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Comment

Evarist Giné and Joel Zinn

Since Dudley’s influential paper of 1978 the theory
of empirical processes has undergone a vigorous de-
velopment. David Pollard and his collaborators,
among others, have applied some of these develop-
ments in asymptotic statistics. However, probably due
to the technical character of this theory, applications
are slow in coming. The present article will certainly

help to make the subject better known to potential

users.

We have no criticism to offer on this interesting
paper. Instead, we take it as a basis for a digression
both on points of view and aspects of empirical process
theory that we have found useful in our work.

In the present article, Pollard describes how to
obtain maximal inequalities for Gaussian and related
processes using the “chaining method” associated to
metric entropy. It is important to highlight this subject
as Pollard has done, because, directly or indirectly, it
is at the core of most of the progress made on empirical
processes since 1978. Closely connected to this subject
is Talagrand’s (1987a) landmark work characterizing
sample boundedness and continuity of Gaussian proc-
esses by means of properties of their covariances.
These properties are the so called majorizing measure
conditions which, like metric entropy, are conditions
on the size of the index set for the Gaussian pseudo-
distance. Actually these are the minimal conditions
under which a chaining proof quite similar to the one
here can still be carried out (see, e.g., Remark 2.6 in
Andersen, Giné, Ossiander and Zinn, 1988). Rhee and
Talagrand (1988) show how this more refined chaining
method can be of practical interest. They obtain a
precise maximal inequality for an empirical process in
a concrete situation with implications in bin packing
by constructing the appropriate majorizing measure.
More applications of majorizing measures to empirical
processes, in connection with bracketing, can be found
in Andersen, Giné, Ossiander and Zinn (1988).

Given the wealth of results available for Gaussian
processes, notably deviation and concentration in-
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. course, the already mentioned maximal inequalities,

direct and converse (for references see, e.g., Pisier,
1986; Giné and Zinn, 1986), it is sometimes effective
to hypothesize Gaussian properties for 7 either in-
stead of, or in conjunction with, more analytical con-
ditions such as entropy. As a very naive instance, here
is a Gaussian definition of manageable class weaker
than Definition 4.3 and which does essentially
the same job. Let # be a class of functions with
envelope F. For @ = ¥ a4, € F(S), the set of
probability measures on S with finite support, define
the Gaussian process Wyo(f) = ¥ ai’?gif (s:)/(QF?)Y2,
where g; are iid. N(0, 1), and let Wy(f, g) =
[E(Wq(f) — Wq(g))?]*% Then say that .7 is manage-
able if

(i) supgezs) Ell Wolls < and
(i) lim;_o supgesys) E | Woll s+ wy =0

where 7'(3, Wo) = {f —8:f, 8§ € F, Wq(f, 8) = 4}.
Stability properties and results similar to Theorems
4.5 and 4.7 still hold for such classes. For instance, a
proof of (a weaker form of) Corollary 4.6 goes as
follows: using property (i) together with symmetriza-
tion and Jensen’s inequality as in the text, we have

Elvlls=<2E | n™23 0,f (X)) ”
i=1 F
=V2rE | n72 Y gf (X)) H
i=1 F

= V2r E[(P,F?)?E, || Wp_|| +] < C(PF?)

The proof of Theorem 4.7 would use (ii) and a
comparison theorem of Fernique (1985). If & =
{fo: | follo = 0(1/(log n)*/?)} then ¥ is manageable in
this weaker sense but not necessarily in the sense of
Definition 4.3. For more details on these classes of
functions, see Giné and Zinn (1989).

In the applications presented by Pollard, error terms
in Taylor expansions are controlled by the size of
[| v | >, the sup of the empirical process over a class
of functions #, and therefore probability inequalities
for || v, || 5, i-e., maximal inequalities, yield the desired
results. Other types of possible applications of empir-
ical processes would relate to the construction of
asymptotic confidence regions and tests of hypotheses
based on the statistics | P, — Plls = n7Y2|| v, | 5.
These would require knowledge of the limiting distri-
bution of || v, || & or, in general, of the limiting law of
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the processes {v,(f)): f € &} regarded as random
elements with values in the space /(%) of bounded
functions on . As indicated in Section 6 of Pollard’s
article, much effort has been devoted to proving limit
theorems for v,. There are, however, some stumbling
blocks for this type of application to materialize which
are already encountered in the multidimensional
Kolmogorov-Smirnov case; particularly, that the lim-
iting Gaussian process Gp depends on the law P of the
data which, after all, is unknown. The bootstrap is a
way around this difficulty; see, e.g., Beran and Millar
(1986) for confidence regions based on . = {the half
spaces of R%. Let X2,j=1, ---, n, n €N, be iid
with the law of the empirical measure P%, and set
va(f) = n72 30 [f(X3) — Pi(f)]. It can be shown
that, under measurability conditions, the processes
{v} converge weakly to Gp for almost every w if and
only if v, converges weakly to Gp and PF? < o (actually
PF? < » is not required if convergence of »% takes
place not w-a.s., but in w-probability) (Giné and Zinn,
1988). Then the distribution of || Gp|| s is approxi-
mated by that of || v%|| s w-a.s. and the latter can be
computed up to any degree of approximation by Monte
Carlo methods. We should point out that in the proof
of the bootstrap central limit theorem for empirical
processes we use several results and techniques from
Probability in Banach spaces other than chaining.
Among the most useful ones are a lemma on Poisson-
ization by Le Cam (1970) and an inequality by
Hoffman-Jgrgensen (1974) that is basic for integra-
bility of sums of independent random vectors. For a
larger list of useful results see the introduction in
our paper.

Pollard (1981) introduced Rademacher randomiza-
tion (i.e., considering n™* Y2, 0idx, instead of P, — P)
in the context of empirical processes and since then
symmetrization has played an important role in this
theory. Jain and Marcus (1975), as well as Hoffmann-
Jgrgensen and Pisier (1976), motivated by Kahane’s
(1968) book, used it in the related subject of the CLT
in Banach spaces. However Gaussian randomization
(i.e., considering n™' Y, g;6x, instead of P, — P) took
a little more time to come into the subject essentially
- because (a) it does not add to randomization with
+1’s for proving (the sufficiency part of) limit theo-
rems since chaining works for sub-Gaussian proc-
esses equally well and (b) although it is obvious that
| %1 gidx/n'?|s dominates || X 0:dx,/n'* |5,
the “almost” converse, which is due to Fernique and
Pisier, is less obvious and was not published until 1984
(Giné and Zinn). It is in this converse direction that
Gaussian randomization is essential: used in con-

Jjunction with strictly Gaussian theory (e.g., Sudakov’s
inequality), it allows one to prove that certain suffi-
cient conditions for P to satisfy the CLT or the LLN
uniformly in # are also necessary. A previous case in
point is the proof in Marcus and Pisier (1981) that
certain entropy conditions are necessary and sufficient
for a.s. uniform convergence of random Fourier series,
with Rademacher series used for sufficiency and
Gaussian series for necessity.

Regarding history of recent research on empirical
processes directly related to chaining, we would like
to mention the works of Talagrand (1987b) and Le-
doux and Talagrand (1989) where P-Donsker classes
of functions & are characterized (up to measurability)
in a random-geometric way: their decomposition of #
into a Gaussian or L, part and a part where sign
cancellation plays no role, which is based on chaining,
captures in our view the essence of P-Donsker classes.
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