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like the optimally scaled fractional factorial, places
many input values about halfway between the center
and edge of the design region, I was curious about how
much of the optimality could be credited to this prop-
erty alone. So I generated 100 random 16-run designs,
where each element of the design matrix could be +%
or —Y% with equal probability (the only restriction on
the randomization was that no two runs could be
identical), and evaluated the criterion for each of
these. For # = 2 and p = 2, the smallest and largest
values of VIMSE for these designs were 0.6743 and
0.7138, not -as close to optimal as the shrunken frac-
tional factorial, but also not too bad, and surprisingly
(to me) consistent.

Of course, one example does not prove that there
will always exist a cheap, simple, nearly optimal de-
sign. Also, as the authors note, it may not be so
important to save 11 minutes of supercomputer time
generating an optimal experimental design if the com-
puter model itself requires even more time per run.
But computing costs aside, I believe that a sizable gain
in design simplicity and symmetry is often worth a
small price in optimality.

Another related issue is how designs generated by
different optimality criteria compare. Using the en-
tropy criterion described in Currin, Mitchell, Morris
and Ylvisaker (1988), I generated a locally optimal
16-run design for the problem of Section 6, again using
6 = 2 and p = 2. This design is almost entirely in the
corners of the design space; only 4 of the 96 entries in
the design matrix are other than +% or —%. VIMSE
for this design is 0.9343, which is not much different
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from that of the largest fractional factorial considered
above. Just as in experimental design for linear
models, there is no reason to believe that two “good”
criteria should lead to exactly the same design. How-
ever, these two criteria are motivated by the same
general goal—that of relatively good prediction of y in
an overall sense—and it is somewhat disturbing to me
that the results of these approaches seem so dramati-
cally different. Somewhere along the line, I expect to
learn either that the approaches are not as similar as
I've assumed, or that the designs are not as different
as they appear.

CONCLUSION

In summary, I think that both the approach outlined
in this paper and the Bayesian alternative described
by Currin, Mitchell, Morris and Ylvisaker (1988) are
promising tools for approximating computer models.
A number of issues, such as selection of a stochastic
process and criteria against which designs may be
measured, must eventually be addressed in consider-
ably more detail. However, this paper marks an excel-
lent beginning, and the authors are to be congratulated
on a job well done.
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The authors address prediction in the sense of de-
veloping an interpolating function that can be used
economically as a surrogate for the computer model
in, e.g., finding the region in the input space that
optimizes the output. But computer models are also
used to make predictions in the more conventional
sense of statements about a possible future outcome,
such as the greenhouse effect, nuclear winter or the
temperature reached in the core of a nuclear reactor
in the event of a hypothesized accident. Inputs to such
calculations can be based on data, such as reliability
data pertaining to nuclear power plant safety systems,
so the output of the computer calculation is a statis-
tical prediction—a function, at least in part, of data.
For informed decision-making, we need to be able to
say something about the statistical and other uncer-
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tainty of this prediction. The calculation of standard
errors and statistical prediction limits is not at all
straightforward, but methods such as the jackknife
and bootstrap can-be useful (or all we have). These
methods are computer-intensive, and we may need to
apply them to a surrogate computer model, rather
than the actual, so this is another possible application
of SWMW’s methods.

Experimental design problems also arise in this
context in deciding how to collect data pertaining to
the inputs in order to most efficiently control or reduce
the statistical uncertainty of the computed prediction.
The calculation of effects and interactions, as in
SWMW’s Section 6, is one way to identify influential
inputs and thereby guide subsequent data collection.
Though these statistical prediction and experimental
design aspects of the use of computer models are
beyond the scope of SWMW?’s paper, I mention them
to bring them to the readers’ attention. Important
decisions are being made based on bare point esti-
mates calculated from complex computer models,
whose very complexity can endow them with unwar-
ranted credibility and camouflage the lack of data. If
we want to strengthen the data foundation of these
decisions, we will have to tackle these problems.

Exercising expensive, important computer models
calls for a great deal of circumspection, and SWMW
exhibit care that is all too rare. In too many areas of
application, the standard approach is to take a shotgun
approach (Monte Carlo or Latin hypercube sampling),
where the shotgun is aimed and loaded with some
highly dubious probability distributions (see Downing,
Gardner and Hoffman, 1985, and Easterling, 1986).
Though the primary objective in these cases may be
to approximate the (dubious) distribution of the out-
put, these randomly chosen input sites are also used
to fit surrogates and evaluate input effects. When
resources are dear, and the objective is to learn some-
thing about the complex processes being modeled, it
seems almost criminal to me to turn over the exercise
of the computer model to a random number generator.

We need to use all the statistical and subject-matter

intelligence that can be mustered.

SWMW entrust the selection of input sites to com-
puter optimization routines, which may be whimsical
but at least are not random. They reject the use of
“standard” experimental designs because they “can be
inefficient or even inappropriate for deterministic
computer codes.” This rejection, however, seems to
be based on the fact that the subsequently fitted
(naive) polynomial models may not provide very
good surrogates for the ecomputer code. The fault,
though, lies with the model, not necessarily with the
design. I think standard designs might provide fits of
kriging models, or other interpolators, that are not
appreciably worse than fits obtained from SWMW’s

“optimal” designs, and would offer more-than-
offsetting advantages.

