s responsibility.
There are also routines which will estimate a density
function uging the kernel method. The user must
supply a kernel function. The subroutine computes
density estimates at a set of points requested by the
user. Printing is the user’s responsibility. These rou-
tines are NDKER and NMPLE which estimate the
density for a one-dimensional problem.

ALLOC (Hermans, Habbema and Schaefer, 1982)
is a program which computes allocation rules based
on density estimation. It uses multivariate normal
kernels with a diagonal covariance matrix. The
smoothing parameter is estimated by the program. A
subsequent modification allows the program to use
variable kernels to obtain better estimates of densities.

4.2.3 Logistic Regression

The major statistical packages all offer some form
of logistic regression analysis. Additionally, there are
a number of other programs available to perform these
computations. The method was originally suggested
by Cornfield (1962) in connection with the Framing-
ham studies. Walker and Duncan (1967) suggested
a weighted least squares method of estimating the
parameters which has been widely used. Day and
Kerridge (1967) discussed several properties of the
method. Nelder and Wedderburn (1972) derived the
theory of generalized linear models which has been
the basis for additional important work. The program,
GLIM (Generalized Linear Interactive Modeling), is
an outgrowth of this work and is easily used for fitting
these models which include the logistic regression
model.

BMDP offers a logistic regression program based
on a method developed by Jennrich and Moore (1975).
This is a stepwise program and uses iteratively
reweighted least squares. Conditional logistic regres-
sion is possible for matched pairs analyses.

SAS includes a procedure, LOGIST, in their sup-
plementary programs that performs logistic regression
by computing maximum likelihood estimates of the
parameters. Stepwise variable selection is possible.

SPSS does not have a separate logistic regression
procedure. One can get estimates of the regression
coefficients if the observations can be analyzed using
a categorical analysis program. Thus, continuous vari-
ables cannot be handled by SPSS.

GLIM was developed by the Numerical Algorithms
Group (NAG), in conjunction with the Royal Statis-
tical Society, to estimate parameters from the Nelder-
Wedderburn models. Special cases of this model in-
clude logistic regression, log-linear categorical models,
analysis of variance and multiple regression. This
program fits these models using maximum likelihood.
A new program, PRISM, has recently been issued by
NAG which includes all facilities of GLIM.

A general criticism of these packages is that they
offer little in the way of diagnostic computations for
the detection of influential observations. Work by
Pregibon (1981) is now available and new revisions of
these programs should include these results.

4.2.4 Classification Trees

Recent work on classification trees was summarized
briefly in Section 2.2.7. Batch and interactive versions
of the CART methodology are available through
California Statistical Software, Lafayette, California.

4.3 Cluster Analysis

The amount and diversity of cluster analysis soft-
ware has been surprisingly large for a statistical
method with effectively only a twenty year history.
New methods are produced continually, and there
appears to be no end in sight to the process of inno-
vation. Probably hundreds of software packages and
programs are available to perform cluster analysis,
and it is likely that many researchers have written
their own “home-grown” versions of popular algo-
rithms. That so much clustering software has been
written can be explained by two factors: (1) unlike
many statistical procedures, clustering algorithms,
which are often no more than heuristics, are relatively
easy to program on a computer; and (2) because most
sciences have different goals, analytical needs and
methodological requirements, many different cluster-
ing methods have been developed to exploit these
needs.

Clustering software can be placed into four major
categories: (1) collections of subroutines and algo-
rithms, (2) general statistical packages which contain
clustering methods, (3) cluster analysis packages and
(4) simple programs which perform one type of clus-
tering (Blashfield, Aldenderfer and Morey, 1982). Be-
cause a comprehensive review of clustering software
is beyond the scope of this report, the focus shall be
only upon those programs and packages which are
widely available.

4.3.1 Collections of Subroutines and Algorithms

Three major collections of software are available
today in this category; books by Anderberg (1973),
Hartigan (1975) and Jambu and Lebeaux (1983) plus
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the International Mathematical and Statistical Li-
brary (1977). Although much of this software is fairly
sophisticated, it requires the user to supply all job
control language of the computing system to link and
subsequently run the routines. As a result, these pro-
grams are not very “user-friendly.” The user must be
familiar with the local control language as well as
FORTRAN in order to be able to get the programs
running. In general the level of user support for these
routines is low. Hartigan’s algorithms are described
in a separate user’s manual (Dallal, 1975), whereas
Anderberg’s algorithms are only documented in his
book. Although the IMSL clustering algorithms are
embedded within the documentation of the entire
collection of IMSL subroutines, this does not neces-
sarily make them any easier to use. The FORTRAN
programs in the Jambu and Lebeaux book (1983)
are quite extensive and represent a considerable
effort by these two French writers. Like the routines
in Hartigan (1975), the algorithms in Jambu
and Lebeaux are unique. Despite the breadth of
methods available, algorithms in this category are not
recommended for use by the novice unless extensive
guidance is available.

Statistical Packages Containing Clustering Soft-
ware. The most convenient cluster analysis available
for general use is that contained within popular pack-
ages of statistical programs such as BMDP (Dixon,
1981), SAS (SAS Institute, 1985) and SPSS-X (SPSS,
1986). The philosophy of these packages is well-
known; they provide nonprogrammers with relatively
easy access to sophisticated statistical methods for a
wide variety of research problems. The packages pro-
vide an “umbrella” of support for the user in that they
use a consistent control language that communicates
the needs of the user to the computing system with a
minimum of effort. These packages also contain a full
range of data screening and manipulation methods
which help to make complex analyses simple and
feasible. If the package contains the method of interest
to the user, the advantages of using existing statistical
packages are substantial.

Until recently, the range of clustering options con-
tained in most statistical packages has been severely
limited. For instance, before 1980, SAS contained only
one clustering method and SPSS had no clustering
methods. However, this state of affairs has changed
dramatically. Since 1979, BMDP has developed four
procedures devoted to cluster analysis: (1) a collection
of single, complete and average linkage to cluster
variables; (2) an average linkage (centroid sorting)
method to cluster cases; (3) a block clustering method
(Hartigan, 1975) to simultaneously cluster cases and
variables; and (4) an iterative k-means method which
forms partitions among the cases. The BMDP proce-
dures are well-annotated, have clear output and are

relatively easy to use. The most serious limitations of
this package are the limited range of hierarchical
agglomerative methods, especially for clustering cases,
and the choice of only a single similarity measure,
Euclidean distance.

Earlier versions of the second statistical package,
SAS, contained one method of cluster analysis—com-
plete linkage. However, a recent release of this package
(SAS, 1985) includes substantial additions. This ver-
sion of SAS contains Ward’s single linkage, complete
linkage and average linkage plus seven other hierar-
chical agglomerative methods. Euclidean distance is
still the only similarity measure offered. In procedure,
FASTCLUS, a k-means method (Anderberg’s centroid
sorting method) has been added, and finally, a factor
analysis-type variable clustering method has been in-
cluded (procedure VARCLUS). The diagnostics of the
package has been expanded. In addition, the output
provides a great deal of information about the solu-
tions. A major limitation, however, is that SAS con-
tinues to use “sky line” plots to represent hierarchical
trees; these plots are difficult to use with large data
sets. Of considerable interest in SAS is the inclusion
of a new statistic, cubic clustering criterion, for the
determination of the number of clusters.

The 1986 version of SPSS-X contains two major
clustering procedures: CLUSTER and QUICK CLUS-
TER. The former emphasizes hierarchical agglomer-
ative methods including seven of the most commonly
used techniques (single linkage, complete linkage,
average linkage, Ward’s method, etc.). There are six
distance measures and three types of plots available.
The second procedure, QUICK CLUSTER, uses a
k-means method with limited options for starting
partitions. Interesting aspects of this procedure are
provisions for missing data and the ability to handle
extremely large data sets.