For example, consider Figure 1, which is a 16-run
computer-selected design in two inputs given in
Currin, Mitchell, Morris and Ylvisaker (1988). (For
whimsy, note that the computer picked three of the
four corner points, one point on three of the edges,
two on the other, and points that are roughly diago-
nal.) About the only place in this design that one can
see the effect of one of the t;s while holding the other
fixed is along the edges. Being able to evaluate simple
effects at many points in the design space seems to
me to be a valuable aid in understanding the nature
of the complex function being studied.

Consequently, I would prefer a 4% design in this
example. This design provides many clean, com-
parable measures of the simple effects of the two
inputs, requires zero CRAY time, is geometrically
appealing and, for these reasons, should be much
easier to sell to the code proprietor or user (unless
that person is swayed by the computer-mystique of
the “optimal” design). I can only conjecture, but I
expect that the resulting fitted kriging model would
provide a surrogate that will perform practically as
well as one fitted to the Figure 1 design.

Another design that might be considered if subject-
matter knowledge suggested that the response was
smoother in one direction than the other would be a
3 x 5 arrangement. Such knowledge might also suggest
transformations, rotations, etc. We need to turn those
black boxes into gray boxes.

Consider next SWMW'’s Section 6 example of 32
runs with 6 inputs. A “standard” design some might

ORNL-DWG 88C-3083 FED

10 [ ]
[ ]
[ ]
[ ]
[ ]

[ ]

® ®
[ ]
[ ]

[ ]
oce [ ] [ ]
() 1

ty

F1G. 1. Algorithmic-generated design: 16 runs, 2 inputs.
Source: Figure 9, Currin, Mitchell, Morris and Ylvisaker
(1988).
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consider would be a 25! fraction at corners of the
design space, which have coordinates of £%. I'm sure
SWMW would reject this design as a basis for fitting
their kriging model and T would too. As an alternative,
based on an adaptation of standard designs, I would
propose a 252 at corners of the cube plus an interior
252 at corners of the (—%, %4)® cube. Subject-matter
expertise could help choose the particular fractions
(and I think subject matter expertise would be better
used in this way than in specifying parameters for the
covariance function). One might consider some sort of
optimization -scheme for choosing the inner fraction,
given the outer fraction. (I would think that comple-
mentary fractions ought to be used. For example, if
I = ABCD = CDEF = ABEF is the selected defining
contrast for the outer fraction, then I = ABCD =
—CDEF = —ABEF would be one of my candidate
defining contrasts for the inner.) Additionally, one
might optimize the dimension of the inner cube—
perhaps the corners should be at +% instead in order
to more uniformly fill in the design space. Or it might
help to pull the outer cube points in slightly from the
corners of the design space. The optimality problems
this approach suggests are of much smaller dimension
than those of SWMW, so they ought to be easier to
solve, if one is determined to optimize something.

I would encourage statisticians and code analysts to
investigate and use adaptations of standard designs
such as these I have suggested. The optimal design
community sometimes says that optimality criteria
shouldn’t dictate a design, but rather they should
provide a starting point that might lead to a more
appropriate design. One doesn’t have to do much
nudging on the points in Figure 1 to see a 4> design
emerging. The projection in SWMW’s Figure 1 of
their example’s first 16 points suggests a conventional
22-plus-center-point design on an interior cube. After
the first 16 points, the authors change their design
approach with the result that the subsequent 16 points
are forced out toward the edges. So I think that deep
down we have similar objectives and concepts of good
designs. My experience in this and other contexts is
that optimality algorithms seem to be trying to get to
a recognizable, reasonable design, but they’re so

muscle-bound they can’t quite make it. Of course,
once you realize this, you can skip the CRAY exercise
and go directly for a reasonable design.

In both examples, the algorithmic designs are kind
of “ugly”—to coin a new technical term. They look
like what might emerge from an observational study
or if the experimenter could not control the factor
settings very well. Surely no one would deliberately
design a real experiment this way, so why is it right
for a computer experiment? The authors’ answer is
that the perfect repeatability of a computer run, as
opposed to the imperfect repeatability of field or lab-
oratory experiments, makes things, well, different. To
me, though, this property negates only the utility of
replication. It doesn’t cancel out the attractiveness of
properties such as balance, symmetry, collapsibility
and comparability (of simple effects) that make fac-
torial designs so powerful, informative and “pretty.”
If the objective was to fit a highly nonlinear model,
then an algorithmic design might be called for. But
here the model is (or can be)

Y = constant plus correlated error,

so doesn’t it seem right that geometric and space-
filling ideas should be used? Again, let’s not turn the
exercise of computer codes over to a computer program
until we’ve fully applied our statistical and subject-
matter expertise.

In closing, though I am skeptical about the proposed
experimental designs in the context of computer ex-
periments, I congratulate the authors for this timely,
well-written, and thought-provoking paper, and I ap-
preciate the opportunity to help air some of the issues
involved. I hope readers will be stimulated to take a
statistical look at the use of computer models in their
field of application.
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