4.3.2 Cluster Analysis Packages

For the sophisticated and serious user of cluster
analysis, cluster analysis packages represent the ulti-
mate in flexibility and user convenience. These pack-
ages combine the advantages of general statistical
packages, such as an integrated control language and
data screening and manipulation procedures, with fea-
tures of interest to users of cluster analysis, such as a
diversity of clustering methods, special diagnostic fea-
tures and enhanced graphics. Of the g-eatest impor-
tance is that many of the packages contain hard to
find clustering methods or analytical procedures
which are appropriate for special problems.

The first of these packages is NT-SYS which is and
has been important because it adopts the terminology
and methodology inherent in the most frequently cited
book on cluster analysis, Sneath and Sokal (1973).
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This package has undergone numerous revisions and
updates in its 15-year existence. Moreover, there now
exists a microcomputer version, called NTSYS-pc,
which contains the standard hierarchical agglomera-
tive methods, graph theoretic methods and an eigen-
vector routine. This version can handle similarity
matrices up to 400 X 400 plus it contains three
graphiﬁ:s programs.

The most versatile of the clustering packages is
CLUSTAN. Like BMDP, SAS and SPSS-X, CLUS-
TAN éOntgins procedures for hierarchical agglomera-
tive and iterative partitioning methods. However,
CLUSTAN also contains a number of other proce-
dures including NORMIX to decompose multivariate
normal mixtures (Wolfe, 1971); INVARIANT, which
uses partitioning methods to optimize MANOVA sta-
tistics; DENDRITE, which is a minimum spanning
tree method, plus others. In addition, CLUSTAN has
cluster diagnostic and validation aids, including the
procedures called RULES and COMPARE, which
implement the stopping rules of Mojena (1977) and
the cophenetic correlation coefficient of Mojena and
Wishart (1980). A total of 38 similarity measures are
contained in procedure CORREL, and the package
contains a utility procedure which permits the user to
define any type of similarity coefficient (DEFINE).
Other important utilities are those which prepare a
number of cluster diagnostics or which produce a wide
variety of graphic output. The novice user of CLUS-
TAN should be aware that although this package
contains a large number of methods, the package
contains little guidance on which methods may be
most appropriate for what types of data sets.

There are three other packages which are devoted
to cluster analysis. CLUS (Friedman and Rubin, 1967)
is an old program which used a powerful set of iterative
partitioning methods. A more modern version of
CLUS is the procedure INVARIANT in CLUSTAN.
Another large package is BC-TRY. Like CLUS, this
program was written in the 1960s and contained the
innovative ideas of Tryon who was one of the earliest
writers about cluster analysis (Tryon, 1939). Currently
this program is being revised for redistribution. Fi-
nally, a recent clustering package for use on microcom-
puters has been developed called MICRO-CLUSTER
(Edmonston, 1985). This package contains seven
hierarchical agglomerative methods and an iterative
partitioning method.

4.3.3 Simple Cluster Analysis Programs

Simple cluster analysis programs are just that: sim-
ple. These are programs written primarily in FOR-
TRAN, and they implement one or two cluster
analysis methods. In some ways, they strongly resem-
ble the subroutine of the first category defined above,

in that they require the user to be fully competent in
the job control language of the computing system as
well as the language in which the program is written.
In general, these programs have no or few aids for
checking programming errors, are poorly documented
and provide limited output information. These pro-
grams are important, however, because they have
often been used within particular scientific areas, or
they have been used for the basis for the algorithms
presented in major packages such as SAS, IMSL and
OSIRIS. Some of the more popular of these simple
programs are HGROUP, a method which implements
Ward’s minimum variance method (Veldman, 1967)
JCLUST, which implements single and complete link-
age as discussed in the influential article by Johnson
(1967); and ISODATA, a flexible iterative partitioning
method which has been used extensively in engineer-
ing (Hall and Khanna, 1977).

Another category of cluster analysis programs con-
sists of those that handle large data sets (IV is greater
than 500). Unfortunately most clustering routines in
statistical packages are somewhat limited in the num-
ber of cases which can be analyzed at one time. Typ-
ically, most have a practical upper limit of 200 cases.
In response to this problem, a number of authors have
extended the capabilities of popular hierarchical ag-
glomerative and iterative partitioning methods to deal
with very large data sets. Among the most important
of these is Sibson’s (1973) single linkage algorithm
(SLINK). Note: SLINK is now incorporated within
CLUSTAN 2.1, CLUSTER (Levisohn and Funk,
1974) and QUICLUSTER (Bell and Korey, 1975)
which implement Ward’s methods and programs by
Defays (1977) and Rohlf (1977) for complete linkage
clustering. Rohlf (1982) presented a number of differ-
ent algorithms for single linkage that could be useful
for large data sets. Lennington and Rossbach (1978)
have developed CLASSY, an iterative partitioning
method based upon the logic of ISODATA, for use
with the very large data sets obtained in LANDSAT
satellite research.

4.4 Needs

For parametric (multivariate normal) discriminant
problems, relatively little is needed. A variety of pro-
grams are available which offer flexibility of use,
adequate error rate estimation and many variable
selection options. A general shortcoming is advice on
usage. For many users, the only place they will learn
about discriminant analysis is in the user’s manual of
a computer package. Some discussion of the limita-
tions (e.g., if you have many groups, you need many
observations) and robustness (e.g., transform your
data if a variable is badly skewed) is needed. Some of
the programs seem to have the attitude, if it can be
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programmed, include it. For example, in one program
up to 40 groups can be included in discriminant analy-
sis. A user with that many groups has probably not
thought sufficiently about the problem. (Nevertheless,
there are some problems, such as speaker recognition,
where the only interesting situation is having many
groups.) The quadratic discriminant function, avail-
able only in SAS, has some serious robustness prob-
lems. These should be noted.

The ability to enter previous coefficients or a set of
means and covariances is useful. It is valuable to enter
a simplified set of coefficients (say integers) and com-
pare the performance of the rule to the optimal rule.

Other than the IMSL routines for unidimensional
problems and ALLOC, no package has any programs
for density estimation. This is a useful procedure,
especially when distributions are rather far from nor-
mal. Nearest neighbor procedures, which are related
to nonparametric density estimates, are available in
SAS in the neighbor procedure.

Concerning cluster analysis programs, the inclusion
of k-means and hierarchical agglomerative methods in
the SPSS and SAS packages have helped standardize
the clustering methods that are used in applied re-
search. The SAS manual is particularly helpful con-
cerning the use of these techniques because it provides
a skeptical perspective and references some of the best
articles in the field. Nonetheless, none of the packages
is successful in providing sufficient cautions and in-
dications of the practical problems that are of serious
concern to new users of these procedures (e.g., guide-
lines on the choice of methods, the number of clusters
problem, the issue of outliers and the choice of the
similarity measure).

The preceding discussion has focused largely on
mainframe and minicomputers because most users of
these procedures have access to such computing equip-
ment at the present time. Several of the programs
available on microcomputers offer discriminant analy-
sis routines. BMDP, SAS, P-STAT and SPSS-PC
offer discriminant analysis through the usual pro-
grams. SYSTAT provides a discriminant analysis fa-
cility by using the module MGLH. Other programs
offer regression capabilities which give an equivalent
analysis, although not tailored exactly to the purposes
of allocation.

Development of graphic methods for allocation and
their computer implementation is needed. The main-
frame packages usually offer plots of the sample dis-
criminant variables which often is adequate to
determine differences among groups. However, these
variables are linear combinations of the observed vari-
ables and are not always easily interpretable. A “sim-
ple” exploratory graphical program would be welcome.
Such a program would be interactive, with very good
graphics (i.e., much better than the usual transcription

of a page of text to graphic symbols). Graphic cluster-
ing procedures have also been neglected in generally
available programs.

There are no interactive programs for allocation or
clustering that are generally available. Such a program
would allow the user to specify the variables to be
included in the allocation rule, to specify the form of
the rule (e.g., linear, quadratic, tree structure for dis-
crimination), to enter new variables or delete old ones
and to detect influential observations.

Regression diagnostics have become increasingly
important in statistical practice, but little in the way
of diagnostics is available for allocation rules. In a
sense, the regression diagnostics suffice for classical
linear discriminant theory, and Pregibon’s work has
large application in logistic regression. See also Land-
wehr, Pregibon and Shoemaker (1984) and Fowlkes
(1987). Diagnostic procedures are generally lacking in
cluster analysis. However, this lack is primarily due
to the problems in developing an adequate statistical
theory for clustering rather than reflecting a program-
ming deficiency. Nevertheless, a few procedures
have been developed and appear to be useful (see
Section 2.3.3).

5. CLOSING PERSPECTIVE

Discriminant analysis and cluster analysis must be
classified as among the most useful statistical tech-
niques for society’s problems (Gnanadesikan and
Kettenring, 1984). This report has attempted to sum-
marize and assess their status in terms of methodol-
ogy, theory and software. The material, it is hoped,
will be informative both to users of these techniques,
who may want an update on the state-of-the-art, and
to professional statisticians, who may be more inter-
ested in current research and what remains to be done.

Even casual readers of this report will have noticed
tremendous differences between the conditions of dis-
criminant analysis and cluster analysis. The former is
a well-developed subject with a variety of effective
methods and supporting theory. The latter is lacking
in firm foundations and agreed upon methodology.
Perhaps it is only along the software coordinate that
there is approximate parity. Indeed, there may be more
software for cluster analysis simply because of the
proliferation of ad hoc methods for this purpose.

In spite of its relatively advanced state, there are
still many interesting problems to be worked on in
discriminant analysis. Specific mention was made in
Sections 2 and 3 of the promising new areas of projec-
tion pursuit classification and additive logistic regres-
sion analysis; the need for more study of biases
associated with the use of the bootstrap in estimating
error rates and of the trade-offs between bias and
mean square error performance of different estimates
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of error rates; and, generally, the opportunities for
additional development and experimentation with the
variety of nonparametric and semiparametric methods
that are now available.

However, the greatest needs appear to be in the
cluster analysis arena. Unless significant break-
throughs in theory and insights into the behavior of
proceﬂfyes,l are produced, cluster analysis is likely to
remain a largely descriptive technique whose results
are too dependent upon the vagaries of particular
methods. A list of research problems, some of which
were discussed in Sections 2 and 3, includes:

e Developing a stronger base of inferential and
diagnostic tools (a high priority should be
placed on the development of sample reuse
techniques that will werk in the clustering con-
text).

e Closing the gap between theory and practice
(the need is illustrated by the attractiveness of
single linkage clustering from a theoretical
point of view in spite of its frequent po()r‘iper-
formance in practice).

e Compensating for the lack of adequate theory
with empirical development of new insights
about existing algorithms (clever and extensive
simulation studies may be the only way around
the mathematical and theoretical difficulties in
this field).

¢ Finding tools for selection, scaling and trans-
formation of variables that are effective at
bringing out cluster structure (iterative
schemes may be required because the clusters
are unknown in advance).

o Learning how to make clustering algorithms
robust to data idiosyncrasies (the payoff may
prove to be in the “local” application of
the robustness concept rather than a crude
global attack that is insensitve to fine cluster
structure).

Another area that is ripe for more research concerns
problems that fall between discriminant analysis and
cluster analysis. A fair amount of work has been done
near the discriminant end of the spectrum, e.g., deal-
ing with the situation where errors are present in the
group labels of the training sample. Little is known
about how to do cluster analysis in the presence
of limited prior information on the composition of
clusters.
